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[« program's elapsed time on a quiet system.
c
c Uncomment for your corresponding platform
c
c Note: On the SGI the resolution of etime is 1/HZ
c
c Output
c time: user+sytem executime time
O e e e e e i e e e e e i e e e e e
c SUN -Solaris
time=etime (tar)
[¢] HP - HPUX
c time=etime_ (tar) 1£90
c time=etime_ (tar) 1£77
c COMPAQ - alpha
c time=etime (tar)
[¢] CRAY
c time=tsecnd()
[¢] IBM
c time=0.01*mclock ()
c SGI origin
c time=etime (tar)
return
end

3.9 Alternative Approach for Handling Indefinite Matrix !

System of sparse, symmetrical, INDEFINITE simultaneous linear equations have
arisen naturally in several important engineering and science application.
Tremendous progress has been made in the past years for efficient large-scale
solutions  of  sparse, symmetrical, definite equations. However, for sparse
indefinite system of equations, only a few efficient, robust algorithms, and software
are available (especially the FORTRAN versions in the public domains). These
existing indefinite sparse solvers have been discussed in recent papers [1.9, 3.2, 3.5-
3.7].

Major difficulties involved in developing efficient sparse indefinite solvers include
the need for pivoting (or 2x2 pivoting) [3.8], criteria for when and how to switch the
row(s), effective strategies to predict and to minimize the nonzero fill-in terms etc....

In this work, an alternative approach is proposed for solving system of sparse,
symmetrical, indefinite equations. The key idea here is first to transform the original
indefinite system into a new (modified) system of symmetrical, "definite" equations.
Well-documented sparse definite solvers [1.9, 3.9-3.10] can be conveniently used
to obtain the "intermediate solution" (in the "modified" system). This
"intermediate" solution is then transformed back into the "original" space to obtain
the "original" unknown vector.

To validate the formulas developed in our paper, and to evaluate the numerical
performance of our proposed alternative approach, several NASA indefinite system
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of equations have been solved (ranging from 51 to 15,637 indefinite equations) on
inexpensive workstations. Our preliminary numerical results have indicated that this
alterative approach may offer potential benefits in terms of accuracy, reducing
incore memory requirements, and even improving the computational speed over the
traditional approach when the alternative approach is implemented in a parallel
computer environments.

In this section, one considers systems of indefinite equations in the form as shown in
Eq. (3.99):

AR =f (3.99)

where:

NER. (3.100)
aT 0

In Eq. (3.100), the symmetrically indefinite matrix [A] has the dimension n x n, and
[K], [a] and [o] are sub-matrices. To simplify the discussions, it is assumed (for
now) that the lower right sub-matrix [o] has the dimension 1 x 1. Thus, matrix [A]
has a zero on its (last) diagonal. Sub-matrix [K], shown in Eq. (3.100), is also
symmetrical.

The key ideas here is to transform Eq. (3.99) into a new system, such as

AR =1 (3.101)

where the new coefficient matrix lXJcan be computed as

[A]=[a]+[aA] (3.102)
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Matrix [AA], shown in Eq. (3.102), should be selected with the following criterias:

a.) [AA] should be sparse, symmetrical and simple

b.) The resulting new matrix [X] will have better properties (such as
positive definite) as comparing to the original coefficient matrix [A]

Thus, one selects matrix [AA] as:

[AA]= P (3.103)

Eq. (3.103) can also be expressed as

[AA]nxn = an><l * ag(n (3.104)
where:
0
0
d=
0 (3.105)
1

Using Eq. (3.102), Eq. (3.99) can be re-written as:

[A-aafk =f (3.106)
Substituting Eq. (3.104) into Eq. (3.106), one obtains:
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[X—didﬂizf (3.107)
Pre-multiplying both sides of Eq. (3.107) by [K]_l , one has

[1 —X‘ldidﬂx =X (3.108)

In Eq. (3.108), [I] is an n x n identity matrix, and X is given as

< =[a] !+ (3.109)
Eq. (3.108) can also be expressed as:
lI—f)idiT]X:i* (3.110)
where:
B =[a] "+, G.111)
or:
[A] 5; =q; (3.112)
From Eq. (3.110), one obtains
X" =X-p;d] X (3.113)

Pre-multiplying Eq. (3.113) by d , one gets

1

dfx" = dfx —dlp,alx (3.114)

Since diT)?* , and diT)? are scalar quantities, hence Eq. (3.114) can be re-written as

dfx" = a-dfp)dfx (3.115)
or
T_*
dl'x =dl—’; (3.116)
1=dip;

From Eq. (3.113), one obtains
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X=X +p;(dX) (3.117)
Substituting Eq. (3.116) into Eq. (3.117), one has

TA.*
" di X

1-d{ p;

A Remark on Eq. (3.118)

Both matrices [A] and lKJ are assumed to be non-singular. Then, from Egs.
(3.107,3.106,3.102), one obtains the following relationship:

AT+t (3T +1)
[I]— [KrldidiT = product of 2 non-singular matrices [Krland[A]

[I]— pidiT = non-singular

Thus, in a more general case, the denominator of Eq. (3.118) will also be NON-
SINGULAR. The entire alternative formulation can be summarized in a convenient
step-by-step procedure:

Step 0: Use Eq. (3.105) to form d;.

Then matrices [AA] and lKJ can be computed according to Eqgs. (3.104) and
(3.102), respectively

Step 1: Use Eq. (3.101) to solve for %"

Step 2: Use Eq. (3.112) to compute p; .

Step 3: Use Eq. (3.118) to compute X .
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Generalized Alternative Formulation for Indefinite Systems

The alternative formulation presented in the previous section can now be generalized
for cases where the original coefficient matrix [A] has multiple zero values for its
diagonal terms. In this case, the sub-matrix [AA] will have the following form:

00000
00000
[AA]=]0 0 0 0 © (3.119)
0001 0|>i"row
0000 1]=j"row
Eq. (3.119) can be expressed as:
[0 0 0 0 0] [00 00 0]
00000 |(000O0O
[AA]=[AA; ]+[aa;]={0 0 0 0 o|+[0 0 0 0 0 (3.120)
000 10|[000O00O0
000 0O0/[0000O0 1]
or
m
[AA]=3"[aA ] (3.121)
i=1

In Eq. (3.121), m (<<n) represents the total number of zero diagonal terms of the
original coefficient matrix [A] Furthermore, Eq. (3.120) can be represented as:

[AA] = D) *[DFen (3.122)

where:

[D]= (3.123)

o = O O O
- o O O O

Following exactly the same derivations given in the previous section, the
“generalized” version of Egs. (3.112), and (3.118) can be given as:
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[X]nxn * [P]nxm = [D]nxm (3.124)

L [ T ]‘1 .
%=X+ [Pl * [l =D "P| " # D[y * X (3.125)

Remarks:

(a) If lX] is a symmetrical matrix (which it is!), then [K]_l is also symmetrical.

One starts with the following identity
[A]aT" == [A1"[A] (3.126)
Transposing both sides of Eq. (3.126), one obtaines
ATIAT =1 (3.127)
Since both matrices [A |and [1] are symmetrical, Eq. (3.127) becomes
K A)=1 (3.128)
] &)= (5] (3.129)

or

Post-multiplying both sides of Eq. (3.129) by E_l J, one has

AT =[a"] (3.130)

Thus, [X’l] is also a symmetrical matrix.

(b) Matrix product [D]T[P] is also symmetrical.

From Eq. (3.124), one has
[D]" P1=[D]" [K‘l][D] 3.131)
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Transposing both sides of Eq. (3.131), one obtains

[DTP]T =[p[f [K‘lr[D] (3.132)
Utilizing Eq. (3.130), Eq. (3.132) becomes

[DTP]r =[p[f [K‘lr [D] (3.133)
Comparing Eq. (3.131), Eq. (3.133), one concludes

I [DTP]T (3.134)

Thus, the product of matrices D'P is also symmetrical.

(c) The orders of computations of Eq. (3.125) should be done as following

1" Step: Compute v =[D]'x” (3.135)
2" Step: Let [Z] =1, ~D'P (3.136)
39 Step: Let [z] 'v=y (3.137)
or [z]y=¥ (3.138)

The system of equations, shown in Eq. (3.138), in
general is dense (but still is symmetrical) and can

be solved for the unknown vector y .

4" Step: X=X +[P]y (3.139)

(d) Out-of core memory can be used to store matrix [P]. Since the matrix [P], in
general, could be large (especially true when m is large), thus, block of L
columns (where L<<m<<n) for matrix [P] could be solved, and stored in
the out-of-core fashion from Eq. (3.124). The specific value of L can be
either specified by the user, or can be automatically calculated by the
computer program (based on the knowledge of available incore memory).
Later on, block of L columns can be retrieved into the core memory for the
computation of X in Eq. (3.125).
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(e) Overhead computational costs for this alternative formulation is essentially
occurred in the forward and backward solution phase to solve for matrix
[P]. The number of right-hand-side columns of matrix [D] is m. In the
parallel computer environments, the overhead costs can be reduced to a
“single” forward and backward solution, since each processor will be
assigned to solve for 1 column of the matrix [D].

(f) The computational (overhead) cost for vector y(see Eq. 3.138) is

insignificant, since the dimension of matrix [Z] is small, and the right-hand-
side of Eq. (3.138) is a “single” vector.

(g) In practice, the value of max. A; (for i = 1,2,..., n) should be used in Eq.
(3.119), instead of the value. 1. Furthermore, the alternative formulation
can be made even more stable by using the Gerschgorin's theorem to
determine the precise (diagonal) locations and the precise values to be used
for diagonals terms of matrix [AA] in Eq. (3.119). Let Z; denote the circle
in the complex plane with center a;; (= diagonal terms of matrix [A] whose
eigenvalues are sought) and radius r;. Thus, the eigenvalues of [A] will fall
into those circles

Zi ={Z€ C|Z—aii|Sri} (3140)
where
n
= lay| forl=1.2....n (3.141)
=1 j#i
Hence:
aii —riS Zi < aii +I'i (3142)

From Eq. (3.142), one can estimate the number of NEGATIVE and/or POSITIVE
eigenvalues of matrix [A]. For example, if a; - r; > O, then the eigenvalues associated
with the circle Z; must be positive. Adding a positive number o to the diagonal term
of [A] will shift the value of the eigenvalue associated with the circle Z;. For
example, adding d to make

aii _ri+81 >0 (3143)

will ensure that the eigenvalue associated with the circle Z; to be positive. From Eq.
(3.143), one may add
81 =13 —ag >0 (3144)
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or, to be even safer
d; =1, —a;; > where € is a small positive value  (3.145)

to the diagonal term a; so that all eigenvalues will be positive (and therefore, the new

matrix |K| will be positive definite).

A simple example is given in the following paragraphs to clarify the above
discussions. The matrix [A] is given as

10
0 1 (3.146)
1 -4

[Al-

_— N

From the data shown in Eq. (3.146), one computes:

aj; =41 =landd, =1, —a;; =-3
an :0;1‘2 = Zand52 =TIp —ajpy = 2 (3.147)
a33 =413 =2and 83 =13 —a33 =6

Let € =1, it is then suggested to add positive values 8, =2,and §, = 6 to the second,

and third diagonal terms of [A]. The new matrix |X| is therefore defined as

[A]=[a]+[aA]

41 077000
[Al=[1 0 1]+lo 2 0 (3.148)
11 -4/ 0o 0 6

410
[Al=|1 2 1
112

The 3 eigenvalues associated with matrices [A] and |X| are A = {-4.2146, -0.0556,
4.2702} and 7‘K = {4.618, 2.382, 1.000}, respectively.
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(h) Major advantages of the generalized alternative formulation are:
* Pivoting strategies are NOT required, hence the algorithm should be
more robust and better solution accuracy can be expected.
e Incore memory requirements can be reduced, and can be predicted before
entering the numerical factorization phase.
® Any positive definite sparse solvers can be integrated into this alternative
formulation.

(i) In actual computer coding, there is no need to "push" all zero diagonal
terms of [A] to the bottom right of [A]. Furthermore, the sub-matrix [o]
shown in Eq. (3.100) does NOT have to be completely zero. In other words,
the off-diagonal terms of this sub-matrix [0] may, or may not be zero (only
the diagonal terms of sub-matrix [o] are zero).

Numerical Applications

Based upon the proposed alternative formulation presented in previous sections,
several bench-mark indefinite system of equations (obtained from NASA Langley
Research Center) have been used to validate the proposed algorithms. The sizes (=
Neq = Number of equations), the original number of non-zero, off-diagonal
coefficients of matrix [A] (= Ncoff) are given in Table 3.12. In the partitioned form,
Eq. (3.99) can also be expressed as (please refer to Eq. 3.100):

Koalxl f“ (3.149)
aT 0 ;(}\‘ f}\' ’

For structural mechanic applications, the vector X, may represent the
displacements, where-as the vector X, may represent the Lagrange multipliers

associated with the interfaced problems. Solution accuracy of the proposed
algorithms can be established by comparing the following quantities with Boeing's
sparse indefinite equation solver:

1. Maximum absolute displacement (of X, , shown in Eq. 3.149)

2. Summation of absolute displacements (of X, , shown in Eq. 3.149)
|-

Fl

3. Relative error norm (Rel Err = , shown in Eq. (3.99)
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The above quantities are also included in Table 3.12. It should be emphasized that
CPU time comparisons are NOT yet included in this study, due to the following
reasons:

(a) Boeing's sparse indefinite solver timing has been implemented earlier on
the Cray-YMP supercomputer. However, the author” FORTRAN code has
been recently tested on Old Dominion University (ODU) Sun (= Norfolk)
workstation, since the author currently has no access to the Cray-YMP, nor
Boeing's source code.

(b) The reordering algorithms, such as Modified Minimum Degree (MMD) or
Nested Disection (ND) have NOT yet been integrated into the current
version of the author' FORTRAN code.

(c) Parallel processing for lKJ[P] = [D] = multiple RHS has not been done.

Table 3.12 Comparison of ODU and Boeing Indefinite Sparse Solvers

Neq Ncoff Z « Max [x . Rel Err Time
uj 1

(ODU-

Norfolk)

51(Boeing) 218 2.265%10% | 2.000%10°° 4.68%10°° 0.0sec
(2.265%¥10%) | (1.999*%10) | (7.0%10"%) | N/A

247(Boeing) 2009 3.16 0.1525 2.63%1071° 0.1sec
(3.16) (0.1525) (4.03*10'% | N/A

1440(Boeing) | 22137 29.68 0.20289 4.27%10™!! 8.7sec
(29.68) (0.20289) (3.26*10'% | N/A

7767(Boeing) | 76111 113.71 0.1610576 5.31%10% 42 7sec
(113.71) (0.1610576) | (6.00%10%) | N/A

15367(Boeing) | 286044 512.35 0.205696 9.22:%1071° 5400sec
(512.35) (0.205696) | (4.38*10'Y | N/A

Conclusions

Alternative formulations and algorithms for solving sparse system of equations have
been developed. The proposed numerical algorithms have been implemented and
validated through several bench-mark NASA applications. Preliminary results have
indicated that the proposed alternative algorithms are quite robust and are in
excellent agreements with the Boeing's commercial sparse indefinite solver. Detailed
analysis of the proposed sparse indefinite algorithms have suggested that:
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(a) The proposed algorithms are quire robust and accurate
(b) The additional (overhead) costs for the proposed algorithms is mainly occurred
in the forward and backward solution phase (of the associated positive definite
system). This overhead costs can be easily and drastically reduced by
performing the forward and backward solution phase (of multiple-right-hand-
side vectors) in the parallel computer environments.
(c) In the proposed formulation, one only deals with "positive-definite" sparse
systems. Thus, complex and expensive pivoting strategies are NOT required.
As the consequences of these desired features, several important advantages can
be realized, such as:
e Incore memory requirements can be easily and efficiently predicted
(before entering the sparse numerical factorization phase).
e The amount of non-zero "fill-in" (and hence, the number of floating
operations) can be reduced.
e Any efficient sparse "positive definite" solvers can be conveniently
integrated into the proposed formulations

Efforts are underway to incorporate various reordering algorithms (such as MMD,
ND, etc...) into the proposed algorithms and to implement the entire procedure in the
MPI parallel computer environments. Additional results will be reported in a near
future.

3.10 Unsymmetrical Matrix Equation Solver

Let’s consider the following system of unsymmetrical linear equations

Ax=b (3.150)

where the coefficient matrix A is unsymmetrical and the vectors x and b represent
the unknown vector (nodal displacement) and the right-hand side (known nodal load)
vector, respectively. In this section, a solver for unsymmetrical matrices where the
upper and lower triangular portions of the matrix are symmetrical in locations but
unsymmetrical in values (see Figure 3.6) will be developed.



