Duc T. Nguyen 397

6 Finite Element Domain
Decomposition Procedures

6.1 Introduction

The finite element (statics) equilibrium equations can be given as

[Kb)] -z=S(b) 6.1)

b = design variable vector, such as cross-sectional areas of truss members,
moment of inertia of beam members, and/or thickness of plate (or shell)
members.

Z = nodal displacement vector
[K] =stiffness matrix

—

S = nodal load vector
Equation (6.1) can be partitioned as
EEERH
Kip Ko 7 ST
where subscripts B and I denote Boundary and Interior terms, respectively.

From the 2™ part of Eq. (6.2), one has:

Kpzg+Kz,=s, (6.3)
or

— -1 — JEN—

21 =[Ky]" -(s1-Kmpzg) (6.4)

From the 1* part of Eq. (6.2), one has:
Kppzp+Kp2,=5, (6.5)

Substitution Eq. (6.4) into Eq. (6.5), one obtains:
-1
Kopzp +Kp [Ky | (8- Kz) =s, (6.6)

or

[KBB _KBIKiIlKIB :I’Za.: (SB _KBIKillSI) (6.7)

398 Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

Let K_B =Ky — KBIKI_IIKIB = Effective Boundary Stiffness (6.8)
and g =5, — Ky, KI_IISI = Effective Boundary Load (6.9)

Equation (6.8) for K_B is also called the Schur complement matrix.

Then, Eq. (6.7) can be expressed as:
Ky |2 =5, 6.10)

Having solved the boundary displacement vector Z, from Eq. (6.10), the interior

displacement vector Z, can be solved from Eq. (6.4)

360 in. 360 in. L 360in.
/ﬁ

AV

N
e

G 5

11 12 13
14 15 16

¢

! 8 9 10 o

8

Y
5 6 7 8 ——>
4 5 6
20
21

£

18 19 o

©

(2]

0 0 .
17

100 kips 100 kips

Entire Structur

Duc T. Nguyen 399

Substructure 1
Substructure 3

100 kips 100 kips
Substructure 2

Figure 6.1: A structure is divided into 3 substructures

For very large-scale problems, the original structure can be partitioned into many
smaller sub-structures (or sub-domains), see Figure 6.1. Thus, for a typical r sub-
domain, one obtains:

z;’) _ [K,(Ir)]_l ‘(S;,) _KI(I;)ZI(;)) 6.11)
Similarly, one defines:
K—Bm _ K;:) _K;r) [K,(,r)]_l K1<Br) (6.12)
gm _ Sir) _K;r) [K;Ir)]_1 Sfr) (6.13)

The overall (or system) effective boundary stiffness matrix can be assembled and
solved as:

NSU

(r)

K,= D K, (6.14)
r=1
NS,
and $p=) 5p (6.15)

r=l1

400 Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

KB-ZBZSB (6.16)
where NSU =Number of SUbstructures

Remarks

(a) For large-scale problems, the operations involved in Eq. (6.12) are quite
expensive, because

@) [KI(;):I_I-KI(;) requires solving system of linear equations with
“many” right-hand-side vectors.
(ii) [K;r)]-[[KI(;)]_I-KI(B” } requires “sparse matrix*dense matrix”
operations.
(b) Even though each individual matrices [Kérl)],[[(f,r)] and [KI(I;)} are

sparse, the triple matrix products (shown in the right-hand-side of Eq.
(6.12)) can be “nearly dense”. Thus, computer memory requirements can
also be quite large.

6.2 A Simple Numerical Example Using Domain Decomposition (DD)
Procedures

A simple 2-D truss structure [6.1], shown in Figures 6.2-6.4, will be used to illustrate
detailed steps involved in the DD procedures (E = Kips/in®, A = in’, for all members)

For each r'™ substructure, the boundary nodes (or boundary dofs) are numbered first
(and start with 1), then the interior nodes (or interior dofs) are subsequently
numbered. Element numbers for each ™ substructure should also start with 1. In
Figure 6.3, while nodes 1 and 2 must be considered as boundary nodes, any interior
node of the r'™ substructure can also be selected as a boundary node. The arrow-
directions, shown in Figure 6.3, indicate that a particular truss member is connected
from node “i” to node “j”. The mapping between the local (substructuring) boundary
degree-of-freedom (dof) and global (overall) boundary dof can be identified by
comparing Figures 6.3 and 6.4. Thus, in substructure 1 (r = 1), boundary nodes 1 and
2 will correspond to the system (overall) boundary nodes 2 and 1, respectively.

Two vertical forces are applied at nodes 2 and 3 (as shown in Figure 6.2), while the
prescribed displacements (say, due to support settlements) are shown at node 4 (of
substructure r = 1, see Figure 6.3), and at node 4 (of substructure r = 2, see

Figure 6.3)

Duc T. Nguyen 401

<

(9]
(=]

o

2 2 [38 3 [4

4 4
Figure 6.2: Overall original system

2

0y =0.3"

S 4
2 3 O
4
r=2

Figure 6.3: Local (substructuring) numbering system

1
[

[]
2

Figure 6.4: Overall boundary nodes numbering system

402

Finite Element Methods:

Parallel-Sparse Statics and Eigen-Solutions

j
() =
C, =COS =
X ’Yl Lij
Y —Yi
C, =CO0S =
y (12) L
» X

T2

Figure 6.5: Direction Cosines of a 2-D Truss Member

Based on Chapter 1, the 2-D truss element stiffness matrix, in global coordinate X,Y
axis, can be given as

C2 Cc C —C —C_C
X Xy X Xy
2 2
c.C C —C_C —C
EA
[k(f«’)}[: j x2y y xzy y (6.17)
—C —C C C CcC C
X Xy X X"y
—C C —C CcC C C2
%y Sy Y]

where ¢, and c, have been defined in Figure 6.5. Thus for the 1*" substructure (r = 1),
one obtains the following element (global) stiffness matrices:

ko

kg

AN L 0

N — 00

7
42.7209
42.7209
-42.7209
-42.7209

7
120.8333
0
-120.8333
0

8
42.7209
42.7209
-42.7209
-42.7209

SO OO ®

5
-42.7209
-42.7209
42.7209
42.7209

1
-120.8333
0
120.8333
0

6
-42.7209
-42.7209
42.7209
42.7209

(6.18)

(6.19)

[=NeNoNol S

Duc T. Nguyen

1 2
1 | 42.7209 42.7209
o= 2 | 42.7209 42.7209
G T 3 | -427209 -42.7209
4 | -42.7209 -42.7209
5 6
5 120.8333 0
- 6 |0 0
G 3 | -120.8333 0
4 |0 0
1 2
1 |0 0
o= 2 10 120.8333
G 510 0
6 |0 -120.8333

3
-42.7209
-42.7209
42.7209
42.7209

3
-120.8333
0
120.8333
0

6
0

5
0
0
0 0
0

-120.8333

120.8333

4
-42.7209
-42.7209
42.7209
42.7209

S OO O H

403

(6.20)

6.21)

(6.22)

. (r=1) (r=1) (r=1) (r=1)
submatrices [KBB], [KBI], [KIB] and [K”] of substructure 1 can

be assembled as:

1 2
1 | 163.5542 42.7209
Ko _ 2| 427209 163.554
BB T 3 | 427200 -42.7209
4 | -427209 -42.7209
5 6
1]o 0
Ko _ 2 |0 -120.8333
BI 3 [-120.8333 0
4 10 0
5 6
5 | 163.5542 42.7209
Ko _ 6 | 427209 163.5542
mo= 7 | 427209 -42.7209
8 | -42.7209 -42.7209
1 2
5 |o 0
Ko _ 6 |0 -120.8333
1B 7 |-120.8333 0
8 |0 0

3 4
-42.7209 -42.7209
-42.7209 -42.7209
163.5542 42.7209
42.7209 42.7209

7 8

-120.8333 0

0 0

0 0

0 0
7 8
-42.7209 -42.7209
-42.7209 -42.7209
163.5542 42.7209
42.7209 42.7209

3 4

-120.8333 0

0 0

0 0

0 0

(6.23)

(6.24)

(6.25)

(6.26)

404 Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

After imposing the support boundary conditions, the above 4 equations become:

1 2 3 4
1 163.5542 42.7209 -42.7209 -42.7209
gKo=h _ 2 | 42.7209 163.5542 -42.7209 -42.7209 6.27)
BB be™ 31427209 -42.7209 163.5542 42.7209 ’
4 | -42.7209 -42.7209 42.7209 42.7209
5 6 7 8
1 0 0 0 0
o=n 2 0 -120.8333 0 0
Ko o= 3 | 1208333 0 0 0 (6:28)
4 0 0 0 0
5 6 7 8
5 163.5542 42.7209 0 0
o=y _ 6 42.7209 163.5542 0 0
K pe = 7 0 0 1 0 (6.29)
8 0 0 0 1
1 2 3 4
5 0 0 -120.8333 0
(r=1) 6 0 -120.8333 0 0
Kis pe. = 7 10 0 0 0 (6.30)
8 0 0 0 0
The boundary and interior load vectors can be obtained as
10 510
. 210 ., 610
Fy™ = , F'7V = (6.31)
710
410 810

After imposing the support (prescribed) boundary conditions, Eq. (6.31) becomes:

1 (12.08333 5(12.81627
vy 20 vy 6]12.81627
FB be = 3 0 , FI be. =7 0.1 (6.32)
40 0 8 02

The effective boundary stiffness matrix, and load vector can be computed from Eqgs.
(6.12-6.13) and, and are given as

Duc T. Nguyen

—(r=1)
B

o= AW

3
163.5542
42.7209
-42.7209
-42.7209

1

—(r=D)

B =

4
42.7209
67.7463
-17.6955
-42.7209

2.08333

7.5076

7.5076
0

1
-42.7209
-17.6955
67.7463
42.7209

405

2
-42.7209
-42.7209
42.7209 (6.33)
42.7209
(6.34)

Similarly, for substructure r = 2, element stiffness matrices (in global coordinate
references) can be computed from Eq. (6.17) as:

ke =

D — 00 00 O\ L NN AW

N = O\ W

3 4

120.8333 0

0 0

-120.8333 0

0 0

5 6

120.8333 0

0 0

-120.8333 0

0 0
7 8
42.7209 -42.7209
-42.7209 42.7209
-42.7209 42.7209
42.7209 -42.7209

5 6

0 0

0 120.8333

0 0

0 -120.8333

5 6
1120.8333 0

0 0

120.8333 0 (6.35)
0 0

7 8

11208333 0

0 0

1208333 0 (6.36)
0 0

| 2

427209 42.7209

427209 -42.7209

427200 -42.7209 (6.37)
427209 42.7209

1 2

0 0

0 1120.8333

X . (6.38)
0 120.8333

submatrices [K;;Z):I , [K;;:Z):I , I:K};Zz)} and I:K}Irzz)} can be assembled as:

K(V:Z) _

BB

1
42.7209
-42.7209
0

0

2
-42.7209
163.5542
0
0

20.8333

S —= OO W

(6.39)

(e e e R

406 Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

5 6 7
1]o 0 -42.7209
g _ 2 |0 -120.8333 42.7209
BT 3 |-120.8333 0 0
4 |0 0 0
1 2 3
5 |o 0 -120.8333
ko _ 6 |0 -120.8333 0
BT 7 | 427209 427209 0
8 | 427209 427209 0
5 6 7
5 | 241.6666 0 -120.8333
gon_ 6|0 120.8333 0
m = 7 [-120.8333 0 163.5542
8 |0 0 -42.7209

After imposing the support boundary conditions, Egs. (6.39-6.42) become:

1 2 3
1 | 427209 427209 0
K =) 2 | 427209 163.5542 0

BB be = 3 |0 0 120.8333
4 |o 0 0
5 6 7

1 |o 0 427209

g _ 2 |0 -120.8333 42.7209

Bl be T 3 |-120.8333 0 0
4 |0 0 0
1 2 3

5 |0 0 -120.8333
g _ 6 [0 -120.8333 0
B be = 7 | 427200 427209 0
8 |0 0 0
5 6 7

5 | 241.6666 0 -120.8333
goh _ 6 |0 120.8333 0

mobe = 7 |-120.8333 0 163.5542
8 |0 0 0

8
42.7209
-42.7209
0

0

SO OO B

8

0

0
-42.7209
42.7209

S oo O M SO OO S oo O M~

—_ o OO ®

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)

The boundary and interior load vectors of substructure r = 2 can be computed as

Duc T. Nguyen 407

1{0 5(0
210 6|—4
F{=2 = . F? = 6.47
i 3]0 ! 7 ©47
4 |—4 810

After imposing the support boundary conditions, Eq. (6.47) becomes:

1 0 5 0
2 —4 6| -4
F/™, = , F'™, = 6.48
Boobe 31.12.81627 e 7112.81627 (6.48)
41-12.81627 8| 03

Applying Eqgs. (6.12-6.13), the effective boundary stiffness matrix, and load vector
can be computed as:

1 2 3 4
1 25.0254 -25.0254 -25.0254 0
—(r=2) 2 -25.0254 25.0254 25.0254 0 (6.49)
Ks = 3 -25.0254 25.0254 25.0254 0 ’
4 0 0 0 0
7.5074
—(r=2) —4
U (6.50)
-7.5074
3.5074

The overall (system) effective boundary load vector, and stiffness matrix can be
assembled as:

19.5907
— 3.5076
F,= (6.51)
0.0002
3.5074
1 2 3 4
1 | 927711 17.6955 -67.7463 -17.6955
—(r=2) 2 | 17.6955 67.7463 -17.6955 -42.7209 6.52)
Kp = 3 | 677463 -17.6955 188.5796 42.7209 :
4

-17.6955 -42.77209 42.7209 67.7463

408 Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

All boundary displacements can be solved from Eq. (6.16) as:

3(0.133
— 4]0.054
= 110.089

210.098

(6.53)

The interior displacements of each substructure can be recovered from Eq. (6.11)

110.089 510.121
vy 210,098 ooy 6]0.085
2y = z, = (6.54)
310.133 7| 0.1
410.054 8| 0.2
1]0.133 510.165
2 10.054 6 [0.065
g:Z) — Z;r:Z) — (655)
310.089 710.198
410.098 8| 0.3

6.3 Imposing Boundary Conditions on “Rectangular’” Matrices [K ;;)]

Imposing the Dirichlet boundary conditions on the “square” substructuring stiffness
matrices [K;;:Dhlcl and I:Kl(lrzl)b_c:l (see Egs. 6.27,6.29) are rather straight

forward, especially this topic has already been explained with great details in
Chapters 1 and 4. Thus, the following paragraphs are intended to explain how to
impose the Dirichlet boundary conditions on the rectangular (in general)

substructuring stiffness matrix [K é'l':l)b_c'] , such as the one shown in Eq. (6.28). To

facilitate the discussions, let’s consider the entire stiffness matrix of the first
substructure (r=1), as shown in Figure 6.3

409

|

K BI

K BB

KIB KII
(6.56)
KBI:|

1
(6.57)
(6.58)

KBB
KIB

Mo X N
MO X N
MO X X

SHCEN Y

MOX X X
SV
MO X X

M

Duc T. Nguyen

Mmoo mmMm

1)

Ih.(.

r

K,
It should be noted that Eq. (6.28) has the same form (last 2 columns) as Eq. (6.58)

Since the Dirichlet boundary conditions are imposed on the 7" & 8" degree-of-

freedom, Eq. (6.56) becomes:

Thus

410 Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

6.4 How to construct Sparse Assembly of “Rectangular” Matrix [K g)]

The numerical procedures for finite element sparse assembly of the rectangular

matrix [K ;;)] can be summarized in the following 2-step procedures:

: For each 1 substructure, identify how many and which finite elements will
have contributions to both Boundary & Interior nodes (assuming there are 2
dof per node, and 3 nodes per element). Also, assuming there are 6
boundary nodes, and 8 interior nodes in the ™ substructure.
At the end of step 1, say elements 5, 10 and 11 are recorded. Also,
assuming the element nodes connectivity are:

ElL # node-i node-j node-k
5 6=B 1=B 8=1
10 5=B 6=B 9=1
11 1=B 13=1 11=1

Note: B = Boundary node, if <node 6. I = Interior, if > node 6.

: Based on the information provided by step 1, one obtains:

I.Nodel | ILNode2 |3 |4 |5 6 |7 8
(=7-6) (=8-6) (=13-6) | (=14-6)
B.Nodel 1,2 5,6 3,4
7.8 11,12 9,10
B.Node2
KBI= 3
4
5
6

The above table, obtained for Kg; , can be generated by the following “pseudo”
FORTRAN algotihms :

icount = 0
Do loop
J = Boundary Node 1
El. 5 =6, 1, 8] = B. node has coupling with L. node 2 (= 8-6) = icount = 1
El. 10 =[5, 6, 9] = B. node 1 has no coupling with element 10.
El. 11 =[1, 13 11] =» B. node 1 has coupling
with I. node 7 (= 13-6) =» icount = icount+1 = 2
with I. node 5 (=11-6). Hence, icount = 3
so: IE(1)=1
IEyi(2) = IEy;(1)+(icount = 3)*(ndofpn=2)* = 13

(6.59)
(6.60)

Duc T. Nguyen 411

JE; = {columns 3, 4, 13, 14,9, 10, 3,4, 13, 14,9, 10 } (6.61)

J = Boundary Node 2
EL 5 =16, 1, 8] = Boundary node 2 has no coupling with El. 5
El 10 =[5, 6, 9] = Boundary node 2 has no coupling with El. 10
El 11 =[1, 13 11] =» Boundary node 2 has no coupling with El. 11

Enddo
Remarks:

In Eq. (6.61), column numbers 3, 4, 13, 14, 9, 10 are repeated again, the reason is
because each node is assumed to have 2 dof.

6.5 Mixed Direct-Iterative Solvers for Domain Decomposition

Using the domain decomposition (D.D.) formulation, one first needs to solve the

—_—

unknown boundary displacement vector Z, from Eq. (6.16). However, the assemble

process for obtaining the effective boundary stiffness matrix K, (see Eq. (6.14))

-1
will require the computation of the triple matrix products of K ;r) [KI(;):' K I(Br)

(for each r'™ substructure), as indicated in Eq. (6.12). For large-scale-applications,

Eq. (6.12) is both computational and memory intensive, since the related system of
linear equations has a lot of right-hand-side vectors. Thus, forward and backward
solution phases need be done repeatedly. Furthermore, although each individual

matrices I:K;?:' , I:K;Ir) and [Kl(l;):l can be sparse, the triple products of

-1
K zlr) I:KI(;) :' K I(Br) is usually dense, and therefore, a lot of computer memory is
required. For the above reasons, mixed direct-iterative solver is suggested for solving
Eq. (6.16).

Preconditioning Matrix

Consider the linear system [A]i(':l; , Where the matrix [A] is assumed to be

symmetric positive definite (SPD). If the solution vector X is sought by an iterative
solver, then one normally prefers to improve the condition number of the coefficient

max

matrix (= = ratio of largest over smallest eigen-values of the coefficient matrix)

min
by the “preconditioning process” as described in the following paragraphs :

Option 1 (Symmetrical property is preserved)

Let P be a preconditioning matrix, which is assumed to be non-singular. Then PAP"

is SPD. Instead of solving [A]X = b , one solves :

412 Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

[PAPT]*{PT X} =[P]b
| —
Identity Matrix
or

[A"]*{y}={b"}
where :
A*]1=[PAP"] = symmetrical matrix

]
)7 E{P_T ;(} chence x = [PT]§

—

¥ E[P]B

The preconditioner [P] should be selected so that :

1. Matrix [A*] will have better condition number than its original matrix [A].
2 Matrix [P] should be “cheap” to factorize.

As an example, the Cholesky factorization of [A] can be obtained as :

[A]=[U]" [U]
where [U] is an upper triangular, factorized matrix.

Suppose one selects [P] = U™T, then:
A" =P[AIPT =UT[UTUIU =11
[—

N
w. A .
The condition number of [A"] = /2 = ﬂ =1
Apin 1.0

Therefore, the Conjugate Gradient method, when applied to [A" = I]§ =b" will

converge in 1 iteration. However, in this case it is “too expensive” to factorize [P] !
The compromised strategies will be :

[P]=[U,T"

where [U,] = inexpensive approximation of [U], and the amount of fill-in terms
occurred in [Ua] can be controlled (or specified) by the user. Various strategies for

“incomplete Cholesky factorization” have been suggested to obtain [U,] for

preconditioning purposes. The original CG, and its PCG algorithms are summarized
in the following section :

Duc T. Nguyen

CG Without Preconditioner

CG With Preconditioner

Solving [A];(=b

Solving [A”]3; = E

Given an initial guess X ©)

Given X ©

Compute incomplete factor [P]

Compute initial residual
fP=b-Ax?

Compute

P O={pb}-[PAPT |3

Set d D=0 ; po =1

Set d @=0 ;P =1

DOi=1, 2, ...

DOi=1,2, ...

o=)

o=)

- —Pig
Bl—l A—Z

. —Pia
Bl—] A—Z

dD = 0D 4 g gD

4O = 0D g qiD

q(i) — [A]d(i)

q” =[PAP"]dV

x® = @D 4 g g

x® = x D 4 g g0

r® = 10D g q®

(D = 10D g g

Converge 7?7

Converge ??

END DO

END DO

If converged, then set
x=[P]" X

Option 2 (Symmetrical property may be destroyed)

Instead of solving [A]X =
[P [A]x =[P]"

\ﬁr_—/;._/

or

—_—

[A*]iz{b*}

where :

, one solves :

b
b

[A*]=[P] '[A]= may NOT be symmetrical

414 Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

This formulation is simpler than the one discussed in Option 1. However, [Ax] may
NOT be a symmetrical matrix.

Remarks

1. If the original matrix [A] is unsymmetrical, then this Option 2 may be a
preferable choice.

2. If one selects [P]=[A], then [A"]=[I] and the iterative solver will
converge in | iteration.

In Table 6.1, Preconditioned Conjugate Gradient (PCG) algorithm for
solving system of symmetrical linear equations [A] X =b, with the preconditioned

matrix [B] is summarized.

Table 6.1: Preconditioned Conjugate Gradient Algorithm For Solving [A] ;C = l;

Step 1: Initialized ;(; = 6

Step 2: Residual vector 7, = b (or r, = b— Ax, , for “any” initial guess X,)
— 4 —
Step 3: “Inexpensive” preconditioned Z, = [B] '

Step 4: Search direction da(; = Z‘(;

Fori=0,1, 2, ..., maxiter

Step 5: . riTZ
epsS: =———
P l diT {A'di}

Step 6: Xx,,, = X, + &, d,

i

Step7: 1, =1, —al.[Adi]

Step 8: Convergence check: if ||l§+1|| < ”ro” - € => stop

Step9: 7, = B_lri+1
T
rlz
Step 10: B, = =L
.z

i i

Step 11: d,,, = z,,, + Bd,
End for

Duc T. Nguyen 415

6.6 Preconditioned Matrix For PCG Algorithm with DD Formulation

The difficulty in constructing an efficient preconditioned matrix [B] in conjunction
with PCG algorithm with D.D. formulation is compounded by the fact the coefficient
NSU ___ NSU

matrix [] Z v Z(K(r) K [KI(;)TI K,(I;)) has mnot been
assembled exp11c1t1y. In other words, how can we construct a preconditioned matrix
[B] when the original coefficient matrix [K_B] has not even been formed? Even the
most simple “diagonal preconditioned” scheme, one still has to introduce “some
approximation” about [K_B] . The following 2 options are possible for

considerations :

NSU

Option 1: let [B] = |:K_B:| z K;g Diag

r=1

Option 2: For the preconditioned purpose only, approximate:

[K,(’)] dzagonalof[K”)}

Hence [K (r)} is inexpensive, and
Approx

[81=[K)= 3 (Ko - K [T K

r=1
In Table 6.2, the corresponding 11-step procedure for Pre-conditioned Conjugate
Gradient Algorithm within the context of Domain Decomposition (DD) formulation

is summarized.

Table 6.2: Pre-conditioned Conjugate Gradient D.D. Algorithm For solving

Ky |z=Fa

Initialized Phase

—_—

Step 1: ZB[=0

Step2: Residual vector r= fB - KB ip, = fB or
r=1
NZS[:](") _ >[()})
- r K r K r f‘l r)
r=1
DO 2 r=1,NSU (in parallel computation)

=~

416 Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

Step 2.1: Direct sparse solver F/B solution with 1 RHS interior load
vector

— -1
— (r) (r)

T, = [Ku } “fi
Step 2.2: Sparse matrix times vector

— =

I, =Ky T,
Step 2.3: Compute sub-domain residual

— L

Tl - fB - Tz

—

Step 2.4: Insert sub-domain residual into proper location of 7,

The partial resulted vector 7] from each processor will be sent to the

Master processor, together with the mapping information about local-

global boundary dofs.
- =
Receive & Copy 1; =1, , by the Master Processor.
2 Continue
Step 3: “Inexpensive” preconditioning, by the Master Processor.
— . -
< = [B] R4
Step 4: Search direction, by the Master Processor.
d =z
Iteration loop begins (fori =0, 1, 2, ..., maxiter)
r’z
Step 5: Compute scalar &, = ————-——~
4K,]}
Step 5.1: up = I‘iT - Z; » by the Master Processor

Master Processor broadcasts dl. to all other processors

Step 5.2: compute

= (N0 7 X e O[T en). T
K,-d = ZKB ’di:Z(KBB_KBl I:KII } K)'di
r=1 r=1

DO 5 r=1,NSU (in parallel computation)
Step 5.2a: Sparse matrix times vector

=Ky d
Step 5.2b: Direct sparse solver F/B with 1 RHS vector
— -1 —
— (r)
T, _I:KII] T

Duc T. Nguyen 417

Step 5.2c: Sparse matrix times vector
=Ky T,

Step 5.2d: Sparse matrix times vector
T-Ky-d

Step 5.2e:
T,=T,-T,

Step 5.2f: Put vector 772 into proper location of

| K, |-d, = stored

Each processor will send its own 7, to the Master Processor.

5 Continue
The following steps will be done by the Master Processor.

Step 5.2g: Received vectors i (from each processor) and

assembled vector stored . Then, compute:
down =d, - stored

u
o ="
down

Step 6: Compute new, improved solution
ZBi+1 = ZBi + aldl

Step 7: Compute new residual vector

r

., =T —«, - stored

Step 8: Convergence check:

—

)

’/E),norm -

_—

r;'+1,norm = ri+1

Iteration steps will when 7,

i+1,norm

<E 1y norm - Where € is user

input parameter

Step 9: “Inexpensive” preconditioning
- o —
Lin = [B] “Tin

418 Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

T
rlz
Step 10: Compute 3, = %

5%
up = r:lzm
down=rz,

__up
" down

Step 11: New search direction

d,=z,+ :Bidi

Based upon the “primal” DD formulation, discussed in Sections 6.1-6.6, the
MPI/Fortran software package DIPSS (Direct Iterative Parallel Sparse Solver) has
been developed to solve few large scale, practical engineering problems which are
summarized in the following paragraphs:

Example 1 — Three dimensional acoustic finite element model. In this example,
DIPSS is exercised to study the propagation of plane acoustic pressure waves in a
3-D hard wall duct without end reflection and airflow.

Figure 6.6: Finite element model for a three-dimensional hard wall duct

Duc T. Nguyen 419

The duct is shown in Figure 6.6 and is modeled with brick elements. The source and
exit planes are located at the left and right boundary, respectively. The matrix, K,
contains complex coefficients and the dimension of K is determined by the product
of NN, MM, and QQ (N=MMxNNxQQ). Results are presented for two grids
(N=751,513 and N=1,004,400) and the finite element analysis procedure for
generation the complex stiffness matrix, K, was presented in Reference [6.2].

DIPSS [Ref. 6.3] memory and wallclock statistics were also compared to those
obtained using the platform specific SGI parallel sparse solver (i.e., ZPSLDLT).
These statistics were computed on an SGI ORIGIN 2000 computer platform that was
located at the NASA Langley Research Center. The SGI platform contained 10
gigabytes of memory and eight ORIGIN 2000 processors were used. It should be
noted that the ZPSLDLT is part of the SCSL library (version 1.4 or higher) and is
considered to be one of the most efficient commercialized direct sparse solvers that
is capable of performing complex arithmetic. Due to the 3-D nature of hard wall
duct example problem, K encounters lots of fill-in during the factorization phase.
Thus, only the small grid (N=751,513) could fit within the allocated memory on the
ORIGIN~2000. ZPSLDLT required 6.5 wallclock hours to obtain the solution on the
small grid whereas DIPSS wallclock was only 2.44 hours. DIPSS also required
nearly 1 gigabyte less memory than ZPSLDLT, and the DIPSS and ZPSLDLT
solution vector were in excellent agreement.

Because DIPSS uses MPI for interprocess communications, it can be ported to other
computer platforms. To illustrate this point the DIPSS software was ported to the
SUN 10000 platform at Old Dominion University and used to solve the large grid
duct acoustic problem (N=1,004,400). Wallclock statistics and speedup factors were
obtained using as many as 64~SUN~10000 processors. Results are presented in
Table 6.3. It should be noted that a superlinear speedup factor of 85.95 has been
achieved when 64 SUN 10000 processors are used. This super-linear speedup factor
is due to two primary reasons:

1. The large finite element model has been divided into 64 sub-domains. Since
each processor is assigned to each smaller subdomain, the number of
operations performed by each processor has been greatly reduced. Note that

3
the number of operations are proportional to (n(r)) for the dense matrix,

or n” - BW? for the banded, sparse matrix, where BW represent the half

Band Width of the coefficient stiffness matrix.

2. When the entire finite element model is analyzed by a direct, conventional
sparse solver, more computer “paging” is required due to a larger problem
size.

420 Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

Table 6.3 : Performance of DIPSS software for 3-D hard wall duct
(N=1,004,400 complex equations)

Processor (SUN 1 2 4 8 16 32 64
10000@0ODU)
Sparse Assembly Time 19.38 10.00 5.08 2.49 1.26 0.70 0.27
(seconds)
Sparse Factorization 131,229 | 58,976 26,174 10,273 | 3,260 909 56
(seconds)
Total time (entire FEA) 131,846 | 61,744 27,897 11,751 | 3,817 1,967 1,534
Total Speed-Up Factor 1.00 2.14 4.73 11.22 34.54 67.03 85.95

Examples 2 — Three dimensional structural bracket finite element model. The
DD formulation has also been applied to solver the 3-D structural bracket problem
shown in Figure 6.7. The finite element model contains 194,925 degrees of freedom
(N=194,925) and the elements in the matrix, K, are real numbers. Results were
computed on a cluster of 1-6 personal computers (PCs) running under Windows
environments with Intel Pentium. It should be noted that the DIPSS software was not
ported to the PC cluster, but the DD formulation was programmed (from scratch, in
C"™) on the PC cluster processors [6.3].

Duc T. Nguyen 421

el

ot =T

A
s
ey T |

R
e e
: r«v L]
il

7

!

Az

2
SRR
RS A
RO
DI

I &4y

iyt

il
Wy

e

. . St

CECHA/ M R A
!bﬁr‘ﬂf‘%,{‘ L]
N ﬁ!}gﬂmmrﬁg%?%E%yﬁffﬁﬁﬁﬁﬁ'

.

LTy

e H‘F#Fl aty
: AT
#’:% '-'ﬁ%kﬂ.wm

Figure 6.7: Finite element model for a three-dimensional structural bracket

422 Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions

The wallclock time (in seconds) to solve this example is documented in Table 6.4. A
superlinear speedup factor of 10.35 has been achieved when 6 processors were used.

Table 6.4: 3-D Structural bracket model (194,925 dofs, K= real numbers)

Processor (Intel PC @ ASU) 1 2 3 4 5 6
Total Walll Clock Time (seconds) 2,670 700 435 405 306 258
Total Speed-Up Factor (seconds) 1.00 3.81 6.14 6.59 8.73 10.35

6.7 Generalized Inverse

First, let us consider some key concepts of the generalized inverse. Given a matrix
Ae R™", A" € R™ is called the generalized inverse of A if

A A A=A (6.62)

mxn nxXm=® “mxn

Now, given the system of linear equations
Am><n Xnx1 = bmxl (663)

with EE Range of A ([; is a linear combinations of independent columns of A), the
solution(s) of Eq. (6.63) can be given in the form

Xnxt = A:l—Xm l;mXI + (Inxn - A;XmAan);nxl (6.64)
for }e R"
Proof

To prove that Eq. (6.64) is the solution of Eq. (6.63), one starts with pre-multiplying
both sides of Eq. (6.64) with A, thus:

Ax=AA"b+A(I-A"A)y (6.65)

From the definition given by Eq. (6.62), one has
0=A-AA"A=A(I-A"A)=0 (6.66)

Utilizing Eq. (6.66), Eq. (6.65) becomes:
Ax=AA"D (6.67)

Also, pre-multiplying both sides of Eq. (6.63) by AA™, one obtains:
AAT(Ax)= AA'D (6.68)

