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Chapter 07.08  

Simpson 
8

3  Rule For Integration. 

 

Introduction 

The main objective in this chapter is to develop appropriated formulas for obtaining the integral 

expressed in the following form: 

 

∫=
b

a

dxxfI )(                                                               (1) 

 

where )(xf is a given function. Most (if not all) of the developed formulas for integration is 

based on a simple concept of replacing a given (oftently complicated) function )(xf by a simpler 

function (usually a polynomial function) )(xf i , where i  represents the order of the polynomial 

function. In the previous chapter, it has been explained and illustrated that Simpsons 
3

1 rule for 

integration can be derived by replacing the given function )(xf with the 2
nd

 –order (or quadratic) 

polynomial function )()( 2 xfxf i = , defined as: 

2

2102 )( xaxaaxf ++=                 (2) 

 

 

Figure 1 )(
~

xf  Cubic function. 

 

In a similar fashion, Simpson 
8

3 rule for integration can be derived by replacing the given 

function )(xf with the 3
rd

-order (or cubic) polynomial (passing through 4 known data points) 

function )()( 3 xfxf i = , defined as 
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which can also be symbolically represented in Figure 1. 

 

Method 1 

The unknown coefficients 3210 ,, aandaaa  (in Equation (3)) can be obtained by substituting 4 

known coordinate data points ( ) ( ){ } ( ){ } ( ){ }{ }33221100 ,,,,,, xfxandxfxxfxxfx  into Equation (3), 

as following 
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Equation (4) can be expressed in matrix notation as 
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The above Equation (5) can be symbolically represented as 

[ ] 141444 ××× = faA
rr

                 (6) 

 

Thus,  

[ ] fA
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Substituting Equation (7) into Equation (3), one gets 

 

( ) { } [ ] fAxxxxf
r

××=
−132

3 ,,,1                 (8) 

 

Remarks 
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(a)  As indicated in Figure 1, one has 
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(b) With the help from MATLAB [Ref. 2], the unknown vector a
r

(shown in Equation 7) can 

be solved as 

 

Method 2 

Using Lagrange interpolation, the cubic polynomial function ( )xf i 3=  that passes through 4 data 

points (see Figure 1) can be explicitly given as 
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Simpsons 
8

3 Rule For Integration 

Thus, Equation (1) can be calculated as (See Equations 8, 10 for Method 1 and Method 2, 

respectively): 

 

( ) ( )∫∫ ≈=
b

a

b

a

dxxfdxxfI 3  

( )
( ) ( ) ( ) ( ){ }

8

33 3210 xfxfxfxf
abI

+++
×−=                       (11) 

Since 
3

ab
h

−
=  

Hence hab 3=− , and the above equation becomes: 
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( ) ( ) ( ) ( ){ }3210 33
8

3
xfxfxfxf

h
I +++×≈             (12) 

 

The error introduced by the Simpson 
8

3  rule can be derived as [Ref. 1]: 

 

( )ζf
ab

Et
′′′′×

−
−=

6480

)( 5

 , where ba ≤≤ ζ                        (13) 

 

Example 1 (Single Simpson 
8

3 rule) 

 

Compute ∫
=
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3 rule 

 

Solution 

In this example: 
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Applying Equation (12), one has: 

 

{ }

3104.11063

6740.9018976.60834629.37232667.1773333.7
8

3
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+×+×+××=

I

I
 

 

The “exact” answer can be computed as 

34.11061=exactI  

 

Multiple Segments for Simpson 
8

3 Rule 

Using ""n = number of equal (small) segments, the width ""h can be defined as 

 

3

ab
h

−
=                 (14) 

Notes: 

n  = multiple of 3 = number of small ""h  segments 

The integral, shown in Equation (1), can be expressed as 
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Substituting Simpson 
8

3  rule (See Equation 12) into Equation (15), one gets 
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Example 2 (Multiple segments Simpson 
8

3 rule) 

Compute ∫
=
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with number (of ""h ) segments = n  = 6 (which corresponds to 2 “big” segments). 

 

Solution 

In this example, one has (see Equation 14): 
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Applying Equation (17), one obtains: 
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Example 3 (Mixed, multiple segments Simpson 
3

1 and 
8

3 rules) 

Compute ∫
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3 rule (with =2n 3 small segments). 

 

Solution: 

In this example, one has: 
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For multiple segments ( )segmentsfirstn 41 = , using Simpson 
3

1 rule, one obtains (See Equation 

19): 
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For multiple segments ( )segmentslastn 32 = , using Simpson 
8

3  rule, one obtains (See Equation 

17): 
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The mixed (combined) Simpson 
3

1 and 
8

3  rules give: 

3946.061,11

2748.66971197.436421

=

+=+=

I

III
 

 

Remarks: 

(a) Comparing the truncated error of Simpson 
3

1 rule 

( ) ( )ζf
ab

Et
′′′′×

−
−=

2880

5

                         (18) 

With Simple 
8

3 rule (See Equation 12), the latter seems to offer slightly more accurate answer 

than the former. However, the cost associated with Simpson 
8

3 rule (using 3
rd

 order polynomial 

function) is significant higher than the one associated with Simpson 
3

1 rule (using 2
nd

 order 

polynomial function). 

 

(b) The number of multiple segments that can be used in the conjunction with Simpson 

3
1 rule is 2,4,6,8,.. (any even numbers).  
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However, Simpson 
8

3 rule can be used with the number of segments equal to 3,6,9,12,.. (can be 

either certain odd or even numbers). 

 

(c) If the user wishes to use, say 7 segments, then the mixed Simpson 
3

1 rule (for the first 4 

segments), and Simpson 
8

3 rule (for the last 3 segments). 

 

Computer Algorithm For Mixed Simpson 
3

1 and 
8

3 Rule For Integration 

 

Based on the earlier discussions on (Single and Multiple segments) Simpson 
3

1 and 
8

3 rules, 

the following “pseudo” step-by-step mixed Simpson rules can be given as 

 

Step 1  User’s input information, such as 

 

Given function f(x), integral limits “a,b”, 

1n = number of small, “h” segments, in conjunction with Simpson 
3

1 rule. 

2n = number of small, “h” segments, in conjunction with Simpson 
8

3 rule. 

 

Notes: 

1n = a multiple of 2 (any even numbers) 

2n = a multiple of 3 (can be certain odd, or even numbers) 

 

Step 2 

Compute 21 nnn +=  

n

ab
h

−
=  
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Step 3 

Compute “multiple segments” Simpson 
3

1 rule (See Equation 19) 
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     (19, repeated) 

 

Step 4 

Compute “multiple segments” Simpson 
8

3 rule (See Equation 17) 
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Step 5 

21 III +=                                       (20) 

and print out the final approximated answer for I . 

 

 

Multiple Choice Tests 

 

1.  Simpson 
8

3 rule for integration is mainly based upon the idea of  

(a) Replacing ),(xf in ,)(∫=
b

a

dxxfI  by a cubic ( rd3  order) polynomial function 

(b) Replacing ),(xf in ,)(∫=
b

a

dxxfI by a quadratic ( nd2  order) polynomial function. 

(c) Converting the limit of integral limits ],[ ba into ].1,1[ +−  

(d) Using similar concepts as Gauss Quadrature formula. 
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2. Given .84)( 22 −+= − xexf x The “exact” (analytical, closed form) solution for ,)(

4

1

∫= dxxfI is 

(a) 6.0067 

(b) 5.7606 

(c) 60.0675 

(d) 67.6075 

 

3. Given 84)( 22 −+= − xexf x , using (single segment, n=3) Simpson 
8

3  rule, ∫=
4

1

)( dxxfI  

can be computed as. 

 

(a)61.3740 

(b) 60.0743 

(c) 59.3470 

(d) 58.8992 

 

4. Given 84)( 22 −+= − xexf x , using multiple segments 6=n  Simpson 
8

3 rule, 

∫=
4

1

)( dxxfI can be computed as 

(a) 60.8206 

(b) 60.6028 

(c) 60.0682 

(d) 60.0675 

 

5. Given 84)( 22 −+= − xexf x , using mixed multiple segments Simpson 
3

1 rule (with 1n = 4 

segments) and Simpson 
8

3 rule (with 2n = 3 segments), ∫=
4

1

)( dxxfI  can be computed as. 

(a) 60.0677 

(b) 59.0677 

(c) 61.0677 

(d) 59.7607 

 

6. Comparing Simpson 
8

3 rule truncated error formula (See Equation 13) with Simpson 
3

1 rule 

truncated error formula (See Chapter 07.03) 

( ) ( )ζf
ab

Et
′′′′×

−
−=

2880

5

, where ba ≤≤ ζ , the following conclusion can be made: 

(a)Simpson 
8

3 rule is significantly more accurate than Simpson 
3

1 rule 

(b) It is “worthy” in terms of computational efforts versus accuracy to use Simpson 
8

3 rule, 

instead of Simpson 
3

1 rule. 
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(c) It is “not worthy” in terms of computational efforts versus accuracy to use Simpson 
8

3 rule, 

instead of Simpson 
3

1 rule. 

(d) Simpson 
8

3 rule is Less Accurate than Simpson 
3

1 rule. 

 

Multiple Choice Answers 

 

1. = (a) 

2. = © 

3. = (b) 

4. = © 

5. = (a) 

6. = © 
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