

Chapter 07.08

Simpson $\frac{3}{8}$ Rule For Integration.

Introduction

The main objective in this chapter is to develop appropriated formulas for obtaining the integral expressed in the following form:

$$I = \int_a^b f(x)dx \quad (1)$$

where $f(x)$ is a given function. Most (if not all) of the developed formulas for integration is based on a simple concept of replacing a given (oftently complicated) function $f(x)$ by a simpler function (usually a polynomial function) $f_i(x)$, where i represents the order of the polynomial function. In the previous chapter, it has been explained and illustrated that Simpsons $\frac{1}{3}$ rule for integration can be derived by replacing the given function $f(x)$ with the 2nd –order (or quadratic) polynomial function $f_i(x) = f_2(x)$, defined as:

$$f_2(x) = a_0 + a_1x + a_2x^2 \quad (2)$$

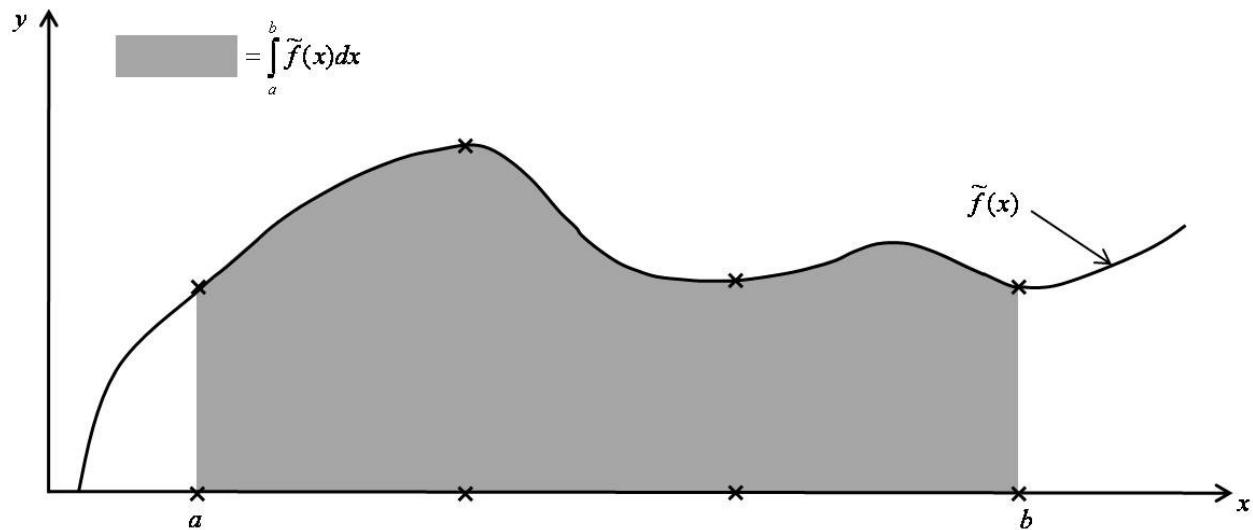


Figure 1 $\tilde{f}(x)$ Cubic function.

In a similar fashion, Simpson $\frac{3}{8}$ rule for integration can be derived by replacing the given function $f(x)$ with the 3rd-order (or cubic) polynomial (passing through 4 known data points) function $f_i(x) = f_3(x)$, defined as

$$f_3(x) = a_0 + a_1x + a_2x^2 + a_3x^3 \\ = \{1, x, x^2, x^3\} \times \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} \quad (3)$$

which can also be symbolically represented in Figure 1.

Method 1

The unknown coefficients a_0, a_1, a_2 and a_3 (in Equation (3)) can be obtained by substituting 4 known coordinate data points $\{x_0, f(x_0)\}, \{x_1, f(x_1)\}, \{x_2, f(x_2)\}$ and $\{x_3, f(x_3)\}$ into Equation (3), as following

$$\begin{aligned} f(x_0) &= a_0 + a_1x_0 + a_2x_0^2 + a_3x_0^3 \\ f(x_1) &= a_0 + a_1x_1 + a_2x_1^2 + a_3x_1^3 \\ f(x_2) &= a_0 + a_1x_2 + a_2x_2^2 + a_3x_2^3 \\ f(x_3) &= a_0 + a_1x_3 + a_2x_3^2 + a_3x_3^3 \end{aligned} \quad (4)$$

Equation (4) can be expressed in matrix notation as

$$\begin{bmatrix} 1 & x_0 & x_0^2 & x_0^3 \\ 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ f(x_2) \\ f(x_3) \end{bmatrix} \quad (5)$$

The above Equation (5) can be symbolically represented as

$$[A]_{4 \times 4} \vec{a}_{4 \times 1} = \vec{f}_{4 \times 1} \quad (6)$$

Thus,

$$\vec{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = [A]^{-1} \times \vec{f} \quad (7)$$

Substituting Equation (7) into Equation (3), one gets

$$f_3(x) = \{1, x, x^2, x^3\} \times [A]^{-1} \times \vec{f} \quad (8)$$

Remarks

(a) As indicated in Figure 1, one has

$$\left. \begin{aligned} x_0 &= a \\ x_1 &= a + h \\ &= a + \frac{b-a}{3} \\ &= \frac{2a+b}{3} \\ x_2 &= a + 2h \\ &= a + \frac{2b-2a}{3} \\ &= \frac{a+2b}{3} \\ x_3 &= a + 3h \\ &= a + \frac{3b-3a}{3} \\ &= b \end{aligned} \right\} \quad (9)$$

(b) With the help from MATLAB [Ref. 2], the unknown vector \vec{a} (shown in Equation 7) can be solved as

Method 2

Using Lagrange interpolation, the cubic polynomial function $f_{i=3}(x)$ that passes through 4 data points (see Figure 1) can be explicitly given as

$$\begin{aligned} f_3(x) &= \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} \times f(x_0) + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} \times f(x_1) \\ &\quad + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} \times f(x_3) + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} \times f(x_3) \end{aligned} \quad (10)$$

Simpsons $\frac{3}{8}$ Rule For Integration

Thus, Equation (1) can be calculated as (See Equations 8, 10 for Method 1 and Method 2, respectively):

$$\begin{aligned} I &= \int_a^b f(x) dx \approx \int_a^b f_3(x) dx \\ I &= (b-a) \times \frac{\{f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)\}}{8} \end{aligned} \quad (11)$$

$$\text{Since } h = \frac{b-a}{3}$$

Hence $b-a=3h$, and the above equation becomes:

$$I \approx \frac{3h}{8} \times \{f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)\} \quad (12)$$

The error introduced by the Simpson $\frac{3}{8}$ rule can be derived as [Ref. 1]:

$$E_t = -\frac{(b-a)^5}{6480} \times f''''(\zeta), \text{ where } a \leq \zeta \leq b \quad (13)$$

Example 1 (Single Simpson $\frac{3}{8}$ rule)

Compute $I = \int_{a=8}^{b=30} \left\{ 2000 \ln \left(\frac{140,000}{140,000 - 2100x} \right) - 9.8x \right\} dx$, by using a single segment Simpson $\frac{3}{8}$ rule

Solution

In this example:

$$\begin{aligned} h &= \frac{b-a}{3} \\ &= \frac{30-8}{3} \\ &= 7.3333 \end{aligned}$$

$$\begin{aligned} x_0 = 8 \Rightarrow f(x_0) &= 2000 \ln \left(\frac{140000}{140000 - 2100 \times 8} \right) - 9.8 \times 8 \\ &= 177.2667 \end{aligned}$$

$$\begin{cases} x_1 = x_0 + h \\ = 8 + 7.3333 \\ = 15.3333 \\ f(x_1) = 2000 \ln \left(\frac{140000}{140000 - 2100 \times 15.3333} \right) - 9.8 \times 15.3333 \\ = 372.4629 \end{cases}$$

$$\left\{ \begin{array}{l} x_2 = x_0 + 2h \\ = 8 + 2(7.3333) \\ = 22.6666 \\ f(x_2) = 2000 \ln \left(\frac{140000}{140000 - 2100 \times 22.6666} \right) - 9.8 \times 22.6666 \\ = 608.8976 \end{array} \right.$$

$$\left\{ \begin{array}{l} x_3 = x_0 + 3h \\ = 8 + 3(7.3333) \\ = 30 \\ f(x_3) = 2000 \ln \left(\frac{140000}{140000 - 2100 \times 30} \right) - 9.8 \times 30 \\ = 901.6740 \end{array} \right.$$

Applying Equation (12), one has:

$$I = \frac{3}{8} \times 7.3333 \times \{177.2667 + 3 \times 372.4629 + 3 \times 608.8976 + 901.6740\}$$

$$I = 11063.3104$$

The "exact" answer can be computed as

$$I_{exact} = 11061.34$$

Multiple Segments for Simpson $\frac{3}{8}$ Rule

Using " n " = number of equal (small) segments, the width " h " can be defined as

$$h = \frac{b - a}{3} \quad (14)$$

Notes:

n = multiple of 3 = number of small " h " segments

The integral, shown in Equation (1), can be expressed as

$$I = \int_a^b f(x) dx \approx \int_a^b f_3(x) dx$$

$$I \approx \int_{x_0=a}^{x_3} f_3(x) dx + \int_{x_3}^{x_6} f_3(x) dx + \dots + \int_{x_{n-3}}^{x_n=b} f_3(x) dx \quad (15)$$

Substituting Simpson $\frac{3}{8}$ rule (See Equation 12) into Equation (15), one gets

$$I = \frac{3h}{8} \left\{ f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) + f(x_4) + 3f(x_5) + 3f(x_6) \right. \\ \left. + \dots + f(x_{n-3}) + 3f(x_{n-2}) + 3f(x_{n-1}) + f(x_n) \right\} \quad (16)$$

$$I = \frac{3h}{8} \left\{ f(x_0) + 3 \sum_{i=1,4,7,\dots}^{n-2} f(x_i) + 3 \sum_{i=2,5,8,\dots}^{n-1} f(x_i) + 2 \sum_{i=3,6,9,\dots}^{n-3} f(x_i) + f(x_n) \right\} \quad (17)$$

Example 2 (Multiple segments Simpson $\frac{3}{8}$ rule)

Compute $I = \int_{a=8}^{b=30} \left\{ 2000 \ln \left(\frac{140,000}{140,000 - 2100x} \right) - 9.8x \right\} dx$, using Simple $\frac{3}{8}$ multiple segments rule, with number (of "h") segments = $n = 6$ (which corresponds to 2 "big" segments).

Solution

In this example, one has (see Equation 14):

$$h = \frac{30 - 8}{6} = 3.6666$$

$$\{x_0, f(x_0)\} = \{8, 177.2667\}$$

$$\{x_1, f(x_1)\} = \{11.6666, 270.4104\}, \text{ where } x_1 = x_0 + h = 8 + 3.6666 = 11.6666$$

$$\{x_2, f(x_2)\} = \{15.3333, 372.4629\}, \text{ where } x_2 = x_0 + 2h = 15.3333$$

$$\{x_3, f(x_3)\} = \{19.484.7455\}, \text{ where } x_3 = x_0 + 3h = 19$$

$$\{x_4, f(x_4)\} = \{22.6666, 608.8976\}, \text{ where } x_4 = x_0 + 4h = 22.6666$$

$$\{x_5, f(x_5)\} = \{26.3333, 746.9870\}, \text{ where } x_5 = x_0 + 5h = 26.3333$$

$$\{x_6, f(x_6)\} = \{30,901.6740\}, \text{ where } x_6 = x_0 + 6h = 30$$

Applying Equation (17), one obtains:

$$I = \frac{3}{8} (3.6666) \left\{ 177.2667 + 3 \sum_{i=1,4,\dots}^{n-2=4} f(x_i) + 3 \sum_{i=2,5,\dots}^{n-1=5} f(x_i) + 2 \sum_{i=3,6,\dots}^{n-3=3} f(x_i) + 901.6740 \right\}$$

$$I = (1.3750) \{ 177.2667 + 3(270.4104 + 608.8976) + 3(372.4629 + 746.9870) + 2(484.7455) + 901.6740 \}$$

$$I = 11,601.4696$$

Example 3 (Mixed, multiple segments Simpson $\frac{1}{3}$ and $\frac{3}{8}$ rules)

Compute $I = \int_{a=8}^{b=30} \left\{ 2000 \ln \left(\frac{140,000}{140,000 - 2100x} \right) - 9.8x \right\} dx$, using Simpson $\frac{1}{3}$ rule (with $n_1 = 4$ small segments), and Simpson $\frac{3}{8}$ rule (with $n_2 = 3$ small segments).

Solution:

In this example, one has:

$$\begin{aligned} h &= \frac{b-a}{n} \\ &= \frac{b-a}{n_1 + n_2} \\ &= \frac{30-8}{(4+3)} \\ &= 3.1429 \end{aligned}$$

$$\left. \begin{aligned} x_0 &= a = 8 \\ x_1 &= x_0 + 1h = 8 + 3.1429 = 11.1429 \\ x_2 &= x_0 + 2h = 8 + 2(3.1429) = 14.2857 \\ x_3 &= x_0 + 3h = 8 + 3(3.1429) = 17.4286 \\ x_4 &= x_0 + 4h = 8 + 4(3.1429) = 20.5714 \\ x_5 &= x_0 + 5h = 8 + 5(3.1429) = 23.7143 \\ x_6 &= x_0 + 6h = 8 + 6(3.1429) = 26.8571 \\ x_7 &= x_0 + 7h = 8 + 7(3.1429) = 30 \end{aligned} \right\} \text{Simpson } \frac{1}{3} \text{ rule}$$

$$f(x_0 = 8) = 2000 \ln \left(\frac{140,000}{140,000 - 2100 \times 8} \right) - 9.8 \times 8 = 177.2667$$

Similarly:

$$f(x_1 = 11.1429) = 256.5863$$

$$f(x_2) = 342.3241$$

$$f(x_3) = 435.2749$$

$$f(x_4) = 536.3909$$

$$f(x_5) = 646.8260$$

$$f(x_6) = 767.9978$$

$$f(x_7) = 901.6740$$

For multiple segments ($n_1 = \text{first 4 segments}$), using Simpson $\frac{1}{3}$ rule, one obtains (See Equation 19):

$$I_1 = \left(\frac{h}{3} \right) \left\{ f(x_0) + 4 \sum_{i=1,3,\dots}^{n_1-1=3} f(x_i) + 2 \sum_{i=2,\dots}^{n_1-2=2} f(x_i) + f(x_{n_1}) \right\}$$

$$I_1 = \left(\frac{3.1429}{3} \right) \{ 177.2667 + 4(256.5863 + 435.2749) + 2(342.3241) + 536.3909 \}$$

$$I_1 = 4364.1197$$

For multiple segments ($n_2 = \text{last 3 segments}$), using Simpson $\frac{3}{8}$ rule, one obtains (See Equation 17):

$$I_2 = \left(\frac{3h}{8} \right) \left\{ f(x_0) + 3 \sum_{i=1,3,\dots}^{n_2-2=1} f(x_i) + 3 \sum_{i=2,\dots}^{n_2-1=2} f(x_i) + 2 \sum_{i=3,6,\dots}^{n_2-3=0} f(x_i) + f(x_{n_1}) \right\}$$

$$I_2 = \left(\frac{3}{8} \times 3.1429 \right) \{ 177.2667 + 3(256.5863) + 3(342.3241) + (\text{skip!}) + 435.2749 \}$$

$$I_2 = 6697.2748$$

The mixed (combined) Simpson $\frac{1}{3}$ and $\frac{3}{8}$ rules give:

$$I = I_1 + I_2 = 4364.1197 + 6697.2748$$

$$I = 11,061.3946$$

Remarks:

(a) Comparing the truncated error of Simpson $\frac{1}{3}$ rule

$$E_t = -\frac{(b-a)^5}{2880} \times f''''(\zeta) \quad (18)$$

With Simple $\frac{3}{8}$ rule (See Equation 12), the latter seems to offer slightly more accurate answer than the former. However, the cost associated with Simpson $\frac{3}{8}$ rule (using 3rd order polynomial function) is significant higher than the one associated with Simpson $\frac{1}{3}$ rule (using 2nd order polynomial function).

(b) The number of multiple segments that can be used in the conjunction with Simpson $\frac{1}{3}$ rule is 2,4,6,8,.. (any even numbers).

$$\begin{aligned}
 I_1 &= \left(\frac{h}{3} \right) \{ f(x_0) + 4f(x_1) + f(x_2) + f(x_3) + 4f(x_4) + \dots + f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \} \\
 I_2 &= \left(\frac{h}{3} \right) \left\{ f(x_0) + 4 \sum_{i=1,3,\dots}^{n-1} f(x_i) + 2 \sum_{i=2,4,6,\dots}^{n-2} f(x_i) + f(x_n) \right\}
 \end{aligned} \tag{19}$$

However, Simpson $\frac{3}{8}$ rule can be used with the number of segments equal to 3,6,9,12,.. (can be either certain odd or even numbers).

(c) If the user wishes to use, say 7 segments, then the mixed Simpson $\frac{1}{3}$ rule (for the first 4 segments), and Simpson $\frac{3}{8}$ rule (for the last 3 segments).

Computer Algorithm For Mixed Simpson $\frac{1}{3}$ and $\frac{3}{8}$ Rule For Integration

Based on the earlier discussions on (Single and Multiple segments) Simpson $\frac{1}{3}$ and $\frac{3}{8}$ rules, the following “pseudo” step-by-step mixed Simpson rules can be given as

Step 1 User’s input information, such as

Given function $f(x)$, integral limits “ a,b ”,

n_1 = number of small, “ h ” segments, in conjunction with Simpson $\frac{1}{3}$ rule.

n_2 = number of small, “ h ” segments, in conjunction with Simpson $\frac{3}{8}$ rule.

Notes:

n_1 = a multiple of 2 (any even numbers)

n_2 = a multiple of 3 (can be certain odd, or even numbers)

Step 2

Compute $n = n_1 + n_2$

$$h = \frac{b-a}{n}$$

$$\begin{aligned}
 x_0 &= a \\
 x_1 &= a + 1h \\
 x_2 &= a + 2h \\
 &\vdots \\
 &\vdots \\
 x_i &= a + ih \\
 &\vdots \\
 &\vdots \\
 x_n &= a + nh = b
 \end{aligned}$$

Step 3

Compute “multiple segments” Simpson $\frac{1}{3}$ rule (See Equation 19)

$$I_1 = \left(\frac{h}{3} \right) \left\{ f(x_0) + 4 \sum_{i=1,3,\dots}^{n_1-1} f(x_i) + 2 \sum_{i=2,4,6,\dots}^{n_1-2} f(x_i) + f(x_n) \right\} \quad (19, \text{ repeated})$$

Step 4

Compute “multiple segments” Simpson $\frac{3}{8}$ rule (See Equation 17)

$$I_2 = \left(\frac{3h}{8} \right) \left\{ f(x_0) + 3 \sum_{i=1,4,7,\dots}^{n_2-2} f(x_i) + 3 \sum_{i=2,5,8,\dots}^{n_2-1} f(x_i) + 2 \sum_{i=3,6,9,\dots}^{n_2-3} f(x_i) + f(x_{n_2}) \right\} \quad (17, \text{ repeated})$$

Step 5

$$I = I_1 + I_2 \quad (20)$$

and print out the final approximated answer for I .

Multiple Choice Tests

1. Simpson $\frac{3}{8}$ rule for integration is mainly based upon the idea of

- (a) Replacing $f(x)$, in $I = \int_a^b f(x)dx$, by a cubic (3^{rd} order) polynomial function
- (b) Replacing $f(x)$, in $I = \int_a^b f(x)dx$, by a quadratic (2^{nd} order) polynomial function.
- (c) Converting the limit of integral limits $[a,b]$ into $[-1,+1]$.
- (d) Using similar concepts as Gauss Quadrature formula.

2. Given $f(x) = e^{-2x} + 4x^2 - 8$. The “exact” (analytical, closed form) solution for $I = \int_1^4 f(x)dx$, is

- (a) 6.0067
- (b) 5.7606
- (c) 60.0675
- (d) 67.6075

3. Given $f(x) = e^{-2x} + 4x^2 - 8$, using (single segment, $n=3$) Simpson $\frac{3}{8}$ rule, $I = \int_1^4 f(x)dx$

can be computed as.

- (a) 61.3740
- (b) 60.0743
- (c) 59.3470
- (d) 58.8992

4. Given $f(x) = e^{-2x} + 4x^2 - 8$, using multiple segments $n = 6$ Simpson $\frac{3}{8}$ rule,

$I = \int_1^4 f(x)dx$ can be computed as

- (a) 60.8206
- (b) 60.6028
- (c) 60.0682
- (d) 60.0675

5. Given $f(x) = e^{-2x} + 4x^2 - 8$, using mixed multiple segments Simpson $\frac{1}{3}$ rule (with $n_1 = 4$

segments) and Simpson $\frac{3}{8}$ rule (with $n_2 = 3$ segments), $I = \int_1^4 f(x)dx$ can be computed as.

- (a) 60.0677
- (b) 59.0677
- (c) 61.0677
- (d) 59.7607

6. Comparing Simpson $\frac{3}{8}$ rule truncated error formula (See Equation 13) with Simpson $\frac{1}{3}$ rule truncated error formula (See Chapter 07.03)

$E_t = -\frac{(b-a)^5}{2880} \times f'''(\zeta)$, where $a \leq \zeta \leq b$, the following conclusion can be made:

- (a) Simpson $\frac{3}{8}$ rule is significantly more accurate than Simpson $\frac{1}{3}$ rule
- (b) It is “worthy” in terms of computational efforts versus accuracy to use Simpson $\frac{3}{8}$ rule, instead of Simpson $\frac{1}{3}$ rule.

(c) It is “not worthy” in terms of computational efforts versus accuracy to use Simpson $\frac{3}{8}$ rule, instead of Simpson $\frac{1}{3}$ rule.

(d) Simpson $\frac{3}{8}$ rule is Less Accurate than Simpson $\frac{1}{3}$ rule.

Multiple Choice Answers

1. = (a)
2. = ©
3. = (b)
4. = ©
5. = (a)
6. = ©

References

[1] S.C. Chapra, R.P. Canale, Numerical Methods for Engineers, Fourth Edition, Mc-Graw Hill.
 [2] MATLAB from MathWorks.

SIMPSON $\frac{3}{8}$ RULE FOR INTEGRATION

Topic	Simpson $\frac{3}{8}$ Rule For Integration
Summary	Textbook notes on Simpson $\frac{3}{8}$ Rule For Integration
Major	General Engineering
Authors	Duc Nguyen
Date	September 16, 2010
Web Site	http://numericalmethods.eng.usf.edu
