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5 Generalized  

Eigen-Solvers  

 

5.1 Introduction 

Eigenvalue problems arise naturally in many engineering applications, such as free 

structural vibrations, structural dynamics, earthquake engineering, control-structure 

interactions, etc… 

 

Solution algorithms for both “standard”, and “generalized” eigenvalue problems are 

well documented in the literatures [5.1-5.4, 5.5-5.10]. The focus of this chapter is to 

explain some efficient algorithms, which take full advantages of sparse technologies, 

to find the solution of the following generalized eigen-problem: 

 

iii ]M[]K[ φλ=φ                                              (5.1) 

where: 

[K] ≡ n×n stiffness matrix 

[M] ≡ n×n mass matrix 

≡φi eigen-vectors 

≡λ i eigenvalues 

If the mass matrix [M] is equal to an identity matrix, then the generalized eigen-

equation (5.1) will become the following standard eigen-problem: 

 

iii]K[ φλ=φ                                              (5.2) 

 

5.2 A simple generalized eigen-example 

Considering the following numerical data: 










−

−
=

22

25
]K[                                         (5.3) 
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














=

5

1
0

0
4

5

]M[                                                (5.4) 
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From Eq. (5.1), one has 

0MK =φλ−φ                                                 (5.5) 

 

0]MK[ =φλ−                                                 (5.6) 

{ } { }0

5
22

2
4

5
5

=φ
















λ
−−

−
λ

−
                                    (5.7) 

 

The homogeneous system of Eq. (5.7) will have non-trivial solution if we set 

0

5
22

2
4

5
5

det =
λ

−−

−
λ

−
                                        (5.8) 

The corresponding 2 roots (= eigenvalues) of the determinant Eq. (5.8) are given as: 

21 =λ=λ                                                 (5.9) 

122 =λ=λ                                              (5.10) 

 

Substituting Eq. (5.9) into Eq. (5.6), one obtains: 









=












φ

φ









−

−

0

0

6.12

25.2

)1(
2

)1(
1                                          (5.11) 

 

Observing the Eq. (5.11), one recognizes that the 2 equations are NOT independent, 

and therefore, there is only 1 (= n-1= 2-1) independent equation. Since there are 2 

unknowns (= )1(
2

)1(
1 and, φφ ) and only 1 independent equation, there is infinite number 

of solutions to Eq. (5.11). A solution can be found by selecting, for example 

)1(
2

φ = 1                                                  (5.12) 

Then the other unknown )1(

1φ can be found from Eq. (5.11) as 

)1(
1φ = 

5

4
                                                (5.13) 

Similarly, substituting Eq. (5.10) into Eq. (5.6), and selecting 

2
)2(

2 =φ                                                   (5.14) 

Then, 
)2(

1φ can be solved as: 
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5

2)2(
1

−=φ                                                (5.15) 

Thus, the eigen-matrix [ ]Φ can be formed as: 

[ ]













−

=














φφ

φφ
=Φ

21
5

2

5

4

)2(
2

)1(
2

)2(
1

)1(
1                                   (5.16) 

 

Following are 2 properties of the eigen-matrix [ ]Φ , for the appropriated choice of 

normalized eigenvectors: 

[ ] [ ][ ] [ ]IM
T =ΦΦ =Identity matrix                                  (5.17) 

[ ] [ ][ ] 








λ

λ
=ΦΦ

2

1T

0

0
K                                          (5.18) 

 

5.3 Inverse and forward iteration procedures 

An eigenvalue and its associated eigenvector of Eq. (5.1) can be found by the 

following “inverse iteration” procedure, which is shown in Table 5.1: 

 

Table 5.1 Inverse iteration procedure 

 

Step 1: Guess eigen-pair solution 

1=λ                                                             (5.19) 

{ } { }1x=φ                                                        (5.20) 

Step 2: Substitute Eqs. (5.19-5.20) into Eq. (5.1), hence 

      [ ]{ } [ ]{ }11 xM)1(xK ≠                                              (5.21) 

        The new, better guess { }2x can be found from: 

[ ]{ } [ ]{ }12 xMxK =                                                 (5.22) 

Step 3: If convergence is not yet achieved, for example 

ε>− 12 xx                                                    (5.23) 

then { }1x  and { }2x in Eq. (5.22) will be replaced by { }2x and { }3x , 

respectively. 
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The “forward iteration” procedure is very similar to the inverse iteration. The only 

difference is the new, better guess { }2x can be found from the following (instead of 

Eq. 5.22): 

[ ]{ } [ ]{ }21 xMxK =                                                     (5.24) 

 

It is, however, more preferable to solve for new, better vector { }2x from Eq. (5.22) 

rather than from Eq. (5.24), since the former involves with stiffness matrix, which is 

usually positive definite, and therefore, solution for { }2x can be found easier! 

 

The inverse iteration procedures can often be incorporated with the usage of 

orthonormality condition, as illustrated in Talbe 5.2. 

 

The following assumptions are made: 

(a) The stiffness matrix [K] in Eq. (5.1) is positive definite. 

(b) The mass matrix [M] in Eq. (5.1) can be a diagonal mass, with or without 

zeros on the diagonal. Matrix [M] can also be sparse and/or banded. 

(c) If the stiffness matrix [K] is only positive semi-definite, a “shift” should be 

used prior to the iterations. 

 

Table 5.2 Inverse iterations with orthornormality conditions 

 

Step 1: Guess eigen-pair solution 

                                                      1=λ   

                                                    { } { }1x=φ  

Step 2: For k = 1, 2, 3… until converge, solve for 1kx +  from the following equation 

[ ]{ } [ ]{ }k1k xMxK =+                                               (5.25) 

            In order to satisfy the mass orthonormality condition 

{ } 1}x{*]M[*x 1k
T

1k =++                                            (5.26) 

           We need to orthonormalize the vector }x{ 1k+ obtained from solving Eq. 

           (5.25), as following: 

{ } { }

2
1

1k
T

1k

1k
1k

)xMx(

x
x

++

+
+ =                                            (5.27) 

 

 

The following example is used to illustrate the details involved in the algorithms 

shown in Table 5.2. 
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Example: The stiffness and mass matrices [K] and [M] are given as: 

[ ]


















−

−−

−−

−

=

1100

1210

0121

0012

K                                   (5.28) 

[ ]


















=

1

0

2

0

M                                           (5.29) 

Initial guesses: 

{ } { }1,1,1,1x
T

1 = and 1=λ                           (5.30) 

 

Improved guessed vector { }2x is solved from: 

[ ]{ } { }12 x]M[xK =                                    (5.31) 

Thus: 

{ } { }8,7,6,3x
T

2 =                                (5.32) 

Compute: 

{ } 136x]M[}x{ 2
T

2 =                                  (5.33) 

 

Impose the mass of orthonormality condition to obtain the new vector { }2x : 

{ }

























∗=

8

7

6

3

136

1
x 2                                             (5.34) 

 

The above steps are repeated again, to obtain: 

[ ]{ } { }23 x]M[xK =                                             (5.35) 

Solve for 

{ }



































=

56

48

40

20

*
136

1
x 3                                         (5.36) 
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{ } { }
136

6336
xMx 3

T
3 =                                           (5.37) 

{ }

























=



































=

704.0

603.0

503.0

251.0

56

48

40

20

*
6336

1
x 3                               (5.38) 

 

The corresponding “exact” eigen-vector is: 

























=φ

707.0

606.0

500.0

250.0

)1(
                                           (5.39) 

[ ]{ } { })1(
1

)1( ]M[K φλ=φ                                   (5.40) 

 

It should be emphasized here that it is difficult to assure the convergence to a 

specific (and arbitrary selected) eigenvalue, and the corresponding eigenvector. 











































λ=











































−

−−

−−

−

707.0

602.0

500.0

250.0

1

0

2

0

707.0

602.0

500.0

250.0

1100

1210

0121

0012

1    (5.41) 

From Eq. (5.41), one has 

148.01 =λ                                         (5.42) 

 

5.4 Shifted eigen-problems 

The following example will demonstrate “shifting” procedures can be used to obtain 

eigen-solutions for the case where the stiffness matrix [K] is singular. 

 

Example: The stiffness and mass matrices [K] and [M] are given as: 

[ ] 








−

−
=

33

33
K ; [ ] 








=

21

12
M                               (5.43) 

 

The “shifted” stiffness matrix [ ]K̂ can be computed as 
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[ ] [ ] [ ]MKK̂ ρ−=                                             (5.44) 

Where ρ  is the shifted value. 

The “new” eigen-problem is defined as: 

[ ]{ } [ ]{ }ψµ=ψ MK̂                                              (5.45A) 

 

Substituted Eq. (5.44) into Eq. (5.45) to get 

( ) ψµ=ψρ− MMK                                         (5.45B) 

or 

[ ]{ } ( )[ ]{ }ψµ+ρ=ψ MK                                          (5.46) 

 

Comparing the “new” eigen-problem of Eq. (5.46) with the “original” eigen-problem 

shown in Eq. (5.1), one has 

µ+ρ=λ                                                  (5.47) 

and 

 { } { }ψ=φ                                                 (5.48) 

 

Thus, the eigen-vectors of Eq. (5.1) and Eq. (5.46) are the same, and the eigenvalues 

of Eqs. (5.1, 5.46) are different only by the shifted value ρ . 

 

For the numerical data shown in Eq. (5.43), one has: 

{ } { }φ







λ=φ









−

−

21

12

33

33
                              (5.49) 

or   

{ }








=φ








λ−λ−−

λ−−λ−

0

0

233

323
                              (5.50) 

 

For non-trival solution, we require the determinant of the coefficient matrix 

(= MK λ− ) in Eq. (5.50) to be vanished, thus: 

01830MKdet 2 =λ−λ==λ−                         (5.51) 

or 

01 =λ=λ                                                  (5.52) 

62 =λ=λ                                                  (5.53) 
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Substituting Eq. (5.52) into Eq. (5.50), one obtains the first eigen-vector: 













=












φ

φ

6/1

6/1
)1(

2

)1(
1                                             (5.54) 

 

Substituting Eq. (5.53) into Eq. (5.50), one obtains the second eigen-vector 













−
=













φ

φ

2/1

2/1
)2(

2

)2(
1                                          (5.55) 

 

Now, using the shifted value 2−=ρ into Eq. (5.45B), one obtains: 

{ } { }ψ







µ=ψ









−

−

21

12

71

17
                                  (5.56) 

 

The 2 eigen-values from Eq. (5.56) can be obtained as  

21 =µ=µ , hence 02211 =+−=µ+ρ=λ                  (5.57) 

82 =µ=µ , hence 68222 =+−=µ+ρ=λ                 (5.58) 

 

Substituting the eigenvalues µ from Eqs. (5.57-5.58) into Eq. (5.56), one obtains the 

following eigen-vectors 

{ }












=ψ
6/1

6/1)1(
                                              (5.59) 

{ }












−
=ψ

2/1

2/1)2(
                                           (5.60) 

 

5.5 Transformation Methods 

The eigen-vectors { })i(φ obtained from solving the generalized eigen-equation (5.1) 

have the following propekrties: 

[ ] [ ][ ]
















λ=ΦΦ K
T

                                       (5.61) 
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[ ] [ ][ ]
















=ΦΦ IM
T

                                       (5.62) 

Where the eigen-matrix [ ]Φ  is defined as: 

[ ] [ ])n()2()1( ...... φφφ=Φ                                 (5.63) 

The basic ideas in the transformation methods is to reduce (or transform) the 

matrices [K] and [M] into diagonal forms, by using successive pre-and post 

multiplication by matrices [ ]T

kP , and [ ]kP , respectively. These ideas are based on 

the properties given in Eqs. (5.61-5.62). The main ideas behind the transformation 

method can be summarized in Table 5.3.  

Table 5.3 Transformation Methods 

 

Let K1 = K and M1 = M                                          (5.64) 

Then: 

11
T
12 PKPK =                                                (5.65) 

211
T

1
T
222

T
23 P)PKP(PPKPK ==                                (5.66) 

                                                           M   

)PPP(K)PPP(PKPK n211
T

1
T

1n
T
nkk

T
k1k LL−+ ==                (5.67) 

Similarly: 

       11
T

12 PMPM =                                              (5.68) 

       211
T

1
T
222

T
23 P)PMP(PPMPM ==                           (5.69) 

                                                             M   

)PPP(M)PPP(PMPM n211
T

1
T

1n
T
nkk

T
k1k LL−+ ==               (5.70) 

 

Comparing Eqs. (5.67, 5.70) and Eqs. (5.61, 5.62), one clearly sees that if matrices 

Pk are properly selected, then 

[Kk+1] →[ λ ] and [Mk+1] →[ I ] as k→ ∝  

in which case; with l being the last iteration, then the eigen-marix [ ]Φ can be 

symbolically represented as 

lPPP 21 L=Φ                                              (5.71) 
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In practice, it is NOT necessary that [Kk+1] converges to the diagonal eigen-values 

matrix [ ]λ , and [Mk+1] converges to the identity matrix [I]. Rather, it is only required 

that both [Kk+1] and [Mk+1] will converge to diagonal matrices, then: 

[ ]
)1(

r

)1(
r

Mdiagonal

kdiagonal

+

+

=λ
l

l

                                  (5.72) 

and 

[ ] ( )1 2
( 1)
r

1
P P P *

diagonal M
+

Φ = L 1
l

                 (5.73) 

 

 [A] Jacobi Method For The Standard Eigen-Problems 

 

In this section, the following standard eigen-problem 

[ ]{ } { }φλ=φK                                                (5.74) 

will be solved by the Jacobi method. Eq. (5.74) is a special case of the generalized 

eigen-equation (5.1), where [M] is set to be the identity matrix. 

 

From Eqs. (5.70, 5.62), and realizing [M] = [I], one has: 

[ ] ]I[PIPM k
T
k1k ==+  

or 

[ ] [ ] [ ]IPP k
T

k =                                             (5.75) 

 

Thus, the transformation methods (such as Jacobi method) requires the selected 

matrix [Pk] to have the properties as indicated in Eq. (5.75). The matrix [Pk], 

therefore, should have the following form: 
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columnjcolumni

rowj

rowi

1

1

cossin

1

1

1

1

sincos

1

1

1

P

thth

th

th

k

→

→











































θθ

θ−θ

=

MM

MM

KKKKKKKKK

MM

MM

MM

MM

MM

MM

MM

(5.76) 

 

Where θ is selected such that the element (i, j) of [Kk+1] at (k+1)
th

 iteration will 

become zero (since the main objective of the Jacobi method is to transform the 

original matrix [K] into a diagonal matrix, where all the off-diagonal terms Ki, j will 

become zeros). 

 

Considering the following tripple products: 

 

,PKPK Kk
T
k1k =+  or                                           (5.77) 

 



























⋅

θθ⋅

⋅

⋅

θ−θ⋅

⋅⋅⋅⋅⋅





















































⋅

θθ−⋅

⋅

⋅

θθ⋅

⋅⋅⋅⋅⋅

=



























1

cossin

1

1

sincos

1

utrokf

tsqnje

rqpmid

onmlhc

kjihgb

fedcba

1

cossin

1

1

sincos

1

utrokf

tsqnje

rqpmid

onmlhc

kjihgb

fedcba

(5.78) 
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Assuming that i = 2
th

 and j = 5
th

 locations, and observing Eq. (5.78), one clearly sees 

that [Kk+1] and [Kk] are only different at locations (2, 2), (2, 5), (5, 2) and (5, 5), all 

remaining terms of matrices [Kk+1] and [Kk] are unchanged. Thus, at the (k+1)
th

 

iteration, one only needs to consider the following portions of the triple product: 

(k) (k)
T ii ij

k 1 k k (k) (k)k
ji jj

K Kcos sin cos sin
K P K P

sin cos sin cosK K
+

 
θ θ θ − θ    = =

− θ θ θ θ       
  

       (5.79) 

where: 

[ ]













=

++

++

+ )1k(
jj

)1k(
ji

)1k(
ij

)1k(
ii

1k
KK

KK
K  

 

The objective to select the matrix Pk (at the k
th 

iteration) is to make sure that in the 

next iteration (or the (k+1)
th

 iteration), the off-diagonal terms of [Kk+1] will be driven 

to zeros. Hence, setting the off-diagonal terms 0KK )1k(

ji

)1k(

ij == ++ , and equating with 

the corresponding right-hand-side terms of Eq. (5.78), one can solve for the 

unknown θ , from either of the following formulas: 

)k(
jj

)k(
ii)k(

jj
)k(

ii

)k(
ij

KKfor,
KK

K2
)2tan( ≠

−
=θ                         (5.80) 

or 
)k(

jj

)k(

ii KKfor,
4

=
π

=θ                                    (5.81) 

 

If “l” is the last iteration, then: 

[ ]
















λ≈+1Kl = diagonal eigenvalues matrix               (5.82) 

and we said convergence to a tolerance ξ  has been achieved, provided that the 

following conditions are met: 
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(a) Diagonal terms do NOT change much, or 

( 1) ( )
ii ii

( 1)
ii

K K

10 ; i 1, 2, , n

K

+

−ξ
+

−

≤ =

l l

l
L                                       (5.83) 

 

(b) Off-diagonal terms approach zeros, or 

1

( 1) 2 2
ij

( 1) ( 1)
ii jj

K
10 ; i j

K K

+

−ξ
+ +

 
 

≤ < 
  

l

l l
                                  (5.84) 

 

The step-by-step Jacobi method for the solution of the standard eigenvalue problem 

can be given as followings: 

Step 1: At the s
th

 sweep, a threshold for a near zero tolerance value is defined as 

s210− . 

Step 2: For all Ki, j terms (with i<j, and i, j = 1, 2, ..., n = size of matrix [K]), compute 

the coupling factor according to the left-hand-side of Eq. (5.84), and apply the 

transformation (see Eq. 5.79) if the factor is larger than the current threshold. 

Step 3: Using Eq. (5.83) to check for convergence. If convergence is achieved, then 

the process is stopped, or else, returning to step 1 for another sweep. 

 

Example 

 

Given [ ] [ ]1K

5410

4641

1464

0145

K ≡



















−

−−

−−

−

=   

For sweep 1 we have as a threshhold 10
-2

. We therefore obtain the following results. 

For i = 1, j = 2, applying Eq.(5.80), one gets: 
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7497.0cos =θ ; 6618.0sin =θ  

and thus, from Eq (5.76), one has: 

















 −

=

1000

0100

007497.06618.0

006618.07497.0

P1  

[ ]21
T

1 K

547497.06618.0

46661.3898.1

7497.0661.3531.90

6618.0898.10169.1

KPP =



















−

−−−

−

−

=  

For i = 1, j = 3: 

9398.0cos =θ ; 3416.0sin =θ  

















 −

=

1000

09398.003416.0

0010

03416.009398.0

P2  

[ ]321
T

1
T
2 K

.59853.37497.07444.0

9853.36891.64402.30

7497.04402.35314.92506.1

7444.002506.17792.0

PKPPP =



















−−

−−

−−

−−

=  



















−

−−

=

1000

09398.003416.0

02261.07497.06220.0

02561.06618.07046.0

PP 21  

For i = 1, j = 4: 

9857.0cos =θ ; 1687.0sin =θ  
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















 −

=

9857.0001687.0

0100

0010

1687.0009857.0

P3  

[ ]4321
T

1
T
2

T
3 K

127.5928.39499.00

928.3690.6440.36725.0

9499.0440.3531.9106.1

06725.0106.16518.0

PPKPPPP =



















−

−−−

−−

−−

=  



















−

−−

−−−

=

9857.0001687.0

0576.09398.003367.0

1050.02261.07497.06131.0

1189.02561.06618.06945.0

PPP 321  

For i = 2, j = 3: 

8312.0cos =θ ; 5560.0sin −=θ  



















−
=

1000

08312.05560.00

05560.08312.00

0001

P4  

[ ]54321
T

1
T
2

T
3

T
4 K

127.5737.2974.20

737.2388.40174.1

974.2083.115453.0

0174.15453.06518.0

PPPKPPPPP =



















−

−−

−

−

=  

 



















−−

−

−−−

=

9857.0001682.0

0576.07812.05226.03367.0

1050.02289.07488.06131.0

1189.05808.04077.06945.0

PPPP 4321  

 

To complete the first sweep, we zero element (3,4), using 
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7335.0cos =θ ; 6797.0sin −=θ  



















−

=

7335.06797.000

6797.07335.000

0010

0001

P6  

and hence the approximation obtained for Λ and Φ are 

61
T

1
T
6 PKPPP KK=Λ  

i.e., 



















−−

−−

−−

−−

=Λ

6272.106602.06560.0

07596.67124.09926.0

6601.07124.096.125098.0

6560.09926.05098.06518.0

 

and 

61 PP K&=Φ  

i.e., 



















−

−

−

−−−

=Φ

6759.06264.03498.01687.0

6275.04835.05090.03367.0

1113.04152.06628.06131.0

3702.04488.04233.06945.0

&  

And after the third sweep we have 



















=Λ

910.1

854.6

09.13

1459.0

&  



















−

−

−

−−−

=Φ

6015.06015.03717.03717.0

3717.03717.06015.06015.0

3717.03717.06015.06015.0

6015.06015.03717.03717.0

&  
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The approximation for Λ is diagonal to the precision given and we can use 

1459.01 =λ & ;                   



















=φ

3717.0

6015.0

6015.0

3717.0

1 &  

910.12 =λ & ;                   



















−

−

=φ

6015.0

3717.0

3717.0

6015.0

2 &  

854.63 =λ & ;                   



















−

−

=φ

6015.0

3717.0

3717.0

6015.0

3 &  

09.134 =λ & ;                   



















−

−

=φ

3717.0

6015.0

6015.0

3717.0

4 &  

[B] Generalized Jacobi Method For Generalized Eigen-Problems 

For the generalized eigen-problem as described by Eq. (5.1), we wish to diagonalize 

both the stiffness and mass matrices [K], and [M], respectively. Thus, the 

transformation matrix [Pk] will be selected as: 

rowj

rowi

1

1

1

1

1

1

1

1

1

P

th

th

1

2

k



































θ

θ

=                        (5.85) 
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The new, updated matrices [K] and [M] in the next iteration can be computed from 

the current iteration as following: 

[ ] kk
T
k1k PKPK =+                                          (5.86) 

or 










θ

θ
























θ

θ
=















++

++

1

1

KK

KK

1

1

KK

KK

1

2

)k(
jj

)k(
ji

)k(
ij

)k(
ii

2

1

)1k(
jj

)1k(
ji

)1k(
ij

)1k(
ii

             (5.87) 

     

= 








θ

θ















θ+θ+

θ+θ+

1

1

KKKK

KKKK

1

2

)k(
ij2

)k(
jj

)k(
ii2

)k(
ji

)k(
jj1

)k(
ij

)k(
ji1

)k(
ii

(5.88) 

or  













××

θ++θ+×
=















+

+
}KK{}KK{θ

K0

0K )k(
jj1

)k(
ij

)k(
ji1

)k(
ii2

)1k(
jj

)1k(
ii           (5.89) 

 

The off-diagonal terms on both sides of Eq. (5.89) are equated to each other, thus: 
)k(

jj1
)k(

ij21
)k(

ii2
)1k(

ij KK}1{K0K θ+θθ++θ==+
                 (5.90) 

 

Similarly, one has: 

[ ] kk
T
k1k PMPM =+                                          (5.91) 

)k(
jj1

)k(
ij21

)k(
ii2

)1k(
ij MM}1{M0M θ+θθ++θ==+

              (5.92) 

 

The two unknowns 1θ and 2θ can be found by solving Eqs. (5.90, 5.92) 

simultaneously [5.5] 

)k(
4

)k(
1

1
G

G−
=θ  and 

)k(
4

)k(
2

2
G

G
=θ                                           (5.93) 

where: 
)k(

ij
)k(

ii
)k(

ij
)k(

ii
)k(

1 KMMKG −≡                                       (5.94) 

)k(
ij

)k(
jj

)k(
ij

)k(
jj

)k(
2 KMMKG −≡                                       (5.95) 

)k(
ii

)k(
jj

)k(
jj

)k(
ii

)k(
3 MKMKG −≡                                       (5.96) 



Duc T. Nguyen 

 

313

)k(
2

)k(
1

2
)k(

3)k(
3

)k(
3)k(

4 G*G
2

G
*}G{sign

2

G
G +













+=                       (5.97) 

Remarks 

 

(a) Eq. (5.93) for 1θ and 2θ have been developed for the case [M] is a positive 

definite, full or banded matrix, and it can be proved that 
)k(

4G is always 

non-zero. 

(b) The generalized Jacobi procedure can also be adopted for the case [M] is a 

diagonal matrix, with or without zero diagonal elements. 

(c) Assuming “l” is the last iteration, then convergence is achieved if 

( 1) ( )
i i

( 1)
i

10

+

−ξ

+

−
≤

l l

l

λ λ

λ

, for i = 1, 2, ..., n                                (5.98) 

 where: 

 

( )
( ) i

( )
i

≡

l

l i

i l

i

K
λ

M

and 
)1(

ii

)1(
ii)1(

i
M

K
+

+
+ ≡λ

l

l

l                                   (5.99) 

 and 

  
{ }

ξ−
++

+

≤













10

KK

K
2

1

)1(
jj

)1(
ii

2)1(
ij

ll

l

                                       (5.100) 

  
{ }

ξ−
++

+

≤













10

MM

M
2

1

)1(
jj

)1(
ii

2)1(
ij

ll

l

                                     (5.101) 

 for all (i, j) with i<j 

5.6 Subspace iteration method
[5.5]

 

Subspace iteration method is an effective algorithm to find the “few” lowest eigen-

pairs of fairly large generalized eigen-problem. Both inverse iteration, and the 

generalized Jacobi iteration methods have been incorporated into the subspace 

iteration algorithm. The main steps involved in this method can be described as 

following: 
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Assuming the first “m” eigen-pair solution for Eq. (5.1) are sought. One computes: 

L= Minimum (2*m, m+8)                                         (5.102) 

                                              and L ≤ n (= size of matrix [K]) 

 

“Guess” the first L eigen-vectors matrix [ ] Ln1X ×  

 

For k = 1, 2, 3, ... until convergence is achieved. 

• Solve 1kX + from: 

[ ] [ ] [ ]k 1 kK X M X+  =                                                  (5.103) 

• Find the “reduced” stiffness and mass matrices from: 

[ ]R T
k 1 k 1 k 1n nL L L n n L

K X K X+ + +×× × ×
     =
     

                         (5.104) 

[ ]R T
k 1 k 1 k 1

L L
M X M X+ + +

×
     =
     

                                     (5.105) 

• Solve the “reduced” eigen-problem 

[ ]R R
k 1 k 1 k 1 k 1 k 1L LL L L L L L L L

K Q M Q+ + + + +×× × × ×
       = ∧
       

 (5.106) 

• Find the improved eigen-vectors 

[ ] [ ] [ ] LL1kLn1kLn1k QXX ×+×+×+ =                                         (5.107) 

Then 

[ ] [ ] seigenvalue1k ≡λ→∧ +  and [ ] [ ] ≡Φ→+1kX eigenvectors (see Eq.5.1) 

 as ∞→k  

 

Remarks: 

 

(a) Inverse iteration method is employed in Eq. (5.103) 

(b) Generalized Jacobi iteration method can be used to solve the reduced eigen-

equation (5.106). 

(c) The initial guess eigen-vector [X1] should contain independent columns. 

The simplest guess for [X1] is: 

[ ] [ ])L()2()1(
Ln1 eeeX L=×                                    (5.108) 

        where 
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vectorunitrowi

0

0

0

1

0

0

e th

1n

)i( =→

































=

×

M

                                 (5.109) 

 

Example: 

 

The numerical data for the stiffness and mass matrix [K] and [M] are given as: 

[ ]
















−

−−

−

=

210

141

012

K   and [ ]





















=

2

1

1
2

1

M                      (5.110) 

 

Assuming the initial guess for eigen-vectors is given by 

[ ]
















=

02

11

20

X1                                                  (5.111) 

[ ]2X  can  be solved from Eq. (5.103): 

[ ]
























=

13

22

31

4

1
X2                                              (5.112) 

 

Reduced stiffness and mass matrices can be found from Eqs. (5.104-5.105): 

[ ] 















==

53

35

4

1
XKXK 2

T
2

R
2                                      (5.113) 

[ ] 















==

97

79

16

1
XMXM 2

T
2

R
2                                   (5.114) 

 

Solution of the reduced eigen-problem 
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[ ] [ ] [ ]R R
2 2 2 2 2K Q M Q   = Λ

   
 

can be solved “iteratively” (by using Generalized Jacobi method), or can also be 

solved “directly”, and “exactly” since the system involved with only 2×2 matrices.  

Thus: 

[ ] 







=Λ

40

02
2 = eigenvalues of the reduced system              (5.115) 

[ ]



















−
=

2
2

1

2
2

1

Q2 = eigen-vectors of the reduced system           (5.116) 

 

The new, improved eigen-vectors can be obtained from Eq. (5.107): 

[ ] [ ]2 2 2X X Q 0

1

 
 
 
  = =   
 
 
 

1
-1

2
1

2
1

2

                                          (5.117) 

 

In this particular example, we obtained the “exact” eigen-values (see Eq. 5.115), and 

“exact” eigen-vectors (see Eq. 5.117) in 1 interation (of the subspace iteration loop)! 

This quick convergence is due to the fact that the starting iteration vectors [X1] (see 

Eq. 5.111) span the subspace defined the “exact” eigen-vectors )1(φ and )2(φ . 

 

Proof ( for the above paragraph) 

 

The first 2 “exact” eigen-vectors from a 3×3 system given by Eq. (5.110) are: 

























=φ

2
1

2
1

2
1

)1(
 and 















−

=φ

1

0

1
)2(

                                    (5.118) 
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















+
















=

























=φ

0

1

2

a

2

1

0

a

2
1

2
1

2
1

21
)1(

                                    (5.119) 

 

where           ( ) 21 a221a ==  

and 

















+
















=














−

=φ

0

1

2

a

2

1

0

a

1

0

1

43
)2(

                                       (5.120) 

where          
2

1
a 3 = ;

2

1
a 4

−
=  

In other words, the exact first 2 eigen-vectors )1(φ and )2(φ can be expressed as linear 

combinations of the columns of the starting iteration vectors [X1]. Thus, subspace 

iteration algorithm converges in just 1 iteration. 

 

5.7 Lanczos eigen-solution algorithms 

For large-scale system, if one has interests in obtaining the “first few” eigen-pair 

solutions for the generalized eigen-equation (5.1), then subspace iteration algorithms 

can be employed. However, if the number of requested eigen-pair solutions increase, 

then the computational cost involved in subspace iteration algorithms will increase 

very quickly. Thus, in this case, Lanczos eigen-solution algorithms is highly 

recommended (due to its highly computational efficiency) 

1st column of [X1] 
2nd column of [X1] 


