
Duc T. Nguyen

397

6 Finite Element Domain

Decomposition Procedures

6.1 Introduction

The finite element (statics) equilibrium equations can be given as

[]K(b) z=S(b)⋅
r r

 (6.1)

where:

b
r

= design variable vector, such as cross-sectional areas of truss members,

moment of inertia of beam members, and/or thickness of plate (or shell)

members.

z
r

= nodal displacement vector

[]K = stiffness matrix

S
r

 = nodal load vector

Equation (6.1) can be partitioned as

K K z sB B B I B B

× =
K K z sIB II I I

        
     
          

 (6.2)

where subscripts B and I denote Boundary and Interior terms, respectively.

From the 2
nd

 part of Eq. (6.2), one has:

 IB B II I IK z +K z =s (6.3)

or

 [] ()1
I II I IB Bz K s K z

−
= ⋅ −

uur uur uur
 (6.4)

From the 1
st
 part of Eq. (6.2), one has:

 BB B BI I BK z +K z =s (6.5)

Substitution Eq. (6.4) into Eq. (6.5), one obtains:

 [] ()
-1

BB B BI II I IB B BK z +K . K . s -K z =s (6.6)

or

 ()-1 -1

BB BI II IB B B BI II IK -K K K .z = s -K K s  

uur
 (6.7)

Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

398

Let
1

B BB BI II IBK K K K K−≡ − ≡ Effective Boundary Stiffness (6.8)

and
1−≡ − ≡B B BI II Is s K K s Effective Boundary Load (6.9)

Equation (6.8) for BK is also called the Schur complement matrix.

Then, Eq. (6.7) can be expressed as:

B B B

K z s  ⋅ =  (6.10)

Having solved the boundary displacement vector
B

z from Eq. (6.10), the interior

displacement vector
I

z can be solved from Eq. (6.4)

Duc T. Nguyen

399

Figure 6.1: A structure is divided into 3 substructures

For very large-scale problems, the original structure can be partitioned into many

smaller sub-structures (or sub-domains), see Figure 6.1. Thus, for a typical r
th

 sub-

domain, one obtains:

 ()
1

() () () () ()r r r r r

I II I IB B
z K s K z

−
 = ⋅ −  (6.11)

Similarly, one defines:

1() () () () ()

BB BI IB

r
r r r r

B II
K K K K K

−
 ≡ −   (6.12)

1() () () () ()

B BI I

r
r r r r

B II
s s K K s

−
 ≡ −   (6.13)

The overall (or system) effective boundary stiffness matrix can be assembled and

solved as:

()

1=

= ∑
NSU

r

B B

r

K K (6.14)

and
()

1=

= ∑
NSU

r

B B
r

s s (6.15)

Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

400

B B B

K z s⋅ = (6.16)

where NSU ≡ Number of SUbstructures

Remarks

(a) For large-scale problems, the operations involved in Eq. (6.12) are quite

expensive, because

(i)
1

() ()r r

II IB
K K

−
  ⋅  requires solving system of linear equations with

“many” right-hand-side vectors.

(ii)
1

() () ()

BI IB

r r r

II
K K K

−    ⋅ ⋅     
 requires “sparse matrix*dense matrix”

operations.

(b) Even though each individual matrices
() (),   

   II

r r
BIK K and

()r

IB
K   are

sparse, the triple matrix products (shown in the right-hand-side of Eq.

(6.12)) can be “nearly dense”. Thus, computer memory requirements can

also be quite large.

6.2 A Simple Numerical Example Using Domain Decomposition (DD)

Procedures

A simple 2-D truss structure [6.1], shown in Figures 6.2-6.4, will be used to illustrate

detailed steps involved in the DD procedures (E = Kips/in
2
, A = in

2
, for all members)

For each r
th

 substructure, the boundary nodes (or boundary dofs) are numbered first

(and start with 1), then the interior nodes (or interior dofs) are subsequently

numbered. Element numbers for each r
th

 substructure should also start with 1. In

Figure 6.3, while nodes 1 and 2 must be considered as boundary nodes, any interior

node of the r
th

 substructure can also be selected as a boundary node. The arrow-

directions, shown in Figure 6.3, indicate that a particular truss member is connected

from node “i” to node “j”. The mapping between the local (substructuring) boundary

degree-of-freedom (dof) and global (overall) boundary dof can be identified by

comparing Figures 6.3 and 6.4. Thus, in substructure 1 (r = 1), boundary nodes 1 and

2 will correspond to the system (overall) boundary nodes 2 and 1, respectively.

Two vertical forces are applied at nodes 2 and 3 (as shown in Figure 6.2), while the

prescribed displacements (say, due to support settlements) are shown at node 4 (of

substructure r = 1, see Figure 6.3), and at node 4 (of substructure r = 2, see

Figure 6.3)

Duc T. Nguyen

401

Figure 6.2: Overall original system

Figure 6.3: Local (substructuring) numbering system

Figure 6.4: Overall boundary nodes numbering system

Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

402

Figure 6.5: Direction Cosines of a 2-D Truss Member

Based on Chapter 1, the 2-D truss element stiffness matrix, in global coordinate X,Y

axis, can be given as

2 2

2 2

()

2 2

2 2

 − −
 
 

− − 
    =         − − 

 
 − −
 

c c c c c c
x x y x x y

c c c c c c
x y y x y yEAe

k
L c c c c c c

x x y x x y

c c c c c c
x y y x y y

 (6.17)

where cx and cy have been defined in Figure 6.5. Thus for the 1
st
 substructure (r = 1),

one obtains the following element (global) stiffness matrices:

 7 8 5 6

 7 42.7209 42.7209 -42.7209 -42.7209

1

Gk =
8 42.7209 42.7209 -42.7209 -42.7209

(6.18)
5 -42.7209 -42.7209 42.7209 42.7209

 6 -42.7209 -42.7209 42.7209 42.7209

 7 8 1 2

 7 120.8333 0 -120.8333 0

2

Gk =
8 0 0 0 0

(6.19)
1 -120.8333 0 120.8333 0

 2 0 0 0 0

j i

x 1

ij

j i

y 2

ij

x x
c cos()

L

y y
c cos()

L

−
≡ γ =

−
≡ γ =

Duc T. Nguyen

403

 1 2 3 4

 1 42.7209 42.7209 -42.7209 -42.7209

3

Gk =
2 42.7209 42.7209 -42.7209 -42.7209

(6.20)
3 -42.7209 -42.7209 42.7209 42.7209

 4 -42.7209 -42.7209 42.7209 42.7209

 5 6 3 4

 5 120.8333 0 -120.8333 0

4

Gk =
6 0 0 0 0

(6.21)
3 -120.8333 0 120.8333 0

 4 0 0 0 0

 1 2 5 6

 1 0 0 0 0

5

Gk =
2 0 120.8333 0 -120.8333

(6.22)
5 0 0 0 0

 6 0 -120.8333 0 120.8333

submatrices
(1)r

BB
K =   ,

(1)r

BI
K =   ,

(1)r

IB
K =   and

(1)r

II
K =   of substructure 1 can

be assembled as:

 1 2 3 4

 1 163.5542 42.7209 -42.7209 -42.7209

)1(=r

BBK =
2 42.7209 163.5542 -42.7209 -42.7209

(6.23)
3 -42.7209 -42.7209 163.5542 42.7209

 4 -42.7209 -42.7209 42.7209 42.7209

 5 6 7 8

 1 0 0 -120.8333 0

)1(=r

BIK =
2 0 -120.8333 0 0

(6.24)
3 -120.8333 0 0 0

 4 0 0 0 0

 5 6 7 8

 5 163.5542 42.7209 -42.7209 -42.7209

)1(=r

IIK =
6 42.7209 163.5542 -42.7209 -42.7209

(6.25)
7 -42.7209 -42.7209 163.5542 42.7209

 8 -42.7209 -42.7209 42.7209 42.7209

 1 2 3 4

 5 0 0 -120.8333 0

)1(=r

IBK =
6 0 -120.8333 0 0

(6.26)
7 -120.8333 0 0 0

 8 0 0 0 0

Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

404

After imposing the support boundary conditions, the above 4 equations become:

 1 2 3 4

 1 163.5542 42.7209 -42.7209 -42.7209

..

)1(

cb

r

BBK
=

=
2 42.7209 163.5542 -42.7209 -42.7209

(6.27)
3 -42.7209 -42.7209 163.5542 42.7209

 4 -42.7209 -42.7209 42.7209 42.7209

 5 6 7 8

 1 0 0 0 0

..

)1(

cb

r

BIK
=

=
2 0 -120.8333 0 0

(6.28)
3 -120.8333 0 0 0

 4 0 0 0 0

 5 6 7 8

 5 163.5542 42.7209 0 0

..

)1(

cb

r

IIK
=

 =
6 42.7209 163.5542 0 0

(6.29)
7 0 0 1 0

 8 0 0 0 1

 1 2 3 4

 5 0 0 -120.8333 0

..

)1(

cb

r

IBK
=

 =
6 0 -120.8333 0 0

(6.30)
7 0 0 0 0

 8 0 0 0 0

The boundary and interior load vectors can be obtained as

(1)

1 0

2 0

3 0

4 0

r

B
F

=

 
 
 

=  
 
  

,
(1)

5 0

6 0

7 0

8 0

r

I
F

=

 
 
 

=  
 
  

 (6.31)

After imposing the support (prescribed) boundary conditions, Eq. (6.31) becomes:

(1)

. .

1 12.08333

2 0

3 0

4 0

=

 
 
 
 
 
  

=r
B b cF ,

(1)
. .

5 12.81627

6 12.81627

7 0.1

8 0.2

=

 
 
 
 
 
  

=r
I b cF (6.32)

The effective boundary stiffness matrix, and load vector can be computed from Eqs.

(6.12-6.13) and, and are given as

Duc T. Nguyen

405

 3 4 1 2

 3 163.5542 42.7209 -42.7209 -42.7209

(1)r

BK
=

 =
4 42.7209 67.7463 -17.6955 -42.7209

(6.33)
1 -42.7209 -17.6955 67.7463 42.7209

 2 -42.7209 -42.7209 42.7209 42.7209

(1)

12.08333

7.5076

7.5076

0

r

BF
=

 
 
 

=  
 
  

 (6.34)

Similarly, for substructure r = 2, element stiffness matrices (in global coordinate

references) can be computed from Eq. (6.17) as:

 3 4 5 6

 3 120.8333 0 -120.8333 0

1

G
k =

4 0 0 0 0
(6.35)

5 -120.8333 0 120.8333 0

 6 0 0 0 0

 5 6 7 8

 5 120.8333 0 -120.8333 0

2

G
k =

6 0 0 0 0
(6.36)

7 -120.8333 0 120.8333 0

 8 0 0 0 0

 7 8 1 2

 7 42.7209 -42.7209 -42.7209 42.7209

3

G
k =

8 -42.7209 42.7209 42.7209 -42.7209
(6.37)

1 -42.7209 42.7209 42.7209 -42.7209

 2 42.7209 -42.7209 -42.7209 42.7209

 5 6 1 2

 5 0 0 0 0

4

G
k =

6 0 120.8333 0 -120.8333
(6.38)

1 0 0 0 0

 2 0 -120.8333 0 120.8333

submatrices
(2)r

BB
K =   ,

(2)r

BI
K =   ,

(2)r

IB
K =   and

(2)r

II
K =   can be assembled as:

 1 2 3 4

 1 42.7209 -42.7209 0 0

(2)r

BB
K

=
 =

2 -42.7209 163.5542 0 0
(6.39)

3 0 0 120.8333 0

 4 0 0 0 0

Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

406

 5 6 7 8

 1 0 0 -42.7209 42.7209

(2)r

BI
K

=
 =

2 0 -120.8333 42.7209 -42.7209
(6.40)

3 -120.8333 0 0 0

 4 0 0 0 0

 1 2 3 4

 5 0 0 -120.8333 0

(2)r

IB
K

=
 =

6 0 -120.8333 0 0
(6.41)

7 -42.7209 42.7209 0 0

 8 42.7209 -42.7209 0 0

 5 6 7 8

 5 241.6666 0 -120.8333 0

)1(=r

IIK =
6 0 120.8333 0 0

(6.42)
7 -120.8333 0 163.5542 -42.7209

 8 0 0 -42.7209 42.7209

After imposing the support boundary conditions, Eqs. (6.39-6.42) become:

 1 2 3 4

 1 42.7209 -42.7209 0 0

(2)

. .

r

BB b c
K

=
 =

2 -42.7209 163.5542 0 0
(6.43)

3 0 0 120.8333 0

 4 0 0 0 0

 5 6 7 8

 1 0 0 -42.7209 0

(2)

. .

r

BI b c
K

=
 =

2 0 -120.8333 42.7209 0
(6.44)

3 -120.8333 0 0 0

 4 0 0 0 0

 1 2 3 4

 5 0 0 -120.8333 0

(2)

. .

r

IB b c
K

=
 =

6 0 -120.8333 0 0
(6.45)

7 -42.7209 42.7209 0 0

 8 0 0 0 0

 5 6 7 8

 5 241.6666 0 -120.8333 0

(1)

. .

r

II b c
K

=
 =

6 0 120.8333 0 0
(6.46)

7 -120.8333 0 163.5542 0

 8 0 0 0 1

The boundary and interior load vectors of substructure r = 2 can be computed as

Duc T. Nguyen

407

(2)

1 0

2 0

3 0

4 4

r

B
F

=

 
 
 

=  
 
 − 

,
(2)

5 0

6 4

7 0

8 0

r

I
F

=

 
 − 

=  
 
  

 (6.47)

After imposing the support boundary conditions, Eq. (6.47) becomes:

(2)

. .

1 0

2 4

3 12.81627

4 12.81627

r

B b c
F

=

 
 − 

=  
− 
 − 

,
(2)

. .

5 0

6 4

7 12.81627

8 0.3

r

I b c
F

=

 
 − 

=  
 
  

 (6.48)

Applying Eqs. (6.12-6.13), the effective boundary stiffness matrix, and load vector

can be computed as:

 1 2 3 4

 1 25.0254 -25.0254 -25.0254 0

(2)r

BK
=

 =
2 -25.0254 25.0254 25.0254 0

(6.49)
3 -25.0254 25.0254 25.0254 0

 4 0 0 0 0

(2)

7.5074

4

7.5074

3.5074

r

BF
=

 
 − 

=  
− 
  

 (6.50)

The overall (system) effective boundary load vector, and stiffness matrix can be

assembled as:

19.5907

3.5076

0.0002

3.5074

B
F

 
 
 

=  
 
  

 (6.51)

 1 2 3 4

 1 92.7711 17.6955 -67.7463 -17.6955

(2)r

BK
=

 =
2 17.6955 67.7463 -17.6955 -42.7209

(6.52)
3 -67.7463 -17.6955 188.5796 42.7209

 4 -17.6955 -42.7209 42.7209 67.7463

Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

408

All boundary displacements can be solved from Eq. (6.16) as:

3 0.133

4 0.054

1 0.089

2 0.098

B
z

 
 
 

=  
 
  

 (6.53)

The interior displacements of each substructure can be recovered from Eq. (6.11)

(1)

1 0.089

2 0.098

3 0.133

4 0.054

r

B
z

=

 
 
 

=  
 
  

(1)

5 0.121

6 0.085

7 0.1

8 0.2

r

I
z

=

 
 
 

=  
 
  

 (6.54)

(2)

1 0.133

2 0.054

3 0.089

4 0.098

r

B
z

=

 
 
 

=  
 
  

(2)

5 0.165

6 0.065

7 0.198

8 0.3

r

I
z

=

 
 
 

=  
 
  

 (6.55)

6.3 Imposing Boundary Conditions on “Rectangular” Matrices
()r

BI
K  

Imposing the Dirichlet boundary conditions on the “square” substructuring stiffness

matrices
(1)

. .

r

BB b c
K =   and

(1)

. .

r

II b c
K =   (see Eqs. 6.27,6.29) are rather straight

forward, especially this topic has already been explained with great details in

Chapters 1 and 4. Thus, the following paragraphs are intended to explain how to

impose the Dirichlet boundary conditions on the rectangular (in general)

substructuring stiffness matrix
(1)

. .

r

BI b c
K =   , such as the one shown in Eq. (6.28). To

facilitate the discussions, let’s consider the entire stiffness matrix of the first

substructure (r=1), as shown in Figure 6.3

Duc T. Nguyen

409

(1)rK =  = 

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37 38

41 42 43 44 45 46 47 48

51 52 53 54 55 56 57 58

61 62 63 64 65 66 67 68

71 72 73 74 75 76 77 78

81 82 83 84 85 86 87 88

K K K K K K K K

K K K K K K K K

K K K K K K K K

K K K K K K K K

K K K K K K K K

K K K K K K K K

K K K K K K K K

K K K K K K K K



















 
 
 
 
 

B

BBBB

B

B

B

I

IIII

I

I

I

BB BI

IB II

K K

K K

 
=  
 

(6.56)

Since the Dirichlet boundary conditions are imposed on the 7
th

 & 8
th

 degree-of-

freedom, Eq. (6.56) becomes:

(1)

. .

r

b c
K =  = 

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

× × × × × × 
 × × × × × × 
 × × × × × ×
 

× × × × × × 
 × × × × × ×
 

× × × × × × 
 
 
  

BB BI

IB II

K K

K K

 
=  
 

(6.57)

Thus

. .

(1)= 
  =

b c

r
BIK

0 0

0 0

0 0

0 0

× × 
 × × 
 × ×
 
× × 

B

B

B

B

IIII

(6.58)

It should be noted that Eq. (6.28) has the same form (last 2 columns) as Eq. (6.58)

Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

410

6.4 How to construct Sparse Assembly of “Rectangular” Matrix
()r

BI
K  

The numerical procedures for finite element sparse assembly of the rectangular

matrix
()r

BI
K   can be summarized in the following 2-step procedures:

Step 1: For each r
th

 substructure, identify how many and which finite elements will

have contributions to both Boundary & Interior nodes (assuming there are 2

dof per node, and 3 nodes per element). Also, assuming there are 6

boundary nodes, and 8 interior nodes in the r
th

 substructure.

 At the end of step 1, say elements 5, 10 and 11 are recorded. Also,

assuming the element nodes connectivity are:

El. # node-i node-j node-k

5 6 = B 1 = B 8 = I

10 5 = B 6 = B 9 = I

11 1 = B 13 = I 11 = I

 Note: B ≡ Boundary node, if ≤ node 6. I ≡ Interior, if > node 6.

Step 2: Based on the information provided by step 1, one obtains:

 I.Node1

(=7-6)

I.Node2

(=8-6)

3 4 5 6 7

(=13-6)

8

(=14-6)

 B.Node1 1,2

7,8

 5,6

11,12

 3,4

9,10

 B.Node2

KBI= 3

 4

 5

 6

The above table, obtained for KBI , can be generated by the following “pseudo”

FORTRAN algotihms :

icount = 0

Do loop

 J = Boundary Node 1

 El. 5 = [6, 1, 8] � B. node has coupling with I. node 2 (= 8-6) � icount = 1

 El. 10 = [5, 6, 9] � B. node 1 has no coupling with element 10.

 El. 11 = [1, 13 11] � B. node 1 has coupling

 with I. node 7 (= 13-6) � icount = icount+1 = 2

 with I. node 5 (=11-6). Hence, icount = 3

 so: IEbi(1) = 1 (6.59)

 IEbi(2) = IEbi(1)+(icount = 3)*(ndofpn=2)
2
 = 13 (6.60)

Duc T. Nguyen

411

 JEbi = {columns 3, 4, 13, 14, 9, 10, 3, 4, 13, 14, 9, 10 } (6.61)

 J = Boundary Node 2

 El. 5 = [6, 1, 8] � Boundary node 2 has no coupling with El. 5

 El. 10 = [5, 6, 9] � Boundary node 2 has no coupling with El. 10

 El. 11 = [1, 13 11] � Boundary node 2 has no coupling with El. 11

Enddo

Remarks:

In Eq. (6.61), column numbers 3, 4, 13, 14, 9, 10 are repeated again, the reason is

because each node is assumed to have 2 dof.

6.5 Mixed Direct-Iterative Solvers for Domain Decomposition

Using the domain decomposition (D.D.) formulation, one first needs to solve the

unknown boundary displacement vector
B

z
uur

 from Eq. (6.16). However, the assemble

process for obtaining the effective boundary stiffness matrix
B

K (see Eq. (6.14))

will require the computation of the triple matrix products of
1

() () ()

BI IB

r r r

II
K K K

−
  

(for each r
th

 substructure), as indicated in Eq. (6.12). For large-scale-applications,

Eq. (6.12) is both computational and memory intensive, since the related system of

linear equations has a lot of right-hand-side vectors. Thus, forward and backward

solution phases need be done repeatedly. Furthermore, although each individual

matrices
()r

BI
K   ,

()r

II
K   and

()r

IB
K   can be sparse, the triple products of

1
() () ()

BI IB

r r r

II
K K K

−
   is usually dense, and therefore, a lot of computer memory is

required. For the above reasons, mixed direct-iterative solver is suggested for solving

Eq. (6.16).

Preconditioning Matrix

Consider the linear system [A] x b=
rr

 , where the matrix [A] is assumed to be

symmetric positive definite (SPD). If the solution vector x
r

 is sought by an iterative

solver, then one normally prefers to improve the condition number of the coefficient

matrix (=
max

min

λ

λ
= ratio of largest over smallest eigen-values of the coefficient matrix)

by the “preconditioning process” as described in the following paragraphs :

Option 1 (Symmetrical property is preserved)

Let P be a preconditioning matrix, which is assumed to be non-singular. Then PAP
T

is SPD. Instead of solving [A] x b=
rr

 , one solves :

Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

412

T T

Identity Matrix

[P A P]*{P x} [P]b− =
rr

14243

or

 [A]*{y} {b }∗ ∗=
uurr

where :

T[A] [P A P] symmetrical matrix∗ ≡ =

 { }T Ty P x ; hence x [P] y−≡ =
r r r r

 b [P]b∗ ≡
uur r

The preconditioner [P] should be selected so that :

1. Matrix [A]∗
 will have better condition number than its original matrix [A].

2 Matrix [P] should be “cheap” to factorize.

As an example, the Cholesky factorization of [A] can be obtained as :

T[A] [U] [U]=

where [U] is an upper triangular, factorized matrix.

Suppose one selects
T[P] U−= , then :

T T T 1A P[A]P U [U U]U [I]∗ − −≡ = =

14243123

The condition number of
max

min

1.0
[A] 1

1.0

∗ λ
= = =

λ

Therefore, the Conjugate Gradient method, when applied to [A I]y b∗ ∗= =
uurr

 will

converge in 1 iteration. However, in this case it is “too expensive” to factorize [P] !

The compromised strategies will be :

T

a[P] [U]−=

where a[U] ≡ inexpensive approximation of [U], and the amount of fill-in terms

occurred in a[U] can be controlled (or specified) by the user. Various strategies for

“incomplete Cholesky factorization” have been suggested to obtain a[U] for

preconditioning purposes. The original CG, and its PCG algorithms are summarized

in the following section :

Duc T. Nguyen

413

CG Without Preconditioner CG With Preconditioner

Solving [A]x b=
r r

 Solving [A]y b∗ ∗=
uurr

Given an initial guess
(0)x

r
 Given

(0)x
r

 Compute incomplete factor [P]

Compute initial residual
(0) (0)r b A x= −

rr

Compute

{ }(0) T (0)r P b P A P x = −  
r r

Set
(0)

1d 0 ; 1−= ρ =
r

 Set
(0)

1d 0 ; 1−= ρ =
r

DO i=1, 2, ... DO i=1, 2, ...

{ } { }
T

(i 1) (i 1)
i 1 r r− −
−ρ = { } { }

T
(i 1) (i 1)

i 1 r r− −
−ρ =

i 1
i 1

i 2

−
−

−

ρ
β =

ρ
 i 1

i 1
i 2

−
−

−

ρ
β =

ρ

(i) (i 1) (i 1)
i 1d r d− −
−= + β

(i) (i 1) (i 1)
i 1d r d− −
−= + β

(i) (i)q [A]d=
(i) T (i)q [P A P]d=

{ } { }
i 1

i T
(i) (i)d q

−ρ
α =

{ } { }
i 1

i T
(i) (i)d q

−ρ
α =

(i) (i 1) (i)
ix x d−= + α

(i) (i 1) (i)
ix x d−= + α

(i) (i 1) (i)
ir r q−= − α

(i) (i 1) (i)
ir r q−= − α

Converge ?? Converge ??

END DO END DO

 If converged, then set
Tx [P] x=

r r

Option 2 (Symmetrical property may be destroyed)

Instead of solving [A]x b=
r r

 , one solves :

1 1[P] [A]x [P] b− −=

r r

14243 123

or

 { }[A]x b∗ ∗=
uur

r

where :

1[A] [P] [A] may NOT be symmetrical∗ −≡ =

Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

414

 { } 1b [P] b∗ −≡
uur r

This formulation is simpler than the one discussed in Option 1. However, [A]∗
 may

NOT be a symmetrical matrix.

Remarks

1. If the original matrix [A] is unsymmetrical, then this Option 2 may be a

preferable choice.

2. If one selects [P] [A]= , then [A] [I]∗ = and the iterative solver will

converge in 1 iteration.

In Table 6.1, Preconditioned Conjugate Gradient (PCG) algorithm for

solving system of symmetrical linear equations []A x b=
r r

, with the preconditioned

matrix [B] is summarized.

Table 6.1: Preconditioned Conjugate Gradient Algorithm For Solving []A x b=
r r

 Step 1: Initialized 0
o

x =
uur r

 Step 2: Residual vector
o

r b=
ur r

(or 0o
r b Ax= −
ur r uur

, for “any” initial guess
o

x
uur

)

 Step 3: “Inexpensive” preconditioned []
1

0 0z B r
−

= ⋅
uur ur

 Step 4: Search direction 0 0d z=
uur uur

 For i = 0, 1, 2, …, maxiter

 Step 5:
{ }

T

i i
i T

i i

r z

d A d
α =

⋅

 Step 6: 1+ = +
i i i i

x x dα

 Step 7: []1i i i ir r Adα+ = −

 Step 8: Convergence check: if 1 0ir r ε+ < ⋅ � stop

 Step 9:
1

1 1i i
z B r

−

+ +=

 Step 10:
1 1

T

i i
i T

i i

r z

r z
β + +=

 Step 11: 1 1i i i i
d z dβ+ += +

 End for

Duc T. Nguyen

415

6.6 Preconditioned Matrix For PCG Algorithm with DD Formulation

The difficulty in constructing an efficient preconditioned matrix [B] in conjunction

with PCG algorithm with D.D. formulation is compounded by the fact the coefficient

matrix ()1()
() () () ()

1 1

NSU NSU
r

r r r r

B B BB BI II IB

r r

K K K K K K
−

= =

   = = −    ∑ ∑ has not been

assembled explicitly. In other words, how can we construct a preconditioned matrix

[B] when the original coefficient matrix
B

K 
  has not even been formed? Even the

most simple “diagonal preconditioned” scheme, one still has to introduce “some

approximation” about
B

K 
  . The following 2 options are possible for

considerations :

 Option 1: let [] ()

,

1

NSU
r

B BB Diag

r

B K K
=

 ≈ ≈  ∑

 Option 2: For the preconditioned purpose only, approximate:

() ()   ≈   
r r

II II
K diagonal of K

 Hence
1

()r

II
Approx

K
−

   is inexpensive, and

 [] ()1
() () () ()

,

1

NSU
r r r r

B BB Diag BI II IBApprox
r

B K K K K K
−

=

   ≈ ≈ −    ∑

In Table 6.2, the corresponding 11-step procedure for Pre-conditioned Conjugate

Gradient Algorithm within the context of Domain Decomposition (DD) formulation

is summarized.

Table 6.2: Pre-conditioned Conjugate Gradient D.D. Algorithm For solving

B B B
K z f  = 

uur uur

Initialized Phase

 Step 1: 0=
uur r

iBz

 Step2: Residual vector

()

1
i

NSU
r

i B B B B

r

r f K z f
=

= − = ∑
ur uur uuur uuur uur

 or

 ()1
() () () ()

1

NSU
r r r r

i B BI II I

r

r f K K f
−

=

 = −  ∑
ur

 DO 2 r=1,NSU (in parallel computation)

Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

416

 Step 2.1: Direct sparse solver F/B solution with 1 RHS interior load

 vector

1

() ()

1

r r

II I
T K f

−
 = ⋅ 

ur

 Step 2.2: Sparse matrix times vector

()

2 1

r

BI
T K T= ⋅
uur ur

 Step 2.3: Compute sub-domain residual

()

1 2

r

B
T f T= −
ur uur

 Step 2.4: Insert sub-domain residual into proper location of
i

r
ur

 The partial resulted vector 1T
ur

 from each processor will be sent to the

Master processor, together with the mapping information about local-

global boundary dofs.

 Receive & Copy
()

1

r

i
r T=
ur ur

, by the Master Processor.

 2 Continue

 Step 3: “Inexpensive” preconditioning, by the Master Processor.

 []
1

i i
z B r

−
= ⋅

ur ur

 Step 4: Search direction, by the Master Processor.

i i

d z=
uur ur

Iteration loop begins (for i = 0, 1, 2, …, maxiter)

 Step 5: Compute scalar

{ }

T

i i
i

T

i B i

r z

d K d
α =

  ⋅ 

 Step 5.1:
T

i i
up r z= ⋅ , by the Master Processor

 Master Processor broadcasts
i

d
uur

 to all other processors

 Step 5.2: compute

 ()1() () () () ()

1 1

NSU NSU
r

r r r r

B i B i BB BI II IB i

r r

K d K d K K K K d
−

= =

 
 ⋅ = ⋅ = − ⋅   

 
∑ ∑

uur uur uur

 DO 5 r=1,NSU (in parallel computation)

 Step 5.2a: Sparse matrix times vector

()

1

r

IB i
T K d= ⋅
ur uur

 Step 5.2b: Direct sparse solver F/B with 1 RHS vector

1

()

2 1

r

II
T K T

−
 = ⋅ 

uur ur

Duc T. Nguyen

417

 Step 5.2c: Sparse matrix times vector

()

1 2

r

BI
T K T= ⋅
ur uur

 Step 5.2d: Sparse matrix times vector

()

2

r

BB i
T K d= ⋅
uur uur

 Step 5.2e:

 2 2 1T T T= −
uur uur ur

 Step 5.2f: Put vector 2T
uur

 into proper location of

B i

K d stored  ⋅ = 

uuuuuur

 Each processor will send its own 2T
uur

 to the Master Processor.

 5 Continue

 The following steps will be done by the Master Processor.

 Step 5.2g: Received vectors 2T
uur

 (from each processor) and

 assembled vector stored
uuuuuur

. Then, compute:

i

down d stored= ⋅
uur uuuuuur

i

up

down
α =

 Step 6: Compute new, improved solution

1+

= +
uuuur uuur uur

ii i iB Bz z dα

 Step 7: Compute new residual vector

 1i i i
r r storedα+ = − ⋅
uur ur uuuuuur

 Step 8: Convergence check:

 0, 0norm
r r=

ur

 1, 1i norm i
r r+ +=

uur

 Iteration steps will stop when 1, 0,i norm norm
r rε+ < ⋅ . Where ε is user

input parameter

 Step 9: “Inexpensive” preconditioning

 []
1

1 1i i
z B r

−

+ += ⋅
uuur uur

Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

418

 Step 10: Compute
1 1

T

i i
i T

i i

r z

r z
β + +=

 1 1

T

i i
up r z+ +=

T

i i
down r z=

i

up

down
β =

 Step 11: New search direction

 1 1i i i i
d z dβ+ += +
uuur uuur uur

Based upon the “primal” DD formulation, discussed in Sections 6.1-6.6, the

MPI/Fortran software package DIPSS (Direct Iterative Parallel Sparse Solver) has

been developed to solve few large scale, practical engineering problems which are

summarized in the following paragraphs:

Example 1 – Three dimensional acoustic finite element model. In this example,

DIPSS is exercised to study the propagation of plane acoustic pressure waves in a

3-D hard wall duct without end reflection and airflow.

QQ

1

2

3
2

3

2

3

MM

z

y

xNN

Figure 6.6: Finite element model for a three-dimensional hard wall duct

Duc T. Nguyen

419

The duct is shown in Figure 6.6 and is modeled with brick elements. The source and

exit planes are located at the left and right boundary, respectively. The matrix, K,

contains complex coefficients and the dimension of K is determined by the product

of NN, MM, and QQ (N=MMxNNxQQ). Results are presented for two grids

(N=751,513 and N=1,004,400) and the finite element analysis procedure for

generation the complex stiffness matrix, K, was presented in Reference [6.2].

DIPSS [Ref. 6.3] memory and wallclock statistics were also compared to those

obtained using the platform specific SGI parallel sparse solver (i.e., ZPSLDLT).

These statistics were computed on an SGI ORIGIN 2000 computer platform that was

located at the NASA Langley Research Center. The SGI platform contained 10

gigabytes of memory and eight ORIGIN 2000 processors were used. It should be

noted that the ZPSLDLT is part of the SCSL library (version 1.4 or higher) and is

considered to be one of the most efficient commercialized direct sparse solvers that

is capable of performing complex arithmetic. Due to the 3-D nature of hard wall

duct example problem, K encounters lots of fill-in during the factorization phase.

Thus, only the small grid (N=751,513) could fit within the allocated memory on the

ORIGIN~2000. ZPSLDLT required 6.5 wallclock hours to obtain the solution on the

small grid whereas DIPSS wallclock was only 2.44 hours. DIPSS also required

nearly 1 gigabyte less memory than ZPSLDLT, and the DIPSS and ZPSLDLT

solution vector were in excellent agreement.

Because DIPSS uses MPI for interprocess communications, it can be ported to other

computer platforms. To illustrate this point the DIPSS software was ported to the

SUN 10000 platform at Old Dominion University and used to solve the large grid

duct acoustic problem (N=1,004,400). Wallclock statistics and speedup factors were

obtained using as many as 64~SUN~10000 processors. Results are presented in

Table 6.3. It should be noted that a superlinear speedup factor of 85.95 has been

achieved when 64 SUN 10000 processors are used. This super-linear speedup factor

is due to two primary reasons:

1. The large finite element model has been divided into 64 sub-domains. Since

each processor is assigned to each smaller subdomain, the number of

operations performed by each processor has been greatly reduced. Note that

the number of operations are proportional to ()
3

()rn for the dense matrix,

or
() 2r

n BW⋅ for the banded, sparse matrix, where BW represent the half

Band Width of the coefficient stiffness matrix.

2. When the entire finite element model is analyzed by a direct, conventional

sparse solver, more computer “paging” is required due to a larger problem

size.

Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

420

Table 6.3 : Performance of DIPSS software for 3-D hard wall duct

(N=1,004,400 complex equations)

Processor (SUN

10000@ODU)

1 2 4 8 16 32 64

Sparse Assembly Time

(seconds)

19.38 10.00 5.08 2.49 1.26 0.70 0.27

Sparse Factorization

(seconds)

131,229 58,976 26,174 10,273 3,260 909 56

Total time (entire FEA) 131,846 61,744 27,897 11,751 3,817 1,967 1,534

Total Speed-Up Factor 1.00 2.14 4.73 11.22 34.54 67.03 85.95

Examples 2 – Three dimensional structural bracket finite element model. The

DD formulation has also been applied to solver the 3-D structural bracket problem

shown in Figure 6.7. The finite element model contains 194,925 degrees of freedom

(N=194,925) and the elements in the matrix, K, are real numbers. Results were

computed on a cluster of 1-6 personal computers (PCs) running under Windows

environments with Intel Pentium. It should be noted that the DIPSS software was not

ported to the PC cluster, but the DD formulation was programmed (from scratch, in

C
++

) on the PC cluster processors [6.3].

Duc T. Nguyen

421

Figure 6.7: Finite element model for a three-dimensional structural bracket

Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

422

The wallclock time (in seconds) to solve this example is documented in Table 6.4. A

superlinear speedup factor of 10.35 has been achieved when 6 processors were used.

Table 6.4: 3-D Structural bracket model (194,925 dofs, K= real numbers)

Processor (Intel PC @ ASU) 1 2 3 4 5 6

Total Walll Clock Time (seconds) 2,670 700 435 405 306 258

Total Speed-Up Factor (seconds) 1.00 3.81 6.14 6.59 8.73 10.35

6.7 Generalized Inverse

First, let us consider some key concepts of the generalized inverse. Given a matrix
m nA R ×∈ ,

n mA R+ ×∈ is called the generalized inverse of A if

m n n m m n m n

A A A A
+

× × × ×= (6.62)

Now, given the system of linear equations

 1 1n mm n
A x b× ×× =

r r
 (6.63)

with b ∈
r

Range of A (b
r

 is a linear combinations of independent columns of A), the

solution(s) of Eq. (6.63) can be given in the form

 ()1 1 1n mn m n n n m m n n
x A b I A A y+ +

× ×× × × × ×= + −
r r ur

 (6.64)

for
ny R∈

ur

Proof

To prove that Eq. (6.64) is the solution of Eq. (6.63), one starts with pre-multiplying

both sides of Eq. (6.64) with A, thus:

 ()+ += + −
r r ur

Ax AA b A I A A y (6.65)

From the definition given by Eq. (6.62), one has

 ()0 0A AA A A I A A+ += − = − = (6.66)

Utilizing Eq. (6.66), Eq. (6.65) becomes:

 Ax AA b
+=

r
 (6.67)

Also, pre-multiplying both sides of Eq. (6.63) by AA+
, one obtains:

 ()AA Ax AA b
+ +=

r
 (6.68)

