Hungarian algorithm - Wikipedia, the free encyclopedia Page 1 of 5

Hungarian algorithm

From Wikipedia, the free encyclopedia

The Hungarian method is a combinatorial optimization algorithm which solves the assignment problem
in polynomial time and which anticipated later primal-dual methods. It was developed and published by
Harold Kuhn in 1955, who gave the name "Hungarian method" because the algorithm was largely based
on the earlier works of two Hungarian mathematicians: Dénes Konig and Jen6 Egervary.

James Munkres reviewed the algorithm in 1957 and observed that it is (strongly) polynomial. Since then
the algorithm has been known also as Kuhn-Munkres algorithm or Munkres assignment algorithm.

The time complexity of the original algorithm was O(H4>, however Edmonds and Karp, and

independently Tomizawa noticed that it can be modified to achieve an 0(173) running time. Ford and

Fulkerson extended the method to general transportation problems. In 2006, it was discovered that Carl
Gustav Jacobi had solved the assignment problem in the 19th century, and published posthumously in

1890 in Latin.[!]

Contents

1 Laymen’s Explanation
2 Setting
3 The algorithm in terms of bipartite graphs
4 Matrix interpretation
5 Bibliography
6 References
7 External links
= 7.1 Implementations

Laymen’s Explanation

Say you have three workers: Jim, Steve & Alan. You need to have one of them clean the bathroom,
another sweep the floors & the third wash the windows. What’s the best (minimum-cost) way to assign
the jobs? First we need a matrix of the costs of the workers doing the jobs.

Clean bathroom Sweep floors Wash Windows

Jim |$1 $2 $3
Steve | $3 $3 $3
Alan |$3 $3 $2

Then the Hungarian algorithm, when applied to the above table would give us the minimum cost it can be
done with: Jim cleans the bathroom, Steve sweeps the floors and Alan washes the windows.

Setting

We are given a nonnegative nxn matrix, where the element in the i-th row and j-th column represents the

http://en.wikipedia.org/wiki/Hungarian_method 6/29/2009

Hungarian algorithm - Wikipedia, the free encyclopedia Page 2 of 5

cost of assigning the i-th job to the j-th worker. We have to find an assignment of the jobs to the workers
that has minimum cost.

The algorithm is easier to describe if we formulate the problem using a bipartite graph. We have a
complete bipartite graph G=(S, T; E) with n worker vertices (S) and n job vertices (7), and each edge has
a nonnegative cost c(i,j). We want to find a perfect matching with minimum cost.

Let us call a function 3 : (S U T) + (Qa potential if y(7) + y(j) < (4, j)for each

i € 5, j € T The value of potential y is y(y)' It can be seen that the cost of each perfect
rESUT

matching is at least the value of each potential. The Hungarian method finds a perfect matching and a

potential with equal cost/value which proves the optimality of both. In fact it finds a perfect matching of

tight edges: an edge ij is called tight for a potential y if }/(1) + y(]) = C(f, _]). Let us denote the
subgraph of tight edges by Gy. The cost of a perfect matching in Gy (if there is one) equals the value of
V.

The algorithm in terms of bipartite graphs

During the algorithm we maintain a potential y and an orientation of (7 % (denoted by (—};) which has the

property that the edges oriented from 7 to S form a matching M. Initially, y is O everywhere, and all edges
are oriented from S to 7 (so M is empty). In each step, either we modify y so that its value increases, or
modify the orientation to obtain a matching with more edges. We maintain the invariant that all the edges
of M are tight. We are done if M is a perfect matching.

In a general step, let i C .S and i C T be the vertices not covered by M (so R S consists of the
vertices in § with no incoming edge and /¥ 7consists of the vertices in 7' with no outgoing edge). Let Z

be the set of vertices reachable in (—;; from K by a directed path only following edges that are tight.
This can be computed by breadth-first search.

If R+ M Z is nonempty, then reverse the orientation of a directed path in G": from /X gto K 7 Thus the

size of the corresponding matching increases by 1.

If Ry N Z is empty, then let A := min{e(i,§) —y(i) —y(j):i€ ZNS,je T\ Z}. A
is positive because there are no tight edges between Z 1 S and T’ \ Z . Increase y by /A on the vertices

of Z M S and decrease y by A on the vertices of Z (1 T". The resulting y is still a potential. The graph
Gychanges, but it still contains M. We orient the new edges from S to 7. By the definition of A the set Z
of vertices reachable from /X’ gincreases (note that the number of tight edges does not necessarily

increase).

We repeat these steps until M is a perfect matching, in which case it gives a minimum cost assignment.

The running time of this version of the method is 0(174): M is augmented n times, and in a phase where
M is unchanged, there are at most n potential changes (since Z increases every time). The time needed for

http://en.wikipedia.org/wiki/Hungarian_method 6/29/2009

Hungarian algorithm - Wikipedia, the free encyclopedia Page 3 of 5

a potential change is 0(172).

Matrix interpretation

Given 77 workers and tasks, and an nxn matrix containing the cost of assigning each worker to a task, find
the cost minimizing assignment.

First the problem is written in the form of a matrix as given below

al a2 ad ad
bl b2 b3 b4
cl 2 3 cd
dl d2 d3 d4

where a, b, ¢ and d are the workers who have to perform tasks 1, 2, 3 and 4. al, a2, a3, a4 denote the
penalties incurred when worker "a" does task 1, 2, 3, 4 respectively. The same holds true for the other
symbols as well. The matrix is square, so each worker can perform only one task.

Then we perform row operations on the matrix. To do this, the lowest of all g; (i belonging to 1-4) is

taken and is subtracted from the other elements in that row. This will lead to at least one zero in that row
(We get multiple zeros when there are two equal elements which also happen to be the lowest in that
row). This procedure is repeated for all rows. We now have a matrix with at least one zero per row. Now
we try to assign tasks to agents such that each agent is doing only one task and the penalty incurred in
each case is zero. This is illustrated below.

0 |a2' 0" a4
bl' b2' b3' 0
0" c2' c3' c4
dl' 0" |d3' d4'

The zeros that are indicated as 0' are the assigned tasks.

Sometimes it may turn out that the matrix at this stage cannot be used for assigning, as is the case in for
the matrix below.

0 a2' a3' a4’
bl' b2' b3' 0

0 c2'c3 c4
dl' 0 |d3' d4
In the above case, no assignment can be made. Note that task 1 is done efficiently by both agent a and c.
Both can't be assigned the same task. Also note that no one does task 3 efficiently. To overcome this, we
repeat the above procedure for all columns (i.e. the minimum element in each column is subtracted from

all the elements in that column) and then check if an assignment is possible. In most situations this will
give the result, but if it is still not possible to assign then the procedure described below must be

http://en.wikipedia.org/wiki/Hungarian_method 6/29/2009

Hungarian algorithm - Wikipedia, the free encyclopedia Page 4 of 5

followed.

Initially assign as many tasks as possible then do the following (assign tasks in rows 2, 3 and 4)

0 |a2' a3' a4’
bl' b2' b3' 0
0" c2' c3" c4
dl' 0" |d3' d4'
Mark all rows having no assignments (row 1). Then mark all columns having zeros in that row (column

1). Then mark all rows having assignments in the given column (row 3). Repeat this till a closed loop is
obtained.

X

0 a2' a3' a4' x
bl' b2' b3' 0

0" |c2'c3" c4' %
dl'l 0' d3' d4'

Now draw lines through all marked columns and unmarked rows.

X
0 |a2'|a3' ad' x
bl' b2' b3' 0
0" c2'c3" c4' %
d1'l 0' d3' d4'
From the elements that are left, find the lowest value. Subtract this from all elements that are not struck.

Add this to elements that are present at the intersection of two lines. Leave other elements unchanged.
Now assign the tasks using above rules. Repeat the procedure till an assignment is possible.

Basically you find the second minimum cost among the two rows. The procedure is repeated until you are
able to distinguish among the workers in terms of least cost.

Bibliography
= Harold W. Kuhn, "The Hungarian Method for the assignment problem", Naval Research Logistics

Quarterly, 2:83-97, 1955. Kuhn's original publication.
= Harold W. Kuhn, "Variants of the Hungarian method for assignment problems", Naval Research

Logistics Quarterly, 3: 253258, 1956.

= J. Munkres, "Algorithms for the Assignment and Transportation Problems", Journal of the Society
of Industrial and Applied Mathematics, 5(1):32-38, 1957 March.

= M. Fischetti, "Lezioni di Ricerca Operativa", Edizioni Libreria Progetto Padova, Italia, 1995.

» R. Ahuja, T. Magnanti, J. Orlin, "Network Flows", Prentice Hall, 1993.

http://en.wikipedia.org/wiki/Hungarian_method 6/29/2009

Hungarian algorithm - Wikipedia, the free encyclopedia Page 5 of 5

References

1.

A http://www .lix.polytechnique.fr/~ollivier/JACOBI/jacobiEngl.htm
p poly q] g

External links

Mordecai J. Golin, Bipartite Matching and the Hungarian Method, Course Notes, Hong Kong
University of Science and Technology.
R. A. Pilgrim, Munkres' Assignment Algorithm. Modified for Rectangular Matrices, Course notes,
Murray State University.

= Or: Step-by-step description of algorithm

Mike Dawes, The Optimal Assignment Problem, Course notes, University of Western Ontario.
On Kuhn's Hungarian Method - A tribute from Hungary, Andrds Frank, Egervary Research Group,
Pazmany P. setany 1/C, H1117, Budapest, Hungary.

Implementations

(Note that not all of these satisfy the 0(173) time constraint.)

Python implementation

Ruby implementation with unit tests

Online interactive implementation Please note that this implements a variant of the algorithm as
described above.

Graphical implementation with options (Java applet)

Serial and parallel implementations.

Implementation in Matlab and C

Perl implementation

Lisp implementation

C++ implementation

Another C++ implementation with unit tests

Java implementation (GPLv3)

Another Java implementation with JUnit tests (Apache 2.0)
Serial and parallel implementations.

Retrieved from "http://en.wikipedia.org/wiki/Hungarian_algorithm"
Categories: Matching | Combinatorial optimization

This page was last modified on 23 May 2009 at 12:01.

Text is available under the Creative Commons Attribution/Share-Alike License; additional terms
may apply. See Terms of Use for details.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a U.S. registered 501(c)
(3) tax-deductible nonprofit charity.

http://en.wikipedia.org/wiki/Hungarian_method 6/29/2009

Munkres' Assignment Algorithm

Modified for Rectangular Matrices

Assignment Problem - Let C be an nxn matrix representing the costs of each of n workers to perform any
of njobs. The assignment problem is to assign jobs to workers so as to minimize the total cost. Since
each worker can perform only one job and each job can be assigned to only one worker the assignments
constitute an independent set of the matrix C.

P g r s Workers = {a,b,c,d}
[l 2 3 4 Jobs = {p.,q.¥,5}
G@j)=b 2 4 6 38 An arbitrary assignment
’ e 6 9 12 A= {{la,q), (b3}, {c,x),{dp}
g4 B 12 14

Total cost = 23

An arbitrary assignment is shown above in which worker a is assigned job g, worker b is assigned job s
and so on. The total cost of this assignment is 23. Can you find a lower cost assignment? Can you find
the minimal cost assignment? Remember that each assignment must be unique in its row and column.

A brute-force algorithm for solving the assignment problem involves generating all independent sets of
the matrix C, computing the total costs of each assignment and a search of all assignment to find a
minimal-sum independent set. The complexity of this method is driven by the number of independent
assignments possible in an nxn matrix. There are n choices for the first assignment, n-1 choices for the
second assignment and so on, giving n! possible assignment sets. Therefore, this approach has, at least,
an exponential runtime complexity.

As each assignment is chosen that row and column are eliminated from consideration. The question is
raised as to whether there is a better algorithm. In fact there exists a polynomial runtime complexity
algorithm for solving the assignment problem developed by James Munkre's in the late 1950's despite the
fact that some references still describe this as a problem of exponential complexity.

The following 6-step algorithm is a modified form of the original Munkres' Assignment Algorithm
(sometimes referred to as the Hungarian Algorithm). This algorithm describes to the manual manipulation
of a two-dimensional matrix by starring and priming zeros and by covering and uncovering rows and
columns. This is because, at the time of publication (1957), few people had access to a computer and the
algorithm was exercised by hand.

Step 0: Create an nxm matrix called the cost matrix in which each element represents the cost of
assigning

one of n workers to one of m jobs. Rotate the matrix so that there are at least as many columns as rows
and

let k=min(n,m).

Step 1: For each row of the matrix, find the smallest element and subtract it from every element in its row.
Go to Step 2.

Step 2: Find a zero (2) in the resulting matrix. If there is no starred zero in its row or column, star Z.
Repeat
for each element in the matrix. Go to Step 3.

Step 3: Cover each column containing a starred zero. If K columns are covered, the starred zeros
describe
a complete set of unique assignments. In this case, Go to DONE, otherwise, Go to Step 4.

Step 4: Find a noncovered zero and prime it. If there is no starred zero in the row containing this primed
zero, Go to Step 5. Otherwise, cover this row and uncover the column containing the starred zero.
Continue

in this manner until there are no uncovered zeros left. Save the smallest uncovered value and Go to Step
6.

Step 5: Construct a series of alternating primed and starred zeros as follows. Let Z0 represent the
uncovered primed zero found in Step 4. Let Z1 denote the starred zero in the column of Z0 (if any). Let Z2
denote the primed zero in the row of Z1 (there will always be one). Continue until the series terminates at
a

primed zero that has no starred zero in its column. Unstar each starred zero of the series, star each
primed

zero of the series, erase all primes and uncover every line in the matrix. Return to Step 3.

Step 6: Add the value found in Step 4 to every element of each covered row, and subtract it from every
element of each uncovered column. Return to Step 4 without altering any stars, primes, or covered lines.

DONE: Assignment pairs are indicated by the positions of the starred zeros in the cost matrix. If C(i,j) is a
starred zero, then the element associated with row i is assigned to the element associated with column j.
Some of these descriptions require careful interpretation. In Step 4, for example, the possible situations
are, that there is a noncovered zero which get primed and if there is no starred zero in its row the
program goes onto Step 5. The other possible way out of Step 4 is that there are no noncovered zeros at
all, in which case the program goes to Step 6.

At first it may seem that the erratic nature of this algorithm would make its implementation difficult.
However, we can apply a few general rules of programming style to simplify this problem. The same rules
can be applied to any step-algorithm.

Good Programming Style and Design Practices

1. Strive to create readable source code through the use of blank lines, comments and spacing.

2. Use consistent naming conventions, for variable and constant identifiers and subprograms.

3. Use consistent indentation and always indent the bodies of conditionals and looping constructs.

4. Place logically distinct computations in their own execution blocks or in separate subprograms.

5. Don't use global variables inside subprograms except where such use is clear and improves readability
and efficiency.

6. Use local variables where appropriate and try to limit the creation of unnecessary identifiers in the main
program.

7. Open I/0O files only when needed and close them as soon as they are no longer required.

8. Work to keep the level of nesting of conditionals and loops at a minimum.

9. Use constant identifiers instead of hardwiring for-loop and array ranges in the body of the code with
literal

values.

10. When you feel that things are getting out of control, start over. Re-coding is good coding.

By applying Rule 4 to the step-algorithm we decide to make each step its own procedure. Now we can
apply Rule 8 by

using a case statement in a loop to control the ordering of step execution.
A old implementation of Munkres - This implementation is

