
Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions 

 

 

166

c       program's elapsed time on a quiet system. 

c 

c       Uncomment for your corresponding platform 

c 

c       Note: On the SGI the resolution of etime is  1/HZ 

c 

c     Output 

c       time: user+sytem executime time 

c     ................................................................... 

 

c      SUN -Solaris 

       time=etime(tar) 

 

c      HP - HPUX 

c      time=etime_(tar)              !f90 

c      time=etime_(tar)              !f77 

 

c      COMPAQ - alpha 

c      time=etime(tar) 

 

c      CRAY 

c      time=tsecnd() 

 

c      IBM 

c      time=0.01*mclock() 

 

c      SGI origin 

c      time=etime(tar) 

 

       return 

       end 

3.9 Alternative Approach for Handling Indefinite Matrix 
[3.5]

 

System of sparse, symmetrical, INDEFINITE simultaneous linear equations have 

arisen naturally in several important engineering and science application. 

Tremendous progress has been made in the past years for efficient   large-scale   

solutions   of   sparse, symmetrical, definite equations.  However, for sparse 

indefinite system of equations, only a few efficient, robust algorithms, and software 

are available (especially the FORTRAN versions in the public domains). These 

existing indefinite sparse solvers have been discussed in recent papers [1.9, 3.2, 3.5-

3.7]. 

Major difficulties involved in developing efficient sparse indefinite solvers include 

the need for pivoting (or 2×2 pivoting) [3.8], criteria for when and how to switch the 

row(s), effective strategies to predict and to minimize the nonzero fill-in terms etc.... 

 

In this work, an alternative approach is proposed for solving system of sparse, 

symmetrical, indefinite equations. The key idea here is first to transform the original 

indefinite system into a new (modified) system of symmetrical, "definite" equations. 

Well-documented sparse definite solvers [1.9, 3.9-3.10]  can  be  conveniently  used 

to obtain the "intermediate  solution"  (in  the "modified" system). This 

"intermediate" solution is then transformed back into the "original" space to obtain 

the "original" unknown vector. 

 

To validate the formulas developed in our paper, and to evaluate the numerical 

performance of our proposed alternative approach, several NASA indefinite system 



Duc T. Nguyen 

 

167

of equations have been solved (ranging from 51 to 15,637 indefinite   equations) on 

inexpensive workstations.  Our preliminary numerical results have indicated that this 

alterative approach may offer potential   benefits   in   terms of accuracy, reducing 

incore memory requirements, and even improving the computational speed over the 

traditional approach when the alternative approach is implemented in a parallel 

computer environments. 

    

In this section, one considers systems of indefinite equations in the form as shown in 

Eq. (3.99): 

 

[ ] fxA
vr

=                                                        (3.99) 

 

 where: 

 [ ] 







=

0a

aK
A T                                                   (3.100) 

 

In Eq. (3.100), the symmetrically indefinite matrix [A] has the dimension n × n, and 

[K], [a] and [o] are sub-matrices. To simplify the discussions, it is assumed  (for 

now) that the lower right sub-matrix [o] has the dimension 1 x 1.  Thus, matrix  [A] 

has a zero on its (last) diagonal. Sub-matrix [K], shown in Eq. (3.100), is also 

symmetrical. 

 

The key ideas here is to transform Eq. (3.99) into a new system, such as 

 

 [ ] fxA
*

rr
=                                                 (3.101) 

 

where   the   new  coefficient  matrix  [ ]A can be computed as 

 

[ ] [ ] [ ]AAA ∆+=                                              (3.102) 



Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions 

 

 

168

Matrix [ ]A∆ , shown in Eq. (3.102), should be selected with the following criterias: 

 

 a.) [ ]A∆  should be sparse, symmetrical and simple 

 b.) The   resulting   new   matrix  [ ]A  will  have better properties (such as  

       positive definite) as comparing to the original coefficient matrix [A] 

  

Thus, one selects matrix [ ]A∆ as : 

 

[ ]





























=∆

1

00

000

0000

A

MMO

MMO

LL

O

LLL

                           (3.103) 

  

Eq. (3.103) can also be expressed as 

 

[ ] T
n11nnn d*dA ××× =∆

rr
                                    (3.104) 

 

 where: 

 

                                 



























=

1

0

0

0

d
r

                                              (3.105) 

  

Using Eq. (3.102), Eq. (3.99) can be re-written as: 

 

[ ] fxAA
rr

=∆−                                               (3.106) 

Substituting Eq. (3.104) into Eq. (3.106), one obtains: 

 



Duc T. Nguyen 

 

169

[ ] fxddA T
ii

vr
=−                                               (3.107) 

 Pre-multiplying both sides of Eq. (3.107) by [ ] 1
A

−
, one has 

 

 [ ] *T
ii

1 xxddAI
rv

=− −                                           (3.108) 

 In Eq. (3.108), [I] is an n x n identity matrix, and *x
v

is given as 

 

 [ ] f*Ax
1*

vr −
≡                                            (3.109) 

 Eq. (3.108) can also be expressed as: 

 

[ ] *T
ii xxdpI

rvr
=−                                          (3.110) 

  where: 

 [ ] i
1

i d*Ap
−

≡
v

                                           (3.111) 

 or: 

[ ] ii dpA ≡
v

                                               (3.112) 

 From Eq. (3.110), one obtains 

 

 xdpxx T
ii

* rrr
−=                                        (3.113) 

 Pre-multiplying Eq. (3.113) by T

id , one gets 

 

xdpdxdxd T
ii

T
i

T
i

*T
i

rrr
−=                                 (3.114) 

 Since *T
i

xd
r

, and xdT
i

r
 are scalar quantities, hence Eq. (3.114) can be re-written as 

 

 xd)pd1(xd T
ii

T
i

*T
i

rr
−=                                    (3.115) 

 or 

 

i
T
i

*T
iT

i
pd1

xd
xd

−
=

r
r

                                             (3.116) 

 

 From Eq. (3.113), one obtains 

 



Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions 

 

 

170

  )xd(pxx T
ii

* rrr
+=                                         (3.117) 

 

 Substituting Eq. (3.116) into Eq. (3.117), one has 

 

 

i
T
i

*T
i

i
*

pd1

xd
*pxx

−
+=

r
rr

                                        (3.118) 

 

 A  Remark on Eq. (3.118) 

 

Both matrices [A] and [ ]A are assumed to be non-singular. Then, from Eqs. 

(3.107,3.106,3.102), one obtains the following relationship: 

 

                 [ ] [ ] [ ] [ ]A*AddAA
1T

ii
1 −−

=−∗  

                 [ ] [ ] T
ii

1
ddAI

−
− = product of 2 non-singular matrices [ ] [ ]AandA

1−
 

                 [ ] T
iidpI − = non-singular 

 

Thus, in a more general case, the denominator of Eq. (3.118) will also be NON-

SINGULAR. The entire alternative formulation can be summarized in a convenient 

step-by-step procedure: 

 

Step 0:  Use Eq. (3.105) to form id
v

. 

              Then matrices [ ]A∆ and [ ]A  can be computed according to Eqs. (3.104) and 

              (3.102), respectively 

 

Step 1:  Use Eq. (3.101) to solve for *x
v

 

 

Step 2:  Use Eq. (3.112) to compute ip
r

. 

  

Step 3:  Use Eq. (3.118) to compute x
r

. 

 



Duc T. Nguyen 

 

171

Generalized Alternative Formulation for Indefinite Systems 

 

The alternative formulation presented in the previous section can now be generalized 

for cases where the original coefficient matrix [A] has multiple zero values for its 

diagonal terms. In this case, the sub-matrix [ ]A∆ will have the following form: 

 

[ ]

rowj

rowi

10000

01000

00000

00000

00000

A

th

th

→

→























=∆                     (3.119) 

Eq. (3.119) can be expressed as: 

 

[ ] [ ] [ ]























+























=∆+∆=∆

10000

00000

00000

00000

00000

00000

01000

00000

00000

00000

AAA ji          (3.120) 

or 

[ ] [ ]∑
=

∆=∆
m

1i

iAA                                           (3.121) 

In Eq. (3.121), m (<<n) represents the total number of zero diagonal terms of the 

original coefficient matrix [ ]A . Furthermore, Eq. (3.120) can be represented as: 

 

[ ] [ ] [ ]T nmmnnn DDA ××× ∗=∆                                 (3.122) 

where: 

[ ]























=

10

01

00

00

00

D                                               (3.123) 

 

Following exactly the same derivations given in the previous section, the 

“generalized” version of Eqs. (3.112), and (3.118) can be given as: 

 



Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions 

 

 

172

[ ] [ ] [ ] mnmnnn DPA ××× =∗                                    (3.124) 

 

[ ] [ ] [ ] ∗
××

−

×× ∗−∗+= 1n
T

nm

1T
mmmn

* x*DPDIPxx
vvr

                     (3.125) 

 

Remarks: 

 

(a) If [ ]A is a symmetrical matrix (which it is!), then [ ] 1
A

−
is also symmetrical. 

One starts with the following identity 

 

[ ][ ] [ ] [ ] [ ]AAIAA
11 −−

==                                    (3.126) 

 

Transposing both sides of Eq. (3.126), one obtaines 

 

[ ] [ ] [ ]IAA
TT1

=
−

                                        (3.127) 

 

Since both matrices [ ]A and [ ]I  are symmetrical, Eq. (3.127) becomes 

 

[ ] [ ] [ ]IAA
T1

=
−

                                          (3.128) 

or  

[ ] [ ] [ ][ ]AAAA 1T1 −− =                                       (3.129) 

 

Post-multiplying both sides of Eq. (3.129) by [ ]1
A

−
, one has 

 

[ ] [ ]1T1
AA

−−
=                                            (3.130) 

Thus, [ ]1
A

−
 is also a symmetrical matrix. 

 

(b) Matrix product [D]
T
[P] is also symmetrical. 

 

From Eq. (3.124), one has 

[ ] [ ]
T T 1D [P] D A [D]− =                                        (3.131) 



Duc T. Nguyen 

 

173

Transposing both sides of Eq. (3.131), one obtains 

 

[ ] [ ] [ ] ]D[ADPD
T1TTT −=                                          (3.132) 

 

Utilizing Eq. (3.130), Eq. (3.132) becomes 

 

[ ] [ ] [ ] ]D[ADPD
T1TTT −=                                          (3.133) 

 

Comparing Eq. (3.131), Eq. (3.133), one concludes 

 

[ ] [ ]TTT
PD]P[D =                                                 (3.134) 

Thus, the product of matrices D
T
P is also symmetrical. 

  

(c) The orders of computations of Eq. (3.125) should be done as following 

 

1
st
 Step: Compute [ ] *T

xDv
rr

=                                                                     (3.135) 

2
nd

 Step: Let [ ] PDIZ T
mm −≡ ×                                                                   (3.136) 

3
rd

 Step: Let [ ] yvZ
1 rr

≡
−

                                                                              (3.137) 

or [ ] vyZ
rv

=                                                                                                   (3.138) 

The system of equations, shown in Eq. (3.138), in 

general is dense (but still is symmetrical) and can 

be solved for the unknown vector y
r

. 

4
th

 Step: y]P[xx * rvr
+=                                                                                 (3.139) 

 

(d) Out-of core memory can be used to store matrix [P]. Since the matrix [P], in 

general, could be large (especially true when m is large), thus, block of L 

columns (where L<<m<<n) for matrix [P] could be solved, and stored in 

the out-of-core fashion from Eq. (3.124). The specific value of L can be 

either specified by the user, or can be automatically calculated by the 

computer program (based on the knowledge of available incore memory). 

Later on, block of L columns can be retrieved into the core memory for the 

computation of x
r

in Eq. (3.125). 

 



Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions 

 

 

174

(e) Overhead computational costs for this alternative formulation is essentially 

occurred in the forward and backward solution phase to solve for matrix 

[P]. The number of right-hand-side columns of matrix [D] is m. In the 

parallel computer environments, the overhead costs can be reduced to a 

“single” forward and backward solution, since each processor will be 

assigned to solve for 1 column of the matrix [D]. 

 

(f) The computational (overhead) cost for vector y
r

(see Eq. 3.138) is 

insignificant, since the dimension of matrix [Z] is small, and the right-hand-

side of Eq. (3.138) is a “single” vector. 

 

(g) In practice, the value of max. Aii (for i = 1,2,..., n) should be used in Eq. 

(3.119), instead of  the value. 1. Furthermore, the alternative formulation 

can be made even more stable by using the Gerschgorin's theorem to 

determine the precise (diagonal) locations and the precise values to be used 

for diagonals terms of matrix [ ]A∆  in Eq. (3.119). Let Zi denote the circle 

in the complex plane with center aii (= diagonal terms of matrix [A] whose 

eigenvalues are sought) and radius ri. Thus, the eigenvalues of [A] will fall 

into those circles 

 

                    { }iiii razCzZ ≤−∈=                                 (3.140) 

where 

∑
≠=

=
n

ij;1j

iji ar  for I=1,2,…,n                                (3.141) 

 

Hence: 

iiiiiii raZra +≤≤−                                    (3.142) 

 

From Eq. (3.142), one can estimate the number of NEGATIVE and/or POSITIVE 

eigenvalues of matrix [A]. For example, if aii - ri > 0, then the eigenvalues associated 

with the circle Zi must be positive. Adding a positive number δ  to the diagonal term 

of [A] will shift the value of the eigenvalue associated with the circle Zi. For 

example, adding δ  to make 

 

0ra iiii >δ+−                                           (3.143) 

 

will ensure that the eigenvalue associated with the circle Zi to be positive. From Eq. 

(3.143), one may add 

0ar iiii >−=δ                                           (3.144) 



Duc T. Nguyen 

 

175

or, to be even safer 

>∈−=δ iiii ar   where ∈ is a small positive value       (3.145) 

 

to the diagonal term aii so that all eigenvalues will be positive (and therefore, the new 

matrix A  will be positive definite). 

 

A simple example is given in the following paragraphs to clarify the above 

discussions. The matrix [A] is given as 

 

[ ]
















−

=

411

101

014

A                                            (3.146) 

From the data shown in Eq. (3.146), one computes: 

 









=−=δ=−=

=−=δ==

−=−=δ==

6arand2r;4a

2arand2r;0a

3arand1r;4a

3333333

2222222

1111111

                        (3.147) 

 

Let ∈=1, it is then suggested to add positive values 6and,2 32 =δ=δ to the second, 

and third diagonal terms of [A]. The new matrix A  is therefore defined as 

 

                                        [ ] [ ] [ ]AAA ∆+=  

 

[ ]
















+

















−

=

600

020

000

411

101

014

A                           (3.148) 

                                         [ ]
















=

211

121

014

A  

 

The 3 eigenvalues associated with matrices [A] and A  are =λ A {-4.2146, -0.0556, 

4.2702} and 
A

λ = {4.618, 2.382, 1.000}, respectively. 

 



Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions 

 

 

176

(h) Major advantages of the generalized alternative formulation are: 

• Pivoting strategies are NOT required, hence the algorithm should be 

more robust and better solution accuracy can be expected. 

• Incore memory requirements can be reduced, and can be predicted before 

entering the numerical factorization phase. 

• Any positive definite sparse solvers can be integrated into this alternative 

formulation. 

 

(i) In actual computer coding, there is no need to "push" all zero diagonal 

terms of [A] to the bottom right of [A]. Furthermore, the sub-matrix [o] 

shown in Eq. (3.100) does NOT have to be completely zero. In other words, 

the off-diagonal terms of this sub-matrix [o] may, or may not be zero (only 

the diagonal terms of sub-matrix [o] are zero). 

 

Numerical Applications 

 

Based upon the proposed alternative formulation presented in previous sections, 

several bench-mark indefinite system of equations (obtained from NASA Langley 

Research Center) have been used to validate the proposed algorithms. The sizes (= 

Neq = Number of equations), the original number of non-zero, off-diagonal 

coefficients of matrix [A] (= Ncoff) are given in Table 3.12. In the partitioned form, 

Eq. (3.99) can also be expressed as (please refer to Eq. 3.100):  

 









=
















λλ f

f

x

x

0a

aK uu
T

r

v

r

r

                                               (3.149) 

 

For structural mechanic applications, the vector ux
r

 may represent the 

displacements, where-as the vector λx
r

may represent the Lagrange multipliers 

associated with the interfaced problems. Solution accuracy of the proposed 

algorithms can be established by comparing the following quantities with Boeing's 

sparse indefinite equation solver: 

 

1. Maximum absolute displacement (of ux
r

, shown in Eq. 3.149) 

2. Summation of absolute displacements (of ux
r

, shown in Eq. 3.149) 

3. Relative error norm (Rel Err = 
f

fxA

r

rr
−

, shown in Eq. (3.99) 



Duc T. Nguyen 

 

177

The above quantities are also included in Table 3.12. It should be emphasized that 

CPU time comparisons are NOT yet included in this study, due to the following 

reasons: 

 

(a) Boeing's sparse indefinite solver timing has been implemented earlier on 

the Cray-YMP supercomputer. However, the author’ FORTRAN code has 

been  recently tested on Old Dominion University (ODU) Sun (= Norfolk) 

workstation, since the author currently has no access to the Cray-YMP,nor 

Boeing's source code. 

(b) The reordering algorithms, such as Modified Minimum Degree (MMD) or        

Nested Disection (ND) have NOT yet been integrated into the current       

version of the author' FORTRAN code. 

(c) Parallel processing for [ ][ ] [ ]DPA = = multiple RHS has not been done. 

 

Table 3.12 Comparison of ODU and Boeing Indefinite Sparse Solvers 

 

Neq Ncoff 
∑

i
ui

x  Max
iux  

Rel Err Time 

(ODU-

Norfolk) 

51(Boeing) 218 2.265*10-2 

(2.265*10-2) 

2.000*10-3 

(1.999*10-3) 

4.68*10-6 

(7.0*10-14) 

0.0sec 

N/A 

247(Boeing) 2009 3.16 

(3.16) 

0.1525 

(0.1525) 

2.63*10-10 

(4.03*10-10) 

0.1sec 

N/A 

1440(Boeing) 22137 29.68 

(29.68) 

0.20289 

(0.20289) 

4.27*10-11 

(3.26*10-10) 

8.7sec 

N/A 

7767(Boeing) 76111 113.71 

(113.71) 

0.1610576 

(0.1610576) 

5.31*10-8 

(6.00*10-8) 

42.7sec 

N/A 

15367(Boeing) 286044 512.35 

(512.35) 

0.205696 

(0.205696) 

9.22*10-10 

(4.38*10-11) 

5400sec 

N/A 

 

Conclusions 

 

Alternative formulations and algorithms for solving sparse system of equations have 

been developed. The proposed numerical algorithms have been implemented and 

validated through several bench-mark NASA applications. Preliminary results have 

indicated that the proposed alternative algorithms are quite robust and are in 

excellent agreements with the Boeing's commercial sparse indefinite solver. Detailed 

analysis of the proposed sparse indefinite algorithms have suggested that: 



Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions 

 

 

178

 

(a) The proposed algorithms are quire robust and accurate 

(b) The additional (overhead) costs for the proposed algorithms is mainly occurred 

in the forward and backward solution phase (of the associated positive definite 

system). This overhead costs can be easily and drastically reduced by 

performing the forward and backward solution phase (of multiple-right-hand-

side vectors) in the parallel computer environments. 

(c) In the proposed formulation, one only deals with "positive-definite" sparse 

systems. Thus, complex and expensive pivoting strategies are NOT required. 

As the consequences of these desired features, several important advantages can 

be realized, such as: 

• Incore memory requirements can be easily and efficiently predicted 

(before entering the sparse numerical factorization phase). 

• The amount of non-zero "fill-in" (and hence, the number of floating 

operations) can be reduced. 

• Any efficient sparse "positive definite" solvers can be conveniently 

integrated into the proposed formulations 

 

Efforts are underway to incorporate various reordering algorithms (such as MMD, 

ND, etc...) into the proposed algorithms and to implement the entire procedure in the 

MPI parallel computer environments. Additional results will be reported in a near 

future. 

3.10 Unsymmetrical Matrix Equation Solver 

Let’s consider the following system of unsymmetrical linear equations 

 

                 Ax = b                                                 (3.150) 

where the coefficient matrix A is unsymmetrical and the vectors x and b represent 

the unknown vector (nodal displacement) and the right-hand side (known nodal load) 

vector, respectively. In this section, a solver for unsymmetrical matrices where the 

upper and lower triangular portions of the matrix are symmetrical in locations but 

unsymmetrical in values (see Figure 3.6) will be developed.  


