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6 Finite Element Domain  

Decomposition Procedures 

 

 

6.1 Introduction 
 

The finite element (statics) equilibrium equations can be given as 

 

[ ]K(b) z=S(b)⋅
r r

     (6.1) 

where: 

b
r

= design variable vector, such as cross-sectional areas of truss members, 

moment of inertia of beam members, and/or thickness of plate (or shell) 

members. 

z
r

= nodal displacement vector 

[ ]K  = stiffness matrix 

S
r

 = nodal load vector 

 

Equation (6.1) can be partitioned as 

 
K K z sB B B I B B

× =
K K z sIB II I I

        
     
          

     (6.2) 

 

where subscripts B and I denote Boundary and Interior terms, respectively. 

 

From the 2
nd

 part of Eq. (6.2), one has: 

 IB B II I IK z +K z =s       (6.3) 

or 

 [ ] ( )1
I II I IB Bz K s K z

−
= ⋅ −

uur uur uur
      (6.4) 

 

From the 1
st
 part of Eq. (6.2), one has: 

 BB B BI I BK z +K z =s       (6.5) 

 

Substitution Eq. (6.4) into Eq. (6.5), one obtains: 

 [ ] ( )
-1

BB B BI II I IB B BK z +K . K . s -K z =s     (6.6) 

 

or 

 ( )-1 -1

BB BI II IB B B BI II IK -K K K .z = s -K K s  

uur
    (6.7) 
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Let 
1

B BB BI II IBK K K K K−≡ − ≡ Effective Boundary Stiffness  (6.8) 

and 
1−≡ − ≡B B BI II Is s K K s Effective Boundary Load   (6.9) 

Equation (6.8) for BK  is also called the Schur complement matrix. 

 

Then, Eq. (6.7) can be expressed as: 

 
B B B

K z s  ⋅ =        (6.10) 

 

Having solved the boundary displacement vector 
B

z from Eq. (6.10), the interior 

displacement vector 
I

z can be solved from Eq. (6.4) 
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Figure 6.1: A structure is divided into 3 substructures 

 

For very large-scale problems, the original structure can be partitioned into many 

smaller sub-structures (or sub-domains), see Figure 6.1. Thus, for a typical r
th

 sub-

domain, one obtains: 

 ( )
1

( ) ( ) ( ) ( ) ( )r r r r r

I II I IB B
z K s K z

−
 = ⋅ −      (6.11) 

 

Similarly, one defines: 

 
1( ) ( ) ( ) ( ) ( )

BB BI IB

r
r r r r

B II
K K K K K

−
 ≡ −      (6.12) 

 
1( ) ( ) ( ) ( ) ( )

B BI I

r
r r r r

B II
s s K K s

−
 ≡ −       (6.13) 

 

The overall (or system) effective boundary stiffness matrix can be assembled and 

solved as: 

 

 
( )

1=

= ∑
NSU

r

B B

r

K K       (6.14) 

 

and 
( )

1=

= ∑
NSU

r

B B
r

s s                   (6.15) 
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B B B

K z s⋅ =       (6.16) 

 

where NSU ≡ Number of SUbstructures 

 

Remarks 

 

(a) For large-scale problems, the operations involved in Eq. (6.12) are quite 

expensive, because 

(i) 
1

( ) ( )r r

II IB
K K

−
  ⋅   requires solving system of linear equations with 

“many” right-hand-side vectors. 

(ii) 
1

( ) ( ) ( )

BI IB

r r r

II
K K K

−    ⋅ ⋅     
 requires “sparse matrix*dense matrix” 

operations. 

(b) Even though each individual matrices 
( ) ( ),   

   II

r r
BIK K  and 

( )r

IB
K    are 

sparse, the triple matrix products (shown in the right-hand-side of Eq. 

(6.12)) can be “nearly dense”. Thus, computer memory requirements can 

also be quite large. 

 

6.2 A Simple Numerical Example Using Domain Decomposition (DD) 

Procedures 

 

A simple 2-D truss structure [6.1], shown in Figures 6.2-6.4, will be used to illustrate 

detailed steps involved in the DD procedures (E = Kips/in
2
, A = in

2
, for all members) 

 

For each r
th

 substructure, the boundary nodes (or boundary dofs) are numbered first 

(and start with 1), then the interior nodes (or interior dofs) are subsequently 

numbered. Element numbers for each r
th

 substructure should also start with 1. In 

Figure 6.3, while nodes 1 and 2 must be considered as boundary nodes, any interior 

node of the r
th

 substructure can also be selected as a boundary node. The arrow-

directions, shown in Figure 6.3, indicate that a particular truss member is connected 

from node “i” to node “j”. The mapping between the local (substructuring) boundary 

degree-of-freedom (dof) and global (overall) boundary dof can be identified by 

comparing Figures 6.3 and 6.4. Thus, in substructure 1 (r = 1), boundary nodes 1 and 

2 will correspond to the system (overall) boundary nodes 2 and 1, respectively. 

 

Two vertical forces are applied at nodes 2 and 3 (as shown in Figure 6.2), while the 

prescribed displacements (say, due to support settlements) are shown at node 4 (of 

substructure r = 1, see Figure 6.3), and at node 4 (of substructure r = 2, see  

Figure 6.3) 
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Figure 6.2: Overall original system 

 

 

Figure 6.3: Local (substructuring) numbering system 

 

 
Figure 6.4: Overall boundary nodes numbering system 
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Figure 6.5: Direction Cosines of a 2-D Truss Member 

 

Based on Chapter 1, the 2-D truss element stiffness matrix, in global coordinate X,Y 

axis, can be given as 

 

2 2

2 2

( )

2 2

2 2

 − −
 
 

− − 
    =         − − 

 
 − −
 

c c c c c c
x x y x x y

c c c c c c
x y y x y yEAe

k
L c c c c c c

x x y x x y

c c c c c c
x y y x y y

   (6.17) 

 

where cx and cy have been defined in Figure 6.5. Thus for the 1
st
 substructure (r = 1), 

one obtains the following element (global) stiffness matrices: 

 

  7 8 5 6   

 7 42.7209 42.7209 -42.7209 -42.7209   

1

Gk  =  
8 42.7209 42.7209 -42.7209 -42.7209  

(6.18) 
5 -42.7209 -42.7209 42.7209 42.7209  

 6 -42.7209 -42.7209 42.7209 42.7209   

 

  7 8 1 2   

 7 120.8333 0 -120.8333 0   

2

Gk  =  
8 0 0 0 0  

(6.19) 
1 -120.8333 0 120.8333 0  

 2 0 0 0 0   

j i

x 1

ij

j i

y 2

ij

x x
c cos( )

L

y y
c cos( )

L

−
≡ γ =

−
≡ γ =
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  1 2 3 4   

 1 42.7209 42.7209 -42.7209 -42.7209   

3

Gk   =  
2 42.7209 42.7209 -42.7209 -42.7209  

(6.20) 
3 -42.7209 -42.7209 42.7209 42.7209  

 4 -42.7209 -42.7209 42.7209 42.7209   

 

  5 6 3 4   

 5 120.8333 0 -120.8333 0   

4

Gk   =  
6 0 0 0 0  

(6.21) 
3 -120.8333 0 120.8333 0  

 4 0 0 0 0   

 

  1 2 5 6   

 1 0 0 0 0   

5

Gk   =  
2 0 120.8333 0 -120.8333  

(6.22) 
5 0 0 0 0  

 6 0 -120.8333 0 120.8333   

 

submatrices 
( 1)r

BB
K =   , 

( 1)r

BI
K =   , 

( 1)r

IB
K =    and 

( 1)r

II
K =    of substructure 1 can 

be assembled as: 

 

  1 2 3 4   

 1 163.5542 42.7209 -42.7209 -42.7209   

)1( =r

BBK  =  
2 42.7209 163.5542 -42.7209 -42.7209  

(6.23) 
3 -42.7209 -42.7209 163.5542 42.7209  

 4 -42.7209 -42.7209 42.7209 42.7209   

 

  5 6 7 8   

 1 0 0 -120.8333 0   

)1( =r

BIK  =  
2 0 -120.8333 0 0  

(6.24) 
3 -120.8333 0 0 0  

 4 0 0 0 0   

 

  5 6 7 8   

 5 163.5542 42.7209 -42.7209 -42.7209   

)1( =r

IIK  =  
6 42.7209 163.5542 -42.7209 -42.7209  

(6.25) 
7 -42.7209 -42.7209 163.5542 42.7209  

 8 -42.7209 -42.7209 42.7209 42.7209   

 

  1 2 3 4   

 5 0 0 -120.8333 0   

)1( =r

IBK  =  
6 0 -120.8333 0 0  

(6.26) 
7 -120.8333 0 0 0  

 8 0 0 0 0   
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After imposing the support boundary conditions, the above 4 equations become: 

 

  1 2 3 4   

 1 163.5542 42.7209 -42.7209 -42.7209   

..

)1(

cb

r

BBK
=

=  
2 42.7209 163.5542 -42.7209 -42.7209  

(6.27) 
3 -42.7209 -42.7209 163.5542 42.7209  

 4 -42.7209 -42.7209 42.7209 42.7209   

 

  5 6 7 8   

 1 0 0 0 0   

..

)1(

cb

r

BIK
=

=  
2 0 -120.8333 0 0  

(6.28) 
3 -120.8333 0 0 0  

 4 0 0 0 0   

 

  5 6 7 8   

 5 163.5542 42.7209 0 0   

..

)1(

cb

r

IIK
=

 =  
6 42.7209 163.5542 0 0  

(6.29) 
7 0 0 1 0  

 8 0 0 0 1   

 

  1 2 3 4   

 5 0 0 -120.8333 0   

..

)1(

cb

r

IBK
=

 =  
6 0 -120.8333 0 0  

(6.30) 
7 0 0 0 0  

 8 0 0 0 0   

 

The boundary and interior load vectors can be obtained as 

 

 
( 1)

1 0

2 0

3 0

4 0

r

B
F

=

 
 
 

=  
 
  

,  
( 1)

5 0

6 0

7 0

8 0

r

I
F

=

 
 
 

=  
 
  

    (6.31) 

 

After imposing the support (prescribed) boundary conditions, Eq. (6.31) becomes: 

 

 
( 1)

. .

1 12.08333

2 0

3 0

4 0

=

 
 
 
 
 
  

=r
B b cF ,  

( 1)
. .

5 12.81627

6 12.81627

7 0.1

8 0.2

=

 
 
 
 
 
  

=r
I b cF  (6.32) 

 

The effective boundary stiffness matrix, and load vector can be computed from Eqs. 

(6.12-6.13) and, and are given as 
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  3 4 1 2   

 3 163.5542 42.7209 -42.7209 -42.7209   

( 1)r

BK
=

 =  
4 42.7209 67.7463 -17.6955 -42.7209  

(6.33) 
1 -42.7209 -17.6955 67.7463 42.7209  

 2 -42.7209 -42.7209 42.7209 42.7209   

 

( 1)

12.08333

7.5076

7.5076

0

r

BF
=

 
 
 

=  
 
  

     (6.34) 

Similarly, for substructure r = 2, element stiffness matrices (in global coordinate 

references) can be computed from Eq. (6.17) as: 

 

  3 4 5 6   

 3 120.8333 0 -120.8333 0   

1

G
k   =  

4 0 0 0 0  
(6.35) 

5 -120.8333 0 120.8333 0  

 6 0 0 0 0   

 

  5 6 7 8   

 5 120.8333 0 -120.8333 0   

2

G
k   =  

6 0 0 0 0  
(6.36) 

7 -120.8333 0 120.8333 0  

 8 0 0 0 0   

 

  7 8 1 2   

 7 42.7209 -42.7209 -42.7209 42.7209   

3

G
k   =  

8 -42.7209 42.7209 42.7209 -42.7209  
(6.37) 

1 -42.7209 42.7209 42.7209 -42.7209  

 2 42.7209 -42.7209 -42.7209 42.7209   

 

  5 6 1 2   

 5 0 0 0 0   

4

G
k   =  

6 0 120.8333 0 -120.8333  
(6.38) 

1 0 0 0 0  

 2 0 -120.8333 0 120.8333   

 

submatrices 
( 2)r

BB
K =   , 

( 2)r

BI
K =   , 

( 2)r

IB
K =    and 

( 2)r

II
K =    can be assembled as: 

 

  1 2 3 4   

 1 42.7209 -42.7209 0 0   

( 2)r

BB
K

=
 =  

2 -42.7209 163.5542 0 0  
(6.39) 

3 0 0 120.8333 0  

 4 0 0 0 0   
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  5 6 7 8   

 1 0 0 -42.7209 42.7209   

( 2)r

BI
K

=
 =  

2 0 -120.8333 42.7209 -42.7209  
(6.40) 

3 -120.8333 0 0 0  

 4 0 0 0 0   

 

  1 2 3 4   

 5 0 0 -120.8333 0   

( 2)r

IB
K

=
 =  

6 0 -120.8333 0 0  
(6.41) 

7 -42.7209 42.7209 0 0  

 8 42.7209 -42.7209 0 0   

 

  5 6 7 8   

 5 241.6666 0 -120.8333 0   

)1( =r

IIK  =  
6 0 120.8333 0 0  

(6.42) 
7 -120.8333 0 163.5542 -42.7209  

 8 0 0 -42.7209 42.7209   

 

After imposing the support boundary conditions, Eqs. (6.39-6.42) become: 

 

  1 2 3 4   

 1 42.7209 -42.7209 0 0   

( 2)

. .

r

BB b c
K

=
 =  

2 -42.7209 163.5542 0 0  
(6.43) 

3 0 0 120.8333 0  

 4 0 0 0 0   

 

  5 6 7 8   

 1 0 0 -42.7209 0   

( 2)

. .

r

BI b c
K

=
 =  

2 0 -120.8333 42.7209 0  
(6.44) 

3 -120.8333 0 0 0  

 4 0 0 0 0   

 

  1 2 3 4   

 5 0 0 -120.8333 0   

( 2)

. .

r

IB b c
K

=
 =  

6 0 -120.8333 0 0  
(6.45) 

7 -42.7209 42.7209 0 0  

 8 0 0 0 0   

 

  5 6 7 8   

 5 241.6666 0 -120.8333 0   

( 1)

. .

r

II b c
K

=
 =  

6 0 120.8333 0 0  
(6.46) 

7 -120.8333 0 163.5542 0  

 8 0 0 0 1   

 

The boundary and interior load vectors of substructure r = 2 can be computed as 
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( 2)

1 0

2 0

3 0

4 4

r

B
F

=

 
 
 

=  
 
 − 

,  
( 2)

5 0

6 4

7 0

8 0

r

I
F

=

 
 − 

=  
 
  

   (6.47) 

 

After imposing the support boundary conditions, Eq. (6.47) becomes: 

 

 
( 2)

. .

1 0

2 4

3 12.81627

4 12.81627

r

B b c
F

=

 
 − 

=  
− 
 − 

,  
( 2)

. .

5 0

6 4

7 12.81627

8 0.3

r

I b c
F

=

 
 − 

=  
 
  

 (6.48) 

 

Applying Eqs. (6.12-6.13), the effective boundary stiffness matrix, and load vector 

can be computed as: 

 

  1 2 3 4   

 1 25.0254 -25.0254 -25.0254 0   

( 2)r

BK
=

 =  
2 -25.0254 25.0254 25.0254 0  

(6.49) 
3 -25.0254 25.0254 25.0254 0  

 4 0 0 0 0   

 

 
( 2)

7.5074

4

7.5074

3.5074

r

BF
=

 
 − 

=  
− 
  

     (6.50) 

 

The overall (system) effective boundary load vector, and stiffness matrix can be 

assembled as: 

 

19.5907

3.5076

0.0002

3.5074

B
F

 
 
 

=  
 
  

      (6.51) 

 

  1 2 3 4   

 1 92.7711 17.6955 -67.7463 -17.6955   

( 2)r

BK
=

 =  
2 17.6955 67.7463 -17.6955 -42.7209  

(6.52) 
3 -67.7463 -17.6955 188.5796 42.7209  

 4 -17.6955 -42.7209 42.7209 67.7463   
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All boundary displacements can be solved from Eq. (6.16) as: 

 

  

3 0.133

4 0.054

1 0.089

2 0.098

B
z

 
 
 

=  
 
  

      (6.53) 

 

The interior displacements of each substructure can be recovered from Eq. (6.11) 

 

 
( 1)

1 0.089

2 0.098

3 0.133

4 0.054

r

B
z

=

 
 
 

=  
 
  

 
( 1)

5 0.121

6 0.085

7 0.1

8 0.2

r

I
z

=

 
 
 

=  
 
  

  (6.54) 

 

 
( 2)

1 0.133

2 0.054

3 0.089

4 0.098

r

B
z

=

 
 
 

=  
 
  

 
( 2)

5 0.165

6 0.065

7 0.198

8 0.3

r

I
z

=

 
 
 

=  
 
  

  (6.55) 

 

6.3 Imposing Boundary Conditions on “Rectangular” Matrices 
( )r

BI
K    

 

Imposing the Dirichlet boundary conditions on the “square” substructuring stiffness 

matrices 
( 1)

. .

r

BB b c
K =    and 

( 1)

. .

r

II b c
K =    (see Eqs. 6.27,6.29) are rather straight 

forward, especially this topic has already been explained with great details in 

Chapters 1 and 4. Thus, the following paragraphs are intended to explain how to 

impose the Dirichlet boundary conditions on the rectangular (in general) 

substructuring stiffness matrix 
( 1)

. .

r

BI b c
K =   , such as the one shown in Eq. (6.28). To 

facilitate the discussions, let’s consider the entire stiffness matrix of the first 

substructure (r=1), as shown in Figure 6.3 
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( 1)rK =  = 

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37 38

41 42 43 44 45 46 47 48

51 52 53 54 55 56 57 58

61 62 63 64 65 66 67 68

71 72 73 74 75 76 77 78

81 82 83 84 85 86 87 88

K K K K K K K K

K K K K K K K K

K K K K K K K K

K K K K K K K K

K K K K K K K K

K K K K K K K K

K K K K K K K K

K K K K K K K K



















 
 
 
 
 

B

BBBB

B

B

B

I

IIII

I

I

I

 

BB BI

IB II

K K

K K

 
=  
 

  

 

 

(6.56) 

Since the Dirichlet boundary conditions are imposed on the 7
th

 & 8
th

 degree-of-

freedom, Eq. (6.56) becomes: 

 

( 1)

. .

r

b c
K =  = 

 

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

× × × × × × 
 × × × × × × 
 × × × × × ×
 

× × × × × × 
 × × × × × ×
 

× × × × × × 
 
 
  

BB BI

IB II

K K

K K

 
=  
 

 

 

(6.57) 

Thus  

 

. .

( 1)= 
  =

b c

r
BIK  

0 0

0 0

0 0

0 0

× × 
 × × 
 × ×
 
× × 

B

B

B

B

IIII

 

 

(6.58) 

 

It should be noted that Eq. (6.28) has the same form (last 2 columns) as Eq. (6.58) 



Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions 

 
410

6.4 How to construct Sparse Assembly of “Rectangular” Matrix 
( )r

BI
K    

 

The numerical procedures for finite element sparse assembly of the rectangular 

matrix 
( )r

BI
K    can be summarized in the following 2-step procedures: 

 

Step 1: For each r
th

 substructure, identify how many and which finite elements will 

have contributions to both Boundary & Interior nodes (assuming there are 2 

dof per node, and 3 nodes per element). Also, assuming there are 6 

boundary nodes, and 8 interior nodes in the r
th

 substructure. 

  At the end of step 1, say elements 5, 10 and 11 are recorded. Also, 

assuming the element nodes connectivity are: 

   

El. # node-i node-j node-k 

5 6 = B 1 = B 8 = I 

10 5 = B 6 = B 9 = I 

11 1 = B 13 = I 11 = I 

 

  Note: B ≡ Boundary node, if  ≤ node 6. I ≡ Interior, if > node 6. 

 

Step 2: Based on the information provided by step 1, one obtains: 

 

  I.Node1 

(=7-6) 

I.Node2 

(=8-6) 

3 4 5 6 7 

(=13-6) 

8 

(=14-6) 

 B.Node1  1,2 

7,8 

  5,6 

11,12 

 3,4 

9,10 

 

 B.Node2         

KBI=              3         

             4         

             5         

             6         

 

The above table, obtained for KBI , can be generated by the following “pseudo” 

FORTRAN algotihms : 

 

icount = 0 

Do loop 

 J = Boundary Node 1 

 El. 5 = [6, 1, 8] � B. node has coupling with I. node 2 (= 8-6) � icount = 1 

 El. 10 = [5, 6, 9] � B. node 1 has no coupling with element 10. 

 El. 11 = [1, 13 11] � B. node 1 has coupling 

    with I. node 7 (= 13-6) � icount = icount+1 = 2 

    with I. node 5 (=11-6). Hence, icount = 3 

 so: IEbi(1) = 1                  (6.59) 

  IEbi(2) = IEbi(1)+(icount = 3)*(ndofpn=2)
2
 = 13              (6.60) 
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  JEbi = {columns 3, 4, 13, 14, 9, 10, 3, 4, 13, 14, 9, 10 }             (6.61) 

 

 J = Boundary Node 2 

 El. 5 = [6, 1, 8] � Boundary node 2 has no coupling with El. 5 

 El. 10 = [5, 6, 9] � Boundary node 2 has no coupling with El. 10 

 El. 11 = [1, 13 11] � Boundary node 2 has no coupling with El. 11 

 

Enddo 

 

Remarks: 

 

In Eq. (6.61), column numbers 3, 4, 13, 14, 9, 10 are repeated again, the reason is 

because each node is assumed to have 2 dof. 

 

6.5 Mixed Direct-Iterative Solvers for Domain Decomposition 
 

Using the domain decomposition (D.D.) formulation, one first needs to solve the 

unknown boundary displacement vector 
B

z
uur

 from Eq. (6.16). However, the assemble 

process for obtaining the effective boundary stiffness matrix 
B

K  (see Eq. (6.14)) 

will require the computation of the triple matrix products of 
1

( ) ( ) ( )

BI IB

r r r

II
K K K

−
    

(for each r
th

 substructure), as indicated in Eq. (6.12). For large-scale-applications,  

Eq. (6.12) is both computational and memory intensive, since the related system of 

linear equations has a lot of right-hand-side vectors. Thus, forward and backward 

solution phases need be done repeatedly. Furthermore, although each individual 

matrices 
( )r

BI
K   , 

( )r

II
K    and 

( )r

IB
K    can be sparse, the triple products of 

1
( ) ( ) ( )

BI IB

r r r

II
K K K

−
    is usually dense, and therefore, a lot of computer memory is 

required. For the above reasons, mixed direct-iterative solver is suggested for solving 

Eq. (6.16). 

 

Preconditioning Matrix 

 

Consider the linear system [A] x b=
rr

 , where the matrix [A] is assumed to be 

symmetric positive definite (SPD). If the solution vector x
r

 is sought by an iterative 

solver, then one normally prefers to improve the condition number of the coefficient 

matrix (=
max

min

λ

λ
= ratio of largest over smallest eigen-values of the coefficient matrix) 

by the “preconditioning process” as described in the following paragraphs : 

 

Option 1 (Symmetrical property is preserved) 

 

Let P be a preconditioning matrix, which is assumed to be non-singular. Then PAP
T
 

is SPD. Instead of solving [A] x b=
rr

 , one solves : 
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T T

Identity Matrix

[P A P ]*{P x} [P]b− =
rr

14243
 

or 

 [A ]*{y} {b }∗ ∗=
uurr

 

 

where : 

 
T[A ] [P A P ] symmetrical matrix∗ ≡ =  

 { }T Ty P x ; hence x [P ] y−≡ =
r r r r

 

 b [P]b∗ ≡
uur r

 

 

The preconditioner [P] should be selected so that : 

1. Matrix [A ]∗
 will have better condition number than its original matrix [A]. 

2 Matrix [P] should be “cheap” to factorize. 

 

As an example, the Cholesky factorization of [A] can be obtained as : 

 
T[A] [U] [U]=  

 

where [U] is an upper triangular, factorized matrix. 

 

Suppose one selects 
T[P] U−= , then : 

 
T T T 1A P[A]P U [U U]U [I]∗ − −≡ = =

14243123
 

The condition number of 
max

min

1.0
[A ] 1

1.0

∗ λ
= = =

λ
 

 

Therefore, the Conjugate Gradient method, when applied to [A I]y b∗ ∗= =
uurr

 will 

converge in 1 iteration. However, in this case it is “too expensive” to factorize [P] ! 

The compromised strategies will be : 

 
T

a[P] [U ]−=  

 

where a[U ] ≡  inexpensive approximation of [U], and the amount of fill-in terms 

occurred in a[U ]  can be controlled (or specified) by the user. Various strategies for 

“incomplete Cholesky factorization” have been suggested to obtain a[U ]  for 

preconditioning purposes. The original CG, and its PCG algorithms are summarized 

in the following section : 
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CG Without Preconditioner CG With Preconditioner 

Solving [A]x b=
r r

 Solving [A ]y b∗ ∗=
uurr

 

Given an initial guess 
(0)x

r
 Given 

(0)x
r

 

 Compute incomplete factor [P]  

Compute initial residual 
(0) (0)r b A x= −

rr
 

Compute 

{ }(0) T (0)r P b P A P x = −  
r r

 

Set 
(0)

1d 0 ; 1−= ρ =
r

 Set 
(0)

1d 0 ; 1−= ρ =
r

 

DO i=1, 2, ... DO i=1, 2, ... 

{ } { }
T

(i 1) (i 1)
i 1 r r− −
−ρ =  { } { }

T
(i 1) (i 1)

i 1 r r− −
−ρ =  

i 1
i 1

i 2

−
−

−

ρ
β =

ρ
 i 1

i 1
i 2

−
−

−

ρ
β =

ρ
 

(i) (i 1) (i 1)
i 1d r d− −
−= + β  

(i) (i 1) (i 1)
i 1d r d− −
−= + β  

(i) (i)q [A]d=  
(i) T (i)q [P A P ]d=  

{ } { }
i 1

i T
(i) (i)d q

−ρ
α =  

{ } { }
i 1

i T
(i) (i)d q

−ρ
α =  

(i) (i 1) (i)
ix x d−= + α  

(i) (i 1) (i)
ix x d−= + α  

(i) (i 1) (i)
ir r q−= − α  

(i) (i 1) (i)
ir r q−= − α  

Converge ?? Converge ?? 

END DO END DO 

 If converged, then set 
Tx [P] x=

r r
 

 

Option 2 (Symmetrical property may be destroyed) 

 

Instead of solving [A]x b=
r r

 , one solves : 

 
1 1[P] [A]x [P] b− −=

r r

14243 123
 

or 

 { }[A ]x b∗ ∗=
uur

r
 

 

where : 

 
1[A ] [P] [A] may NOT be symmetrical∗ −≡ =  
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 { } 1b [P] b∗ −≡
uur r

 

 

This formulation is simpler than the one discussed in Option 1. However, [A ]∗
 may 

NOT be a symmetrical matrix. 

 

Remarks 

 

1. If the original matrix [A] is unsymmetrical, then this Option 2 may be a 

preferable choice. 

 

2. If one selects [P] [A]= , then [A ] [I]∗ =  and the iterative solver will 

converge in 1 iteration. 

 

In Table 6.1, Preconditioned Conjugate Gradient (PCG) algorithm for  

solving system of symmetrical linear equations [ ]A x b=
r r

, with the preconditioned 

matrix [B] is summarized. 

 

Table 6.1: Preconditioned Conjugate Gradient Algorithm For Solving [ ]A x b=
r r

 

 

 Step 1: Initialized 0
o

x =
uur r

 

 Step 2: Residual vector 
o

r b=
ur r

(or 0o
r b Ax= −
ur r uur

, for “any” initial guess 
o

x
uur

) 

 Step 3: “Inexpensive” preconditioned [ ]
1

0 0z B r
−

= ⋅
uur ur

 

 Step 4: Search direction 0 0d z=
uur uur

 

 For i = 0, 1, 2, …, maxiter 

  Step 5: 
{ }

T

i i
i T

i i

r z

d A d
α =

⋅
 

  Step 6: 1+ = +
i i i i

x x dα  

  Step 7: [ ]1i i i ir r Adα+ = −  

  Step 8: Convergence check: if 1 0ir r ε+ < ⋅  � stop 

  Step 9: 
1

1 1i i
z B r

−

+ +=  

  Step 10: 
1 1

T

i i
i T

i i

r z

r z
β + +=  

  Step 11: 1 1i i i i
d z dβ+ += +  

 End for 
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6.6 Preconditioned Matrix For PCG Algorithm with DD Formulation 

 

The difficulty in constructing an efficient preconditioned matrix [B] in conjunction 

with PCG algorithm with D.D. formulation is compounded by the fact the coefficient 

matrix ( )1( )
( ) ( ) ( ) ( )

1 1

NSU NSU
r

r r r r

B B BB BI II IB

r r

K K K K K K
−

= =

   = = −    ∑ ∑  has not been 

assembled explicitly. In other words, how can we construct a preconditioned matrix 

[B] when the original coefficient matrix 
B

K 
   has not even been formed? Even the 

most simple “diagonal preconditioned” scheme, one still has to introduce “some 

approximation” about 
B

K 
  . The following 2 options are possible for 

considerations : 

 

 Option 1: let [ ] ( )

,

1

NSU
r

B BB Diag

r

B K K
=

 ≈ ≈  ∑     

  

 

 Option 2: For the preconditioned purpose only, approximate: 

   
( ) ( )   ≈   
r r

II II
K diagonal of K     

  

  Hence 
1

( )r

II
Approx

K
−

    is inexpensive, and  

   [ ] ( )1
( ) ( ) ( ) ( )

,

1

NSU
r r r r

B BB Diag BI II IBApprox
r

B K K K K K
−

=

   ≈ ≈ −    ∑  

 

In Table 6.2, the corresponding 11-step procedure for Pre-conditioned Conjugate 

Gradient Algorithm within the context of Domain Decomposition (DD) formulation 

is summarized. 

 

Table 6.2: Pre-conditioned Conjugate Gradient D.D. Algorithm For solving 

B B B
K z f  = 

uur uur
 

Initialized Phase 

 Step 1: 0=
uur r

iBz  

 Step2: Residual vector 

( )

1
i

NSU
r

i B B B B

r

r f K z f
=

= − = ∑
ur uur uuur uuur uur

 or 

     ( )1
( ) ( ) ( ) ( )

1

NSU
r r r r

i B BI II I

r

r f K K f
−

=

 = −  ∑
ur

 

     DO 2   r=1,NSU (in parallel computation) 
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  Step 2.1: Direct sparse solver F/B solution with 1 RHS interior load  

        vector 

    
1

( ) ( )

1

r r

II I
T K f

−
 = ⋅ 

ur
 

  Step 2.2: Sparse matrix times vector 

    
( )

2 1

r

BI
T K T= ⋅
uur ur

 

  Step 2.3: Compute sub-domain residual 

    
( )

1 2

r

B
T f T= −
ur uur

 

  Step 2.4: Insert sub-domain residual into proper location of 
i

r
ur

 

   

  The partial resulted vector 1T
ur

 from each processor will be sent to the 

Master processor, together with the mapping information about local-

global boundary dofs. 

  Receive & Copy 
( )

1

r

i
r T=
ur ur

, by the Master Processor. 

  2 Continue 

 Step 3: “Inexpensive” preconditioning, by the Master Processor. 

   [ ]
1

i i
z B r

−
= ⋅

ur ur
 

 Step 4: Search direction, by the Master Processor. 

   
i i

d z=
uur ur

 

 

Iteration loop begins (for i = 0, 1, 2, …, maxiter) 

 Step 5: Compute scalar 

{ }

T

i i
i

T

i B i

r z

d K d
α =

  ⋅ 

 

  Step 5.1: 
T

i i
up r z= ⋅ , by the Master Processor 

  Master Processor broadcasts 
i

d
uur

 to all other processors 

   

  Step 5.2: compute  

  

 ( )1( ) ( ) ( ) ( ) ( )

1 1

NSU NSU
r

r r r r

B i B i BB BI II IB i

r r

K d K d K K K K d
−

= =

 
 ⋅ = ⋅ = − ⋅   

 
∑ ∑

uur uur uur
 

 

              DO 5   r=1,NSU (in parallel computation) 

    Step 5.2a: Sparse matrix times vector 

     
( )

1

r

IB i
T K d= ⋅
ur uur

 

    Step 5.2b: Direct sparse solver F/B with 1 RHS vector 

     
1

( )

2 1

r

II
T K T

−
 = ⋅ 

uur ur
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    Step 5.2c: Sparse matrix times vector 

     
( )

1 2

r

BI
T K T= ⋅
ur uur

 

    Step 5.2d: Sparse matrix times vector 

     
( )

2

r

BB i
T K d= ⋅
uur uur

 

    Step 5.2e: 

     2 2 1T T T= −
uur uur ur

 

    Step 5.2f: Put vector 2T
uur

 into proper location of 

     
B i

K d stored  ⋅ = 

uuuuuur
 

    Each processor will send its own 2T
uur

 to the Master Processor. 

   5 Continue 

   The following steps will be done by the Master Processor. 

 

    Step 5.2g: Received vectors 2T
uur

 (from each processor) and 

    assembled vector stored
uuuuuur

. Then, compute: 

     
i

down d stored= ⋅
uur uuuuuur

 

     
i

up

down
α =  

  

 Step 6: Compute new, improved solution 

   
1+

= +
uuuur uuur uur

ii i iB Bz z dα  

  

 Step 7: Compute new residual vector 

   1i i i
r r storedα+ = − ⋅
uur ur uuuuuur

 

 

 Step 8: Convergence check: 

   0, 0norm
r r=

ur
 

   1, 1i norm i
r r+ +=

uur
 

   Iteration steps will stop when 1, 0,i norm norm
r rε+ < ⋅ . Where ε is user 

input parameter 

 

 Step 9: “Inexpensive” preconditioning 

   [ ]
1

1 1i i
z B r

−

+ += ⋅
uuur uur
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 Step 10: Compute 
1 1

T

i i
i T

i i

r z

r z
β + +=  

   1 1

T

i i
up r z+ +=  

   
T

i i
down r z=  

   
i

up

down
β =  

 

 Step 11: New search direction 

   1 1i i i i
d z dβ+ += +
uuur uuur uur

 

 

Based upon the “primal” DD formulation, discussed in Sections 6.1-6.6, the 

MPI/Fortran software package DIPSS (Direct Iterative Parallel Sparse Solver) has 

been developed to solve few large scale, practical engineering problems which are 

summarized in the following paragraphs: 

 

Example 1 – Three dimensional acoustic finite element model. In this example, 

DIPSS is exercised to study the propagation of plane acoustic pressure waves in a  

3-D hard wall duct without end reflection and airflow. 

 

QQ

1

2

3
2

3

2

3

MM

z

y

xNN




 
 

Figure 6.6: Finite element model for a three-dimensional hard wall duct 
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The duct is shown in Figure 6.6 and is modeled with brick elements. The source and 

exit planes are located at the left and right boundary, respectively. The matrix, K, 

contains complex coefficients and the dimension of K is determined by the product 

of NN, MM, and QQ (N=MMxNNxQQ). Results are presented for two grids 

(N=751,513 and N=1,004,400) and the finite element analysis procedure for 

generation the complex stiffness matrix, K, was presented in Reference [6.2]. 

 

DIPSS [Ref. 6.3] memory and wallclock statistics were also compared to those 

obtained using the platform specific SGI parallel sparse solver (i.e., ZPSLDLT). 

These statistics were computed on an SGI ORIGIN 2000 computer platform that was 

located at the NASA Langley Research Center. The SGI platform contained 10 

gigabytes of memory and eight ORIGIN 2000 processors were used. It should be 

noted that the ZPSLDLT is part of the SCSL library (version 1.4 or higher) and is 

considered to be one of the most efficient commercialized direct sparse solvers that 

is capable of performing complex arithmetic.  Due to the 3-D nature of hard wall 

duct example problem, K encounters lots of fill-in during the factorization phase. 

Thus, only the small grid (N=751,513) could fit within the allocated memory on the 

ORIGIN~2000. ZPSLDLT required 6.5 wallclock hours to obtain the solution on the 

small grid whereas DIPSS wallclock was only 2.44 hours. DIPSS also required 

nearly 1 gigabyte less memory than ZPSLDLT, and the DIPSS and ZPSLDLT 

solution vector were in excellent agreement. 

 

Because DIPSS uses MPI for interprocess communications, it can be ported to other 

computer platforms. To illustrate this point the DIPSS software was ported to the 

SUN 10000 platform at Old Dominion University and used to solve the large grid 

duct acoustic problem (N=1,004,400). Wallclock statistics and speedup factors were 

obtained using as many as 64~SUN~10000 processors. Results are presented in 

Table 6.3. It should be noted that a superlinear speedup factor of 85.95 has been 

achieved when 64 SUN 10000 processors are used. This super-linear speedup factor 

is due to two primary reasons: 

 

1. The large finite element model has been divided into 64 sub-domains. Since 

each processor is assigned to each smaller subdomain, the number of 

operations performed by each processor has been greatly reduced. Note that 

the number of operations are proportional to ( )
3

( )rn  for the dense matrix, 

or 
( ) 2r

n BW⋅  for the banded, sparse matrix, where BW represent the half 

Band Width of the coefficient stiffness matrix. 

 

2. When the entire finite element model is analyzed by a direct, conventional 

sparse solver, more computer “paging” is required due to a larger problem 

size. 
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Table 6.3 : Performance of DIPSS software for 3-D hard wall duct  

(N=1,004,400 complex equations) 

 
# Processor (SUN 

10000@ODU) 

1 2 4 8 16 32 64 

Sparse Assembly Time 

(seconds) 

19.38 10.00 5.08 2.49 1.26 0.70 0.27 

Sparse Factorization 

(seconds) 

131,229 58,976 26,174 10,273 3,260 909 56 

Total time (entire FEA) 131,846 61,744 27,897 11,751 3,817 1,967 1,534 

Total Speed-Up Factor 1.00 2.14 4.73 11.22 34.54 67.03 85.95 

 

Examples 2 – Three dimensional structural bracket finite element model. The 

DD formulation has also been applied to solver the 3-D structural bracket problem 

shown in Figure 6.7. The finite element model contains 194,925 degrees of freedom 

(N=194,925) and the elements in the matrix, K, are real numbers. Results were 

computed on a cluster of 1-6 personal computers (PCs) running under Windows 

environments with Intel Pentium. It should be noted that the DIPSS software was not 

ported to the PC cluster, but the DD formulation was programmed (from scratch, in 

C
++

) on the PC cluster processors [6.3]. 



Duc T. Nguyen 

 

421

 

 
Figure 6.7: Finite element model for a three-dimensional structural bracket 
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The wallclock time (in seconds) to solve this example is documented in Table 6.4. A 

superlinear speedup factor of 10.35 has been achieved when 6 processors were used. 

 

Table 6.4: 3-D Structural bracket model (194,925 dofs, K= real numbers) 

 
# Processor (Intel PC @ ASU) 1 2 3 4 5 6 

Total Walll Clock Time (seconds) 2,670 700 435 405 306 258 

Total Speed-Up Factor (seconds) 1.00 3.81 6.14 6.59 8.73 10.35 

 

6.7 Generalized Inverse 

 

First, let us consider some key concepts of the generalized inverse. Given a matrix 
m nA R ×∈ , 

n mA R+ ×∈  is called the generalized inverse of A if 

 

 
m n n m m n m n

A A A A
+

× × × ×=      (6.62) 

 

Now, given the system of linear equations 

 1 1n mm n
A x b× ×× =

r r
     (6.63) 

with b ∈
r

Range of A ( b
r

 is a linear combinations of independent columns of A), the 

solution(s) of Eq. (6.63) can be given in the form 

 ( )1 1 1n mn m n n n m m n n
x A b I A A y+ +

× ×× × × × ×= + −
r r ur

  (6.64) 

for 
ny R∈

ur
 

 

Proof 

 

To prove that Eq. (6.64) is the solution of Eq. (6.63), one starts with pre-multiplying 

both sides of Eq. (6.64) with A, thus: 

 ( )+ += + −
r r ur

Ax AA b A I A A y     (6.65) 

 

From the definition given by Eq. (6.62), one has 

 ( )0 0A AA A A I A A+ += − = − =    (6.66) 

 

Utilizing Eq. (6.66), Eq. (6.65) becomes: 

 Ax AA b
+=

r
      (6.67) 

 

Also, pre-multiplying both sides of Eq. (6.63) by AA+
, one obtains: 

 ( )AA Ax AA b
+ +=

r
     (6.68) 


