Chapter 11.01: Fourier Series

In general, curve fitting interpolation through a set of data points can be done by a linear combination of polynomial functions, with based functions 1,
[image: image955.wmf])

(

4

k

f
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will be used as based functions. In the former, the unknown coefficients of based functions can be found by solving the associated linear simultaneous equations (where the number of unknown coefficients will be matched with the same number of equations, provided by a set of given data points). In the latter, however, the unknown coefficients can be efficiently solved (by exploiting special properties of trigonometric functions) without requiring to solve the expensive simultaneous linear equations.

More detailed explanation (including a simple example) about the above statements are presented in later (in Equation 11.65A). Practical Civil Engineering applications of Fourier Series (using Fast Fourier Transformation algorithms) will be discussed with great details in chapter 11.0?

11.1 Background

The following relationships can be readily established, and will be used in subsequent sections for derivation of useful formulas for the unknown Fourier coefficients, in both time and frequency domains.
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In Eqs (11.1 – 11.5), one has 
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where f and T represents the frequency (in cycles/time) and period (in seconds) respectively. Also, k and g are constants.
A periodic function 
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 with a period T should satisfy the following equation
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Proof of Equation (11.1)

Let 
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Proof of Equation (11.2)

Let 
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Since 
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Hence 
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Thus: 
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Proof of Equation (11.3)

Let 
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Recall:
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Hence:
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Adding Equations (11.8, 11.9), side by side one obtains
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2C = 0, since the right side of the above equation is zero (see Equation 11.1). Thus,
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Proof of Equation (11.4)

Let 
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Since 
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or 
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(see Equation (11.1))

Adding Equations (11.10, 11.11) side by side, one obtains:
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2D = 0, since the right side of the above equation is zero (see Equation 11.1). Thus,
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Proof of Equation (11.5)

Equation (11.5) can be proved in a same fashion as the proof for Equation (11.4)

11.2 Continuous Fourier Series
For a function with period T, a continuous Fourier series can be expressed as
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The unknown Fourier coefficients 
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Thus, 
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can be interpreted as the “average” function value between the period interval [0,T].
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(A) Derivation of formulas for 
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Integrating both sides of Equation (11.12) with respect to time, one gets


[image: image39.wmf]ò

ò

ò

å

ò

å

¥

=

¥

=

+

+

=

T

T

T

k

T

k

k

k

dt

t

kw

b

dt

t

kw

a

dt

a

dt

t

f

0

0

0

1

0

1

0

0

0

)

sin(

)

cos(

)

(





(11.16)

The second and third terms on the right hand side of the above equations are both zeros, due to earlier results stated in Equation (11.1)

Thus:
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        (11.13, repeated)

Now, if both sides of Equation (11.12) are multiplied by 
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and then integrated with respect to time, one obtains:
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Due to Equations (11.1, 11.3), the first and second terms on the right hand side (RHS) of Equation (11.17) are zero.

Due to Equation (11.4), the third RHS term of Equation (11.17) is also zero, with the exception when k = m, which will become (by referring to Equation 11.2):
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        (11.15, repeated)

Similar derivation can be used to obtain
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a

, as shown in Equation (11.14)

(B) A Fortran Program for finding Fourier Coefficients 
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Based upon the derived formulas for 
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 (shown in Equations 11.13-11.15, respectively), a FORTRAN computer program has been developed (refer to Table 11.1 for a complete source code listing). Major description of the Fourier program can be summarized as

(a) Input Descriptions (See Example 11.2, including a sketch of a given periodic function)

The following input information is required in the input data file:

. Period = 2π (assumed); nterms=8 (assumed, for 
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and 
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. nsegments = 3 (to determine the given periodic function)

. integration limits for all 3 segments = 
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. descriptions of given periodic function in each segment, defined in subroutine_f

function = 
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(b) Output Descriptions: (See Example 11.2)
The numerical values of the unknown Fourier Coefficients 
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 will be printed.

Example 11.1
Using the continuous Fourier series to appropriate the following periodic function (T = 2( seconds); shown in Figure 11.1
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Figure 11.1 A Periodic Function (Between
[image: image63.wmf]p

2

0

and

)


[image: image64.wmf]î

í

ì

<

£

£

<

=

p

p

p

p

2

0

)

(

t

for

t

for

t

t

f


Solution:
The unknown Fourier coefficients 
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 and 
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 can be computed based on Equations (11.13 – 11.15); as following:
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The “integration by part” formula can be utilized to compute the first integral on the right-hand-side of the above equation.

For 
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Any periodic function 
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Figure 11.2 Fourier Approximated Functions (for Example 11.1)

It can be observed from Figure 11.2 that as more terms are included in the Fourier series, the approximated Fourier functions are more closely resemble the original periodic function (shown in Figure 11.1)!
Example 11.2

The periodic triangular wave function 
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Find the Fourier coefficients 
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Solutions:

The unknown Fourier Coefficients 
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Similarly,
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The “integration by part” formula can be utilized to compute the second integral on the right-hand-side of the above equations for 
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	-0.63661936

	2
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	-0.49999932
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	0.00
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The periodic function (shown in Example 11.2) can be approximated by Fourier series as:
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Thus, for k = 1, one obtains:
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Plots for functions 
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are shown in Figure 11.6.
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Figure 11.6 Fourier Approximated Functions (for Example 11.2)
It can be observed from Figure 11.6 that as more terms are included in the Fourier series, the approximated Fourier functions are more closely resemble the original periodic function!

(C) Complex Form of the Fourier Series:

Using Euler’s identity, the sine and cosine can be expressed in the exponential form as:
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Thus, the Fourier series (expressed in Equation11.12) can be casted in the following form:
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or
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Define the following constants:
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Hence:
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Using the even, odd properties shown in Equations (11.14, 11.15), respectively,

Equation (11.24) becomes:
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            (11.25)

Substituting Equations (11.22, 11.23, 11.25) into Equation (11.21), one gets:
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The coefficient 
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 can be computed, by substituting Equations (11.14, 11.25) into Equation (11.23) to obtain:
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or 
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Substituting Equations (11.18, 11.19) into the above equation, one gets:
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Thus, Equations (11.26, 11.28) are the equivalent complex version of Equations (11.12-11.15).

Chapter 11.02: Fourier Transform Pair: Frequency and Time Domain.

In chapter 11.01, Fourier approximations were expressed in the time domain. The amplitude (vertical axis) of a given periodic function can be plotted versus time (horizontal axis), but it can also be plotted in the frequency domain as shown in Figure 11.2.
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Figure 11.2 Periodic Function (see Example 11.1) In Frequency Domain.

The advantages of plotting the amplitude of a given periodic function in frequency domain (instead of time domain) are due to the following reasons:

1. For a specific value “k” (say k=2) of the Fourier series in the time domain, one has to plot the entire curve to observe the amplitude of a given periodic function [recalled 
[image: image161.wmf])
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, in Example 11.1]. However, in the frequency domain, the amplitude can be plotted as a single point. [See Figure 11.2a].
2. In the frequency domain, one can easily identify which frequency (or corresponding to which value of “k”) contributes the most to the amplitude [See Figure 11.2a], where such information is not readily available if time domain is used.
3. From the amplitude plot in frequency domain [see Figure 11.2a], one can easily identify that contributions to the amplitude beyond the 8th frequency (or  k>8) are not significant any more.
In real-life structural dynamics problems, such as the dynamical (time-dependent) response of a (building) structure subjected to oscillated loads (for example, the operational machines attached to the structures), the displacement superposition method is often used to predict the (time dependent) displacement response of the structure. This method basically transforms the original (large, coupled) equation of motion into a reduced (much smaller size, un-coupled) equation of motion by making use of the few free vibration mode shapes and its associated frequencies. Knowledge of which frequencies (and the corresponding mode shapes) that have the most contribution to the predicted dynamical response (such as nodal displacement response) plays crucial roles for the algorithms’ efficiencies.
Detailed explanations on how to obtain Figures 11.2 (a), and 11.2 (b) are now presented in the following sections.

Explanation of Figures 11.2(a) and 11.2(b)
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For the periodic function shown in Example 11.1 (or Figure 11.1), one has:
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Using the following Euler identities
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Hence, one obtains (noting that 
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Also, since:
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From Equation (11.23), one has:
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(11.23, repeated)

Hence; upon comparing the above 2 equations, one concludes:
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(based on the above 2 formulas) are exactly identical as the ones presented earlier in Example 11.1
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In general, one has:
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(b) Representation of a complex number in polar coordinates
In Cartesian Coordinates, a complex number 
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can be expressed as:
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represents the Real and Imaginary components of 
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In Polar Coordinates, a complex number 
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where A and 
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represents the amplitude and phase angle of 
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, respectively.
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Thus, one obtains the following relations between the Cartesian and Polar coordinate systems:
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Based on the above 3 formulas, the complex numbers 
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Hence, the amplitude 
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 and Phase angle 
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 for 
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 are 0.59272353, and 2.13770783 radians, respectively.

The readers should refer to Figures 11.2(a) and 11.2(b) to confirm the plotted values.

Important Notes
If one uses the formula:
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However, the other formula for 
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gives:
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Since 
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Similarly, one obtains:
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In summary, the given periodic function (shown in Example 11.1) can also be expressed in complex number formats, in polar coordinate with the amplitudes and phase angles given in the following table [also refer to Figures 11.2(a), and 11.2(b)].
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Non-Periodic Function
Recall that a periodic function can be expressed in terms of the exponential form, accordingly to Equations (11.26, 11.28) as 
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        (11.26, repeated)


[image: image245.wmf]þ

ý

ü

î

í

ì

´

÷

ø

ö

ç

è

æ

=

ò

-

T

t

ikw

k

dt

e

t

f

T

C

0

0

)

(

1

~







        (11.28, repeated)

Define the following function
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where 
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Then, Equation (11.28) can be written as
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            (11.30)

And Equation (11.26) becomes
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                        (11.31)

A non-periodic function 
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can be considered as a periodic function, with the period 
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From Equations (11.6-11.7), one gets
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            (11.32)
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Figure 11.3 : Frequency are Discretized.

From Equation (11.31), one obtains
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            (11.33)

In the above equation, the subscript 
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np

denotes non-periodic function.

or,
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Realizing that 
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 (See Figure 11.3), the above equation becomes:
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Multiplying and dividing the right-hand-side of the equation by 
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, one obtains
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Using the definition stated in Equation (11.29), one has


[image: image265.wmf]ò

¥

¥

-

-

=

)

(

)

(

)

(

0

0

t

d

e

t

f

iw

x

t

iw

np

; Fourier transform 




(11.37)

Thus, Equations (11.37, 11.36) will transform a non-periodic function from time domain to frequency domain, and from frequency domain to time domain, respectively.

Chapter 11.03: Discrete Fourier Transform.
Recalled the exponential form of Fourier series (see Equations 11.26, 11.28), one gets:
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        (11.26, repeated)
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        (11.28, repeated)

While the above integral can be used to compute 
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, it is more preferable to have a discretized formula version to compute
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. Furthermore, the Discrete Fourier Transform (or DFT) will also facilitate the development of much more efficient algorithms for Fast Fourier Transform (or FFT), to be discussed in Chapter 11.04.

If time “t” is discretized at 
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Then Equation (11.26) becomes:
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To simplify the notation, define
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Then, Equations (11.38) can be written as
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In the above formula, “n” is an integer counter. However, 
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Multiplying both sides of Equation (11.40) by
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or
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Switching the order of summations on the right-hand-side of Equation (11.43), one obtains:
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Define:
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There are 2 possibilities for (k-l) to consider in Equation (11.45)

Case(1): (k-l) is a multiple integer of N, such as:


   (k-l)=mN; or k=l+mN where 
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Thus, Equation (11.45) becomes:
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(11.46)

Hence:

A=N









            (11.47)

Case(2): (k-l) is NOT a multiple integer of N

In this case, from Equation (11.45) one has:
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Define:
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Then, Equation (11.48) can be expressed as:


[image: image286.wmf]å

-

=

=

1

0

N

n

n

a

A










            (11.51)

From mathematical handbooks, the right side of Equation (11.51) represents the “geometric series”, and can be expressed as:
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Because of Equation (11.50), hence Equation (11.53) should be used to compute A. Thus:
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Since (k-l) is still a multiple of 
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Substituting Equation (11.55) into Equation (11.54), one gets:

A=0
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Thus, combining the results of case (1) and case (2), one gets (see Equations 11.47 and Equation 11.56):

A=N+0=N








            (11.57)

Substituting Equation (11.57) into Equation (11.45), and then referring to Equation (11.44), one gets:


[image: image294.wmf]å

å

-

=

-

=

-

´

=

1

0

1

0

~

)

(

0

N

k

k

N

n

n

ilw

N

C

e

n

f








         (11.57A)

Recalled 
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Thus:
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where 
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        (11.38, repeated)

Remarks:

(a) Consider the exponential term in the above equation [Equation (11.38, repeated)]. Let 
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If one replaces “n” by “-(N-n)” (or “n-N”) into the above equation, then one obtains:
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Thus, Equation (11.38, repeated) indicates that the force corresponding to frequencies of order “n” and “-(N-n) = n-N” have the same values. Hence:
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and the frequency corresponding to 
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 in the original function, then these higher components will introduce distortions in the lower harmonic components (known as ALIASING phenomenon). Because of the ALIASING phenomenon, the number of (N) data points should be “at least twice” the highest harmonic component presents in the (forcing) function, for sufficient computational accuracy. As an example, if the forcing function is given as:
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then, the minimum value of N ( = Number of sample data points ) should be 
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Detailed Explanation About Aliasing Phenomenon, Nyquist Samples, Nyquist Rate. 

When a function 
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which may represent the signals from some real-life phenomenon (shown in Figure 11.22), is sampled, it basically converts that function into a sequence 
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Figure 11.22 Function to be Sampled and “Aliased” Sample Problem.

In Figure 11.22, the samples have been taken with a fairly large 
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Figure 11.23 Function to be sampled and “Windowing” Sample Problem.

Another potential difficulty in sampling the function is called “windowing” problem. As indicated in Figure 11.23, while 
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is small enough so that a piecewise linear interpolation for connecting these discrete values will adequately resemble the original function 
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) rather than the entire one. In other words, one has placed a “window” over the function.

To avoid Aliased phenomenon, the sample space 
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[image: image343.wmf]t

D

 apart, with
[image: image344.wmf]max

2

1

w

t

=

D

”.
The above “sampling theorem” can be loosely explained through the help of Figure 11.24.
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Figure 11.24 Frequency of Sampling Rate (
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Physically, the above equation states that one must have at least 2 samples per cycle of the highest frequency component present (Nyquist samples, Nyquist rate).

[image: image351.jpg]Original signal

samples

Reconstructed signal <—, )
I

SR





Figure 11.25 Correctly Reconstructed Signal.
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Figure 11.26 Wrongly Reconstructed Signal.

In figure 11.25, a sinusoidal signal is sampled at the rate of 6 samples per 1 cycle (or 
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 shown in the DFT Equation (11.58), is merely a scale factor. It can also be placed in the inverse Fourier Transform Equation (11.38), but not both!

Thus, Equations (11.58) and (11.38) can be re written as:
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To avoid computation with “complex numbers”, Equation (11.59) can be expressed as:
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where
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The above “complex number” equation is equivalent to the following 2 “real number” equations:
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Chapter 11.04 Informal Development of Fast Fourier Transform (FFT)

Recalled the DFT pairs of Equations (11.59, 11.60) and swapping the indexes n,k one obtains:
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Where n, k = 0,1,2,3,….N-1 







(11.63)

While the above DFT pairs of equations are convenient for computer implementation, they still require substantial computation efforts. The objective of this chapter, therefore, is to develop the improved version of DFT (namely Fast Fourier Transform, or FFT) so that much larger sampling data can be handled more efficiently.
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Then Equation (11.61) and Equation (11.62) becomes:
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It should be emphasized here that in performing interpolation, one usually has to solve a system of equations to determine the unknown coefficients of the linear combination of basis functions that fit the given data. For example, if N=4, then one need to solve the following system
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For obtaining
[image: image372.wmf]{

}

C

~

, with a given vector 
[image: image373.wmf]{

}

f

.

However, the inverse of the above coefficient matrix can be easily obtained as:
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Thus, the unknown coefficient vector 
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For N=4, n=2 and k=3, then:
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The term inside the square bracket is equal to 1, since
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For N=4, n=3 and k=3, then
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In the above equation, one should recall the following Euler identity:
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Thus, in general (for 
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                      or p = remainder of 
[image: image386.wmf]÷

ø

ö

ç

è

æ

N

nk


Remarks:

(a) Matrix times vector, shown in Equation (11.67), will require 16 (or 
[image: image387.wmf])

2

N

complex multiplications and 12 (or N*{N-1}) complex additions.

(b) Usage of Equation (11.68) will help to reduce the number of operation counts, as explained in the next section.

Factorized Matrix and Further Operation Count
Equation (11.67) can be factorized as:
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Remarks:

(a) The theory behind the 2 matrices on the right hand side (RHS) of Equation (11.69) is clearly explained soon. (see Equations 11.101 and 11.105, in chapter 11.05).

(b) The order of the left-hand-side (LHS) vector has been changed, such as rows 2 and 3 have been swapped !.

(c) Let the row-interchanged LHS vector be defined as:
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Now performing the inner-product (matrix times vector) on the RHS of Equation (11.69), one obtains:
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or
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since 
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Equations (11.72A through 11.72D) for the “inner” matrix times vector requires 2 complex multiplications and 4 complex additions.

(d) In Equations (11.72A - 11.72D), 
[image: image398.wmf]0

W

is intentionally not reduced to the numerical value of 1.0 to facilitate the discussions of more general cases.

Finally, performing the “outer” product (matrix times vector) on the RHS of Equation (11.69), one obtains:
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or
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Again, Equations (11.74A-11.74D) requires 2 complex multiplications and 4 complex additions. Thus, the complete RHS of Equation (11.69) can be computed by only 4 complex multiplications (or 
[image: image405.wmf])
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4
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r

N

and 8 complex additions (or Nr = 4x2). Since computational time is mainly controlled by the number of multiplications, hence implementing Equation (11.69) will significantly reduce the number of multiplication, as compared to direct matrix times vector operations (as shown in Equation 11.67).

For large value of data points (=N), one obtains
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For 
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 Equation (11.75) gives
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Graphical flow of Equation (11.69), for case 
[image: image409.wmf]4

2

2

2

=

=

=

r

N


Equation (11.69) can also be presented in the graphical form, as shown in Figure 11.4
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Figure 11.4 Graphical form of FFT (Equation 11.69). For the case 
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Remarks

(a) Computed vector 1 does correspond to Equation (11.71).

(b) Computed vector 2 does correspond to Equation (11.74).
(c) Since r = 2 in this example, one needs to compute 2 vectors 
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(d) Each node in the graph is computed from 2(=r) nodes in the “previous” vector.

(e) Factor 
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 appears near the arrow head of the transmission path. Absence of 
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Graphical Flow of Equation (11.69), for case 
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In order to see a more detailed computational patterns of FFT, a slightly larger data size (
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) is shown in the graphical form, as indicated in Figure 11.5.
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Companion Node Observation:

Careful observation of Figure 11.5 reveals that for each computed 
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Furthermore, the computation of companion nodes are independent of other nodes (within the 
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. Hence, only one complex vector (or 2 real vectors) of length N are needed for the entire FFT process!
Companion Node Spacing.

Observing Figure 11.5, the following statements can be made:
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Companion Node Computation:

The operation counts in any companion nodes (of the 
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Thus, the dual nodes 
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Skipping computation of certain nodes’:
Because the pair of companion nodes “k” and 
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Determination of 
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The values of “P” can de determined by the following steps:

Step 1: Express the index k (=0,1,2,…,N-1) in binary form, using r bits. For k=8, and r =4; one obtains
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Step2: Sliding this binary number “r-L = 4-2 =2” positions to the right, and fill in zeros, the results are:
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It is important to realize that the results of Step 2 (0,0,1,0) is equivalent to express an integer 
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 in the binary formats. In other words: M=2=(0,0,1,0).

Step3: Reverse the order of the bits, then:

0,0,1,0 becomes 0,1,0,0 = P

Thus, 
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It is “NOT” really necessary to perform Step 3, since the results of Step 2 can be used to compute “P” as following:


[image: image477.wmf]4

2

)

0

(

2

)

1

(

2

)

0

(

2

)

0

(

3

2

1

0

=

+

+

+

=

P


In conclusion, for 
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 and P=4; the computation of dual nodes from general formulas (See Equations 11.78, 11.79) gives:
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The above 2 equations are identical to Equations (11.76, 11.77)!

Computer Implementation to Find Value of “P” (in 
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Based on the previous discussions (with the 3-step procedures), to find the value of “P”, one only needs a procedure to express an integer 
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Assuming M (a base 10 number) can be expressed as (assuming r=4 bits):
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Divide M by 2 (say, 
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If 
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and similar process can be used to determine the value of bit 
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Example 1: For k=8; 
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Determine the bit 
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Determine the bit 
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Determine the bit 
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Remarks:

Although the “intermediate” results might be different, at the end of the do-loop process (computing 
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will eventually give the same final answers for “P”.

Example 2: For k=12; 
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One has:
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Remarks:

Although both formulas for “P”, shown in Equations (11.82,11.83), will yield the same “final” value of “P”. Implementation of Equation (11.82) will be more computationally efficient!
UnSrambling the FFT.
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(see Figure 11.5), the final ‘bit-reversing’ operation for FFT is shown in Fig. 11.6.



For do-loop index k=0=(0,0,0,0)
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Computer Implementation of FFT (for case 
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The pair of dual nodes computation are given by Equations (11.78, 11.79). To avoid “complex number” operations, Equation (11.78) can be computed based on “real number” operations, as following:
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In Equation (11.84), the superscripts R and I denote real and imaginary components, respectively.

Multiplying the last 2 complex numbers, one obtains:
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            (11.85)

Equating the Real (and then, Imaginary) components on the Left-Hand-Side (LHS), and the Right-Hand-Side (RHS) of Equation (11.85), one obtains:
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Recall Equation (11.64):
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where
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Thus:
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Substituting Equations (11.89A, 11.89B) into Equations (11.86A, 11.86B), one gets:
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Similarly, the single (complex number) Equation 11.79 can be expressed as 2 equivalent (real number) equations, such as equations (11.90A, 11.90B)!

Chapter 11.05  Theoretical Development of FFT (The case 
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The informal development of FFT (presented in the previous chapter) has captured all the essential features and characteristics about FFT. In this chapter, however, FFT will first be presented in a more general fashion (for the case where the number of sampled data points N can be expressed as
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Recall Equation (11.65):
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In this case, we can express k and n as 2-bit binary numbers:
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n = 0,1,2,3 = 
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Equations (11.91, 11.92) can also be expressed in compact forms, as following:
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Consider
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Notice that:
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Hence Equation (11.95) can be simplified to:
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Define the inner summation as (notice: the index 
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or:
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Hence:
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In matrix addition, Equation (11.100) can be written as:
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Thus, Equation (11.101) plays the same role as Equation (11.71)!

Now, define the outer summation as (notice: the index 
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or:
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Hence:
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Equation (11.105) plays the same role as Equation (11.73)!

Also, comparing Equation (11.95) and Equation (11.103), one gets:
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Thus, Equation (11.106) implies that unscrambling (or bit-reversed operations) the results of 
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The set of Equations (11.98, 11.102,11.106) represents the original Cooley-Turkey [Refs. 11.1 – 11.4] formulation of the FFT.

Consider the Case 
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In this case, k and n can be expressed in compact forms (using 3-bit binary numbers) as:
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where 
[image: image637.wmf],

0

,

=

i

i

n

k

 or 1

Using Equation (11.107), any value of integer 
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In the new notations, Equation (11.65) becomes:
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Consider:
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Due to the definitions of W (shown in Equation 11.64), each of the 3 terms inside the square bracket is equal to 1. Thus, Equation (11.109) can be simplified to:
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Define:







       (11.112)
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Hence,
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Remarks about Equation (11.112):
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     skip computation

In the above example (where 
[image: image654.wmf]8

2

2

3

=

=

=

r

N

), computation of the first vector (see Equation 11.112) will require calculation of the above 8 equations (see Equation 11.112B). However, in actual computer implementation, the above last 4 equations will be skipped, since the first 4 equations are the “companion nodes” of the last 4 equations. The 1st and the 5th equations, the 2nd and the 6th equations, the 3rd and the 7th equations, and the 4th and the 8th equations are companion pair of nodes. Thus, once the product of 
[image: image655.wmf]0

)

0

,

0

,

1

(

W

f

had been computed, the 1st equation can be computed for 
[image: image656.wmf])

0

,

0

,

1

(

),

0

,

0

,

0

(

1

1

f

and

f

 in the 5th equation can be obtained with nearly free efforts (with the “plus” sign in the 1st equation to become “minus” sign in the 5th equation)!
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Figure 11.7 : Graphical Form of FFT (for the case 
[image: image658.wmf]8

2

2

3

=

=

=

r

N

).
Consider the general case 
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Equation (11.65) becomes:
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where:
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The first term of Equation (11.119) can be computed as:
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Hence all terms inside the 
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  brackets are equal to 1.

Thus:
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Similarly, the second term of Equation (11.119) can be computed as:
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or
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Equation (11.118) will eventually become:
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Let 
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Remark:
When the number of data size can’t be expressed as
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where
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Remarks:

(a) The smallest value for n = 0 (when 
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 Equation (11.128) gives:
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Using the above notations, Equation (11.65) can be expressed as:
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Consider:

                                                    (11.135)
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Due to the fact that 
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Substituting Equation (11.136) into (11.134), one gets:
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Define:
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Hence:
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Expanding Equation (11.142), one obtains:
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Similarly, expanding Equation (11.143), one gets:


[image: image714.wmf]2

)

4

(

0

1

)

4

(

0

1

0

0

1

1

0

2

0

1

0

1

)

2

,

(

)

1

,

(

)

0

,

(

)

,

(

n

n

n

n

W

n

f

W

n

f

W

n

f

n

n

f

+

+

+

+

=


                                                                     
[image: image715.wmf]3

)

4

(

0

1

0

1

)

3

,

(

n

n

W

n

f

+

+

                           (11.143A)

For a typical term corresponding to
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A partial/ incomplete graph of FFT (based on Equations 11.142B, 11.142C and 11.143B), for the case 
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Figure 11.8: An “Incomplete” FFT for 
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Example (for the case 
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In this case, utilizing Equations (11.130-11.133) into Equations (11.128, 11.129), one obtains:(11.111)
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Then, Equation (11.65) becomes:
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Substituting Equation (11.151) into Equation (11.150), one obtains:
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Define:
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Hence:
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Expanding (the summation) of Equations (11.153, 11.154), one gets:
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Assuming 
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Similarly, one has
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Assuming 
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Thus, computation of each term for arrays 
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 and 
[image: image756.wmf]2
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(see Equations 11.157, 11.159) will require the “previous” 4 terms and 2 terms, respectively. The partial (or incomplete) graphical display for FFT (with 
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 based on Equations (11.157, 11.159), is shown in Figure 11.9.
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Figure 11.9: An “Incomplete” FFT for 
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[C] General FFT Algorithms and Relationships Between FFT Algorithms for 
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FFT algorithms for the case where the sample size 
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has already been discussed in previous section. 
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where 
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with:
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In order to simplify the “arithmetic efforts”, and to easily identify the “patterns” of the general FFT algorithms/formulas, we assume m=3, and therefore the following case will be considered:
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Hence, Equations (11.161 to 11.164) will be simplified to:
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Equation (11.65) can be expressed as 
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Let’s define:
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or:
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where:
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since
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Substituting Equations   (11.175, 11.177, and 11.178) into Equation (11.173), and using Equation (11.171), then Equation (11.170) will become:
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Define:
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Then:
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In order to see the “connections” between the general FFT algorithms (such as 
[image: image796.wmf],.....)

,

,

3

2

1

r

r

r

N

=

and the base 2 FFT algorithms (such as 
[image: image797.wmf]),

2

r

N

=

 we now consider the special case where 
[image: image798.wmf]2

3

2

1

=

=

=

r

r

r

(hence 
[image: image799.wmf]).

2

8

2

2

2

,.....

,

,

3

3

2

1

=

=

´

´

=

=

r

r

r

N

 In this case, Equations (11.180 to 11.182) can be simplified to:
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In facts, Equations   (11.184 to 11.186) are “identical” to the earlier derived Equations (11.112 to 11.114)!

[D] Twiddle Factor FFT Algorithms for 
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To facilitate the discussions for better understanding about the “improved FFT” algorithms by using the “twiddle factor” [Refs. 11.1 – 11.4], a specific case for 
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Equation (11.138) can be re-written as:


[image: image805.wmf]å

å

-

=

-

=

ú

û

ù

ê

ë

é

=

1

0

4

1

0

4

0

1

0

1

2

0

0

1

0

0

1

1

1

0

)

,

(

)

,

(

~

r

k

k

n

k

n

r

k

k

n

W

W

W

k

k

f

n

n

C





          (11.187)

The factor 
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Remarks:

(a) Consider the following term in Equation (11.188):
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Consider the following few possibilities for 
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Thus, depending on the numerical (integer) value of 
[image: image816.wmf]1

0

k

n

, the value of 
[image: image817.wmf]1

0

4

k

n

W

can only be 
[image: image818.wmf]i

or

±

±

,

1

. Hence, there is “no multiplication” involved in computing 
[image: image819.wmf]1

0

4

k

n

W

. The twiddle factor 
[image: image820.wmf]0

0

k

n

W

can be done outside the inner summation (on the index 
[image: image821.wmf]1

k

).

(b) Since the twiddle factor 
[image: image822.wmf]0

0

k

n

W

 is included in the first vector 
[image: image823.wmf])

,

(

0

0

1

k

n

f

, as shown in Equation (11.188), the remaining factor 
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as shown in Equation (11.189).

(c)The twiddle factor can also be applied for the case 
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or for the more general case 
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(d) It has been concluded in [Refs. 11.1 – 11.4] that, using the twiddle factor, the number of operation counts (based on the number of required multiplications) for FFT with base 16 is less than with base 8, which in turns is less (or better) than with base 4, etc..
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Figure 11.6: Final “Bit-Reversing” for FFT (with � EMBED Equation.3  ���








Figure 11.5 Graphical Form of FFT (Equation 11.69) For the case � EMBED Equation.3  ���.
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