11.10 Applications of FFT in Dynamical Response of SDOF Water Tower Structure. 
(A) Free Vibration Response of Single Degree-Of- Freedom, (SDOF) Systems:
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Figure 11.10: SDOF Dynamical System.
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Figure 11.11: Water Tower Structure Subjected To Dynamic Loads.

(a) Water Tower Structure, Idealized as SDOF system.

(b) Impulse Blast Loading 
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The dynamical equilibrium for a SDOF system (shown in Fig. 11.10) can be given as:
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where
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and k = mass, damping and spring stiffness, respectively (which are related to inertia, damping and spring forces, respectively).
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 displacement, velocity, and acceleration, respectively.

Practical structural models such as the water tower structure subjected to applied blast loading (or earthquake ground acceleration) etc.. can be conveniently modeled and studied as a simple SDOF system (shown in Fig. 11.11)

For free vibration response, Eq. (11.192) simplifies to:
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The solution (displacement response y) of Eq. (11.193) can be expressed as:
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Hence:
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Substituting Eqs. (11.194 – 11.196) into Eqs. (11.193), one obtains:
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The two roots of the above quadratic equation can be obtained as:
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Critical Damping
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In this case, the term under the square root in Eq. (11.199) is set to be zero, hence:
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Hence:
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The 2 identical roots of Eq. (11.199) can be computed as:
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and the solution 
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which can be plotted as shown in Fig. 11.12.
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Figure 11.12: Free Vibration with Critical Damping.
Over damping 
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In this case, one has:
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The solution of y(t) from Eq.(11.194) can be given as
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The response of over damping system is similar to Fig.11.12

Under Damping 
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In this case, one has:
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and the 2 “complex” roots from Eq. (11.199) can be given as
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Substituting Eq. (11.210), and using Euler’s equation
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where:
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Using the initial conditions:
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Then, the 2 constants (A and B) can be solved, and Eq. (11.211) becomes:
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Eq. (11.216) can also be expressed as:
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where:
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Eq. (11.217) can be plotted as shown in Figure 11.13.
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Figure 11.13: Free Vibration of SDOF Under-Damped System.
(B) Force Vibration Response of SDOF Systems:
For force vibration problem, the right-hand-side (RHS) of Eq. (11.192) 
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where, the complimentary solution 
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Using Eqs. (11.201, 11.202), Eq. (11.221) becomes:
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Using Eq. (11.214), the above equation becomes:
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The particular solution 
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The unknown constants 
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 can be found by substituting Eq. (11.223) into Eq. (11.192), and equating the coefficients of the sine and cosine functions.
Using Euler’s identity, one has:
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Thus, the RHS of Eq. (11.192) can be expressed as :
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Hence, the response will consist of ONLY the imaginary portion of Eq.(11.220)!
The particular solution 
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Substituting Eq. (11.226) into Eq. (11.225), one gets:
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Hence,
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Substituting Eq. (11.229) into Eq. (11.226), one obtains:
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In Eq. (11.230), the “complex” number
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can be symbolically expressed as:
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or in polar coordinates, one has (see Figure 11.14):
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Thus, Eq. (11.230) can be re-written as:
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Figure 11.14: Polar Coordinates.
The “imaginary” portion of Eq. (11.240) can be given as:
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Define:
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Then, Eqs. (11.234, 11.241) becomes:
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The complimentary (or transient) solution 
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Define:
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D = Dynamic Magnification Factor ………………………………………….…...(11.250)

(c) Dynamical Response By Fourier Series, DFT and FFT.

The dynamic load F(t) acting on the SDOF system can also be expressed in Fourier series as:
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where the unknown Fourier coefficients can be computed as:
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If the forcing function contains only sine terms, then the particular (steady state) solution can be found as (see Eq.11.247):
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Recalled Eq. (11.245), one has:
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Hence:
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Solving Eq. (11.255) for 
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Substituting Eq. (11.256) into Eq. (11.254) to obtain:
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Similarly, if the forcing function contains only the cosine terms, then the particular (steady state) solution can be found as:
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Finally, if the forcing function contains both sine and cosine terms, then the total response can be computed by combining both equations (11.257) and (11.258), including the constant forcing term 
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, as following:
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Remarks:
(1) Using Euler’s relationships, the dynamic load F(t) as shown in Eq. (11.251), can also be expressed in exponential form as:
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(2) For DFT, define:
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where 
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Then, the DFT pairs of Eqs. (11.58, 11.38) becomes:
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and
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(3) Introduce the unit amplitude exponential forcing function
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into RHS of Eq. (11.192), the steady state solution can also be obtained as (see Eq. 11.230):
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Using the notations defined in Eqs. (11.214, 11.244), the above equation can be written as, for a harmonic force component of amplitude 
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and the total (steady state) response due to “n” harmonic force components can be calculated as:
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(4) Dynamic Response of “Water Tank Structure” by FFT.

The dynamic response 
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in frequency domain of a general SDOF system (such as the “water tank structure”) can be obtained by Eq.
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, and the required coefficients 
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. Both of these equations can be represented (except for the sign), by the following general exponential function:
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where:
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It is important to notice that Eq. (11.267) has the same form as shown in the earlier Eq.(11.65). However, the definition of W in Eq. (11.268) is different from the one shown in Eq. (11.64) by a negative sign in the power of W. Therefore, efficient FFT subroutine (with user’s specified SIGN = 1, or -1) which has been explained/developed in Sections 11.7 to 11.12 can be utilized!

Questions:

1. For the impulse load 
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2. For the Civil Engineering problem presented in Figure 11.11, using 
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and FFT (with 
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 equally space data points), find the dynamic (displacement) response of the water tank structure??

c
c......main profram: FFT_Civil Engineering Application_sdof_system
c
      implicit real*8(a-h,o-z)
      complex*16 cn(500000),ff(500000),coef
      dimension ti(10),fi(10),time(500000),force(500000)
    $,          forceimag(500000),time(500000)
c
      write(6,*) '                               '
      write(6,*) '==============================='
      write(6,*) 'Prof. Duc T Nguyen; 08-17-2008'
      write(6,*) 'Civil Engr Application of FFT/sdof'
      write(6,*) 'Dynamic Response of SDOF Water Tank Structure'
      write(6,*) 'in Frequency Domain, using FFT Solver'
      write(6,*) 'Stored At: cd ~/cee/odu*clas*/fft*sdof.f'
      write(6,*) 'Notes: results obtained by this code are correct'
      write(6,*) '==============================='
      write(6,*) '                               '
c
c......user's input data
c
      call input1(igama,period,stiffness,dampcoef,
    $ amass,nsegmentf,ti,fi,n,npointsf)
c
      call forceinterp(npointsf,ti,fi,
    $ time,force,period,n,nsegmentf)
c
      call coefcn(force,n)
c
      do 1 i=1,n
      forceimag(i)=0.d0
1     continue
       sign=+1.d0
c
      call fft(force,forceimag,n,igama,sign)
c
      write(6,*) 'periodic force expressed in complex coef'
      write(6,*) 'n      cn_real       cn_imag'
      do 22 i=1,n
      nn=i-1
      write(6,24) nn, force(i), forceimag(i)
24    format(2x,i6,3x,e13.6,3x,e13.6)
22    continue
      write(6,*) '                               '
c
      do 2 i=1,n
      aa=force(i)
      bb=forceimag(i)
      cn(i)=dcmplx(aa,bb)
2     continue
c
      call coefyoft(cn,stiffness,amass,dampcoef,
    $ period,ff,n)
      sign=-1.d0
      do 3 i=1,n
      force(i)=real( cn(i) )
      forceimag(i)=imag( cn(i) )
3     continue
c
      call fft(force,forceimag,n,igama,sign)
c
      write(6,*) 'dynamic displ response in freq domain'
      write(6,*) 'n    displ_real      displ_imag'
      do 4 i=1,n
      nn=i-1
      write(6,11) nn,force(i),forceimag(i)
11    format(2x,i6,6x,e13.6,6x,e13.6)
4     continue
      write(6,*) '                               '
c
      do 6 i=1,n
      force(i)=real( ff(i) )
      forceimag(i)=imag( ff(i) )
6     continue
c
      call fft(force,forceimag,n,igama,sign)
c
      write(6,*) 'use inverse fourier transform to get back f(t)'
      write(6,*) 'n  time  force_real  force_imag'
      do 8 i=1,n
      nn=i-1
      write(6,12) nn,time(i),force(i),forceimag(i)
12    format(2x,i6,2x,e13.6,2x,e13.6,2x,e13.6)
8     continue
      write(6,*) '                               '
c
      stop
      end
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
      subroutine input1(igama,period,stiffness,dampcoef,
    $ amass,nsegmentf,ti,fi,n,npointsf)
      implicit real*8(a-h,o-z)
      dimension ti(*),fi(*)
      read(5,*) igama,period,stiffness,dampcoef,amass,
    $ nsegmentf
c......user's input data
c      igama        = integer power to compute N = 2 ** igama
c      period       = period of the applied forcing function
c                     (say, in seconds ...)
c      stiffness    = stiffness of the given structure   
c                     (say, in kips/inch)
c      dampcoef     = damping coefficient of the given structure
c                     (say, in kips*inches/seconds)
c      amass        = lumped mass of the given structure
c                     (say, in kips*second^^2/inches)
c      nsegmentf    = number of segments to define the forcing function
c                     (within each segment, it is assumed the 
c                      forcing function is a linear function, which
c                      can be described by known coordinates of 
c                      2 end-points)
c......calculated intermediate variables
c      n            =  2 ** igama
c      npointsf     =  nsegmentf + 1 = total # data points to define     
c                      the forcing function f(t)
c......user's input data
c      ti(i), fi(i) =  time, force value at the i-th discretized time
c                      (where i = 1, 2, ..., npointsf)
c
      write(6,*) 'igama,period,stiffness,dampcoef,amass,
    $ nsegmentf = '
      write(6,*) igama,period,stiffness,dampcoef,amass,
    $ nsegmentf
      write(6,*) '                               '
      npointsf=nsegmentf+1
      n=2**igama
      read(5,*) ( ti(i),fi(i),i=1,npointsf )
      write(6,*) '( ti(i),fi(i),i=1,npointsf )'
      write(6,*) ( ti(i),fi(i),i=1,npointsf )
      write(6,*) '                               '
      return
      end
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
      subroutine forceinterp(npointsf,ti,fi,
    $ time,force,period,n,nsegmentf)
      implicit real*8(a-h,o-z)
      dimension ti(*),fi(*),time(*),force(*)
c
      dt=period/n
      nm1=n-1
      icount=0
      t=-dt
c......find equation of straight line in each segment
c......using Lagrange interpolation, and finally expressed
c......in the form f(t) = c1 + c2 * t
      do 1 i=1,nsegmentf
      tacoord=ti(i)
      facoord=fi(i)
      tbcoord=ti(i+1)
      fbcoord=fi(i+1)
c
      down=tbcoord-tacoord
      up1=tbcoord*facoord-tacoord*fbcoord
      up2=fbcoord-facoord
      c1=up1/down
      c2=up2/down
c
c      write(6,*) 'segment #, tacoord,tbcoord,c1,c2 = '
c      write(6,*)          i, tacoord,tbcoord,c1,c2
c
123   icount=icount+1
      t=t+dt
       if (t .le. tbcoord) then
        time(icount)=t
        force(icount)=c1+c2*t
c        write(6,*) 'icount,time(icount),force(icount) = '
c        write(6,*) icount,time(icount),force(icount)
        go to 123
       elseif (t .gt. tbcoord) then
        icount=icount-1
        t=t-dt
       endif
1     continue
      return
      end
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
      subroutine coefcn(force,n)
      implicit real*8(a-h,o-z)
      dimension force(*)
c
      do 1 i=1,n
      force(i)=force(i)/n
1     continue
      return
      end
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
      subroutine coefyoft(cn,stiffness,amass,dampcoef,
    $ period,ff,n)
      implicit real*8(a-h,o-z)
      complex*16 cn(*),ff(*),coef
c
      pai=3.14159265358979
      base_omegan=2.d0*pai/period
      omega_system=dsqrt(stiffness/amass)
      c_critical=2.d0*dsqrt(stiffness*amass)
      base_rn=base_omegan/omega_system
      dampratio=dampcoef/c_critical
c......compute coefficient of y(@tj)
       do 1 i=1,n
      j=i-1
c------------------------------------------------
c......the following 2 stmts need to "+1", since
c......FORTRAN does NOT like "zero" subscript !
      nyquist=(n/2)+1
      if ( i .gt. nyquist ) j=-(N-i+1)
c------------------------------------------------
      rn=base_rn*j
      coef=dcmplx(1.d0-rn**2, 2.d0*rn*dampratio)
      ff(i)=cn(i)
      cn(i)=cn(i)/(stiffness*coef)
1      continue
      return
      end
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
      subroutine fft(freal,fimag,n,igama,sign)
      implicit real*8(a-h,o-z)
      dimension freal(*),fimag(*)
c......purpose: fft algorithms (for general base 2)
c......programmed by: Prof. Duc T. Nguyen (DNguyen@odu.edu) 
c......original date: 07-10-2008
c......freal(n)     = real number of N complex data points
c......fimag(n)     = imaginary number of N complex data points
c......n            = number of complex data points= 2**igama
c......example  n   = 2**4 = 16; hence igama = 4
c......remarks:       Both DFT & FFT did give IDENTICAL results !
c
c       write(6,*) 'inside routine fft: echo input freal,fimag = '
       do 24 i=1,n
c       write(6,*) i, freal(i), fimag(i)
24     continue
      k=0
c       write(6,*) 'n, igama = ',n,igama
      do 1 L=1,igama
      n2=n/2**L
      igaminusL=igama-L
123   do 2 i=1,n2
      m=k/2**igaminusL
      call bitreverse(m,igama,ip)
c       write(6,*) 'L, i, m, ip = ',L,i,m,ip
      theta=sign*6.283185*ip/n
      c=cos(theta)
      s=sin(theta)
c       write(6,*) 'theta,c,s = ',theta,c,s
      k1=k+1
      nodedual=k1+n2
c       write(6,*) 'dual nodes = k1, nodedual = ',k1,nodedual
c......applying Duc's Eqs.(11.90A, 11.90B)
      partreal=c*freal(nodedual)+s*fimag(nodedual)
      partimag=c*fimag(nodedual)-s*freal(nodedual)
      freal(nodedual)=freal(k1)-partreal
      fimag(nodedual)=fimag(k1)-partimag
      freal(k1)=freal(k1)+partreal
      fimag(k1)=fimag(k1)+partimag
      k=k+1
c       write(6,*) 'partreal, partimag = ',partreal,partimag
2     continue
c       write(6,*) 'computed array at level L = ',L
       do 26 kk=1,n
c       write(6,*) 'freal(kk),fimag(kk) = ',freal(kk),fimag(kk)
26     continue
      k=k+n2
      if (k .lt. n) go to 123
      k=0
1     continue
c
c       write(6,*) 'before unscramble FFT: i,freal,fimag ='
       do 22 i=1,n
c       write(6,*) i, freal(i), fimag(i)
22     continue
c......unscramble results of FFT
      call unscramble(freal,fimag,n,igama)
c......output FFT solution
c       write(6,*) 'after unscramble FFT: i,freal,fimag ='
       sumreal=0.d0
       sumimag=0.d0
       do 42 i=1,n
c       write(6,*) i, freal(i), fimag(i)
       sumreal=sumreal+dabs( freal(i) )
       sumimag=sumimag+dabs( fimag(i) )
42     continue
c      write(6,*) 'FFT: sumreal,sumimag = ',sumreal,sumimag
999   return
      end
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
      subroutine bitreverse(m,igam,ip)
      ip=0
      j1=m
c
      do 2 i=1,igam
      j2=j1/2
      idiff=j1-j2*2
      ip=ip*2 + idiff
      j1=j2
2     continue
c      write(6,*) 'p, or ii = ',ip
      return
      end
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
      subroutine unscramble(freal,fimag,n,igama)
      implicit real*8(a-h,o-z)
      dimension freal(*),fimag(*)
c
      do 2 k=1,n
      m=k-1
      call bitreverse(m,igama,ii)
      i=ii+1
      if (i .le. k) go to 2
      temporeal=freal(k)
      tempoimag=fimag(k)
      freal(k)=freal(i)
      fimag(k)=fimag(i)
      freal(i)=temporeal
      fimag(i)=tempoimag
2     continue
      return
      end
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

                                
 
Following are the (correct) output data file (out1)

===============================
Prof. Duc T Nguyen; 08-17-2008
Civil Engr Application of FFT/sdof
Dynamic Response of SDOF Water Tank Structure
in Frequency Domain, using FFT Solver
Stored At: cd ~/cee/odu*clas*/fft*sdof.f
Notes: results obtained by this code are correct
===============================
                               

 igama,period,stiffness,dampcoef,amass,     nsegmentf =
 3     0.56   100000.0  632.0    100.0      4

 ( ti(i),fi(i),i=1,npointsf )
 0.0E+0 0.0E+0 0.14 100000.0 0.28 -100000.0 0.42 -100000.0 0.56 0.0E+0

 periodic force expressed in complex coef

      n      cn_real       cn_imag

      0   -0.250000E+05    0.000000E+00
      1    0.213388E+05   -0.426777E+05
      2   -0.125000E+05    0.000000E+00
      3    0.366117E+04    0.732233E+04
      4    0.000000E+00    0.000000E+00
      5    0.366117E+04   -0.732233E+04
      6   -0.125000E+05    0.000000E+00
      7    0.213388E+05    0.426777E+05

 dynamic displ response in freq domain

      n        displ_real         displ_imag

      0       0.310210E-01       0.299424E-07
      1       0.771322E+00      -0.486396E-07
      2       0.668109E+00       0.605675E-07
      3       0.943848E+00      -0.102318E-06
      4      -0.146218E+01      -0.299424E-07
      5      -0.153733E+01       0.687225E-07
      6      -0.236945E+00      -0.605675E-07
      7      -0.117784E+01       0.822352E-07


 use inverse fourier transform to get back f(t)

      n   time           force_real     force_imag

      0   0.000000E+00   0.000000E+00   0.000000E+00
      1   0.700000E-01   0.500000E+05   0.145519E-10
      2   0.140000E+00   0.100000E+06  -0.242840E-11
      3   0.210000E+00   0.000000E+00  -0.727596E-11
      4   0.280000E+00  -0.100000E+06   0.000000E+00
      5   0.350000E+00  -0.100000E+06  -0.145519E-10
      6   0.420000E+00  -0.100000E+06   0.242840E-11
      7   0.490000E+00  -0.500000E+05   0.727596E-11
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