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5 Generalized
Eigen-Solvers

5.1 Introduction

Eigenvalue problems arise naturally in many engineering applications, such as free
structural vibrations, structural dynamics, earthquake engineering, control-structure
interactions, etc...

Solution algorithms for both “standard”, and “generalized” eigenvalue problems are
well documented in the literatures [5.1-5.4, 5.5-5.10]. The focus of this chapter is to
explain some efficient algorithms, which take full advantages of sparse technologies,
to find the solution of the following generalized eigen-problem:

[Ko; =2;[M]o; (5.1
where:
[K] =nxn stiffness matrix
[M] =nxn mass matrix
0;
A

1

eigen-vectors
= eigenvalues

If the mass matrix [M] is equal to an identity matrix, then the generalized eigen-
equation (5.1) will become the following standard eigen-problem:

[K10; = A;0; (5:2)

5.2 A simple generalized eigen-example

Considering the following numerical data:

5 =2
[K]=[_2 2} (53)
2 0
M= 4 (54)
0o —
5
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From Eq. (5.1), one has

Ko—AMo =0 (5.5)
[K-AM]p=0 (5.6)
s-
4 1 lo}={o} (5.7)
-2 2—§

The homogeneous system of Eq. (5.7) will have non-trivial solution if we set

5- 2 -2
deff 4 Al=0 (5.8)
-2 22
5
The corresponding 2 roots (= eigenvalues) of the determinant Eq. (5.8) are given as:
A=X; =2 (5.9)
A=L, =12 (5.10)

Substituting Eq. (5.9) into Eq. (5.6), one obtains:
25 =271oP| o
[—2 16H¢%1)}={0} G-1h
61105

Observing the Eq. (5.11), one recognizes that the 2 equations are NOT independent,
and therefore, there is only 1 (= n-1= 2-1) independent equation. Since there are 2

unknowns (= (])fl), and (])(21) ) and only 1 independent equation, there is infinite number
of solutions to Eq. (5.11). A solution can be found by selecting, for example

o=1 (5.12)
Then the other unknown ¢!" can be found from Eq. (5.11) as

ot = (5.13)

Similarly, substituting Eq. (5.10) into Eq. (5.6), and selecting
0 =2 (5.14)

Then, ¢§2) can be solved as:
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2
017 =-% (5.15)

Thus, the eigen-matrix [CD]can be formed as:
1 2 4 2
o 0P| |2 -2
=15 5
1

[@]= [q; (21) X (22) k (5.16)

Following are 2 properties of the eigen-matrix [CI>], for the appropriated choice of
normalized eigenvectors:

[®]" [M]®]= [1]=Identity matrix (5.17)
[@]" [K]®]= R)l %OJ (5.18)

5.3 Inverse and forward iteration procedures

An eigenvalue and its associated eigenvector of Eq. (5.1) can be found by the
following “inverse iteration” procedure, which is shown in Table 5.1:

Table 5.1 Inverse iteration procedure

Step 1: Guess eigen-pair solution

A=1 (5.19)
foy=1x} (5.20)

Step 2: Substitute Egs. (5.19-5.20) into Eq. (5.1), hence
K} 3= MEx, } (5.21)

The new, better guess {xz}can be found from:

[Klxo b=[Mlx, } (5.22)

Step 3: If convergence is not yet achieved, for example
Xy —Xq||>€ (5.23)

then {xl} and {xz}in Eq. (5.22) will be replaced by {xz}and {x3},
respectively.
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The “forward iteration” procedure is very similar to the inverse iteration. The only
difference is the new, better guess {xz}can be found from the following (instead of
Eq. 5.22):

(K}, }= M, } (5.24)

It is, however, more preferable to solve for new, better vector {xz}from Eq. (5.22)

rather than from Eq. (5.24), since the former involves with stiffness matrix, which is
usually positive definite, and therefore, solution for {xz } can be found easier!

The inverse iteration procedures can often be incorporated with the usage of
orthonormality condition, as illustrated in Talbe 5.2.

The following assumptions are made:
(a) The stiffness matrix [K] in Eq. (5.1) is positive definite.
(b) The mass matrix [M] in Eq. (5.1) can be a diagonal mass, with or without
zeros on the diagonal. Matrix [M] can also be sparse and/or banded.
(c) If the stiffness matrix [K] is only positive semi-definite, a “shift” should be
used prior to the iterations.

Table 5.2 Inverse iterations with orthornormality conditions

Step 1: Guess eigen-pair solution
A=1

{oy={x}

Step 2: For k =1, 2, 3... until converge, solve for Xis1 from the following equation

(KX b= MJx i } (5.25)
In order to satisfy the mass orthonormality condition
{XE+1}* M]*{xy .} =1 (5.26)

We need to orthonormalize the vector {;k+1 } obtained from solving Eq.
(5.25), as following:
w (5.27)

_T
(Xk1MX 1) 2

{Xk+1}=

The following example is used to illustrate the details involved in the algorithms
shown in Table 5.2.
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Example: The stiffness and mass matrices [K] and [M] are given as:

2 -1 0 0
[K]= -1 2 -1 0 5.28)
0 -1 2 -1 ‘
0 0 -1 1
0
2
M|= 5.29
m] 0 (5.29)
1
Initial guesses:
{x,J ={. 1, 1, 1}and A =1 (5.30)

Improved guessed vector {iz }is solved from:

K%, }=Mifx, } (5.31)
Thus:
£,"=3. 6, 7. 8} (5.32)
Compute:
{x2) ' [MI{x,}=136 (5.33)

Impose the mass of orthonormality condition to obtain the new vector {xz}:

3
1 6
8
The above steps are repeated again, to obtain:
[Kix,}=Mix, } (5.35)
Solve for
20
— 1 40
= *
{XS} [\/ﬁj 48 (5.36)

56
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6336

s mfxsh= 2= (5.37)
20 0.251
{ } 1 " 40 0.503
X = =
7 Jeaze ) 148 J0.603 (5.38)
56 0.704
The corresponding “exact” eigen-vector is:
0.250
a _ ]0.500
0= 0.606 (5.39)
0.707
(Ko J=2,v7p | (5.40)

It should be emphasized here that it is difficult to assure the convergence to a
specific (and arbitrary selected) eigenvalue, and the corresponding eigenvector.

2 -1 0 0710250 0 0.250
-1 2 -1 0|[0.500 2 0.500
0 -1 2 -1/l0.602[ ™ 0 |lo.602[ G4D
0 0 -1 110707 11]0.707

From Eq. (5.41), one has
Ay =0.148 (5.42)

5.4 Shifted eigen-problems

The following example will demonstrate “shifting” procedures can be used to obtain
eigen-solutions for the case where the stiffness matrix [K] is singular.
Example: The stiffness and mass matrices [K] and [M] are given as:

[k]= {_33 ﬂ :[m]= ﬁ ﬂ (5.43)

The “shifted” stiffness matrix lﬁ]can be computed as
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&= K]~ pm] (5.44)
Where p is the shifted value.

The “new” eigen-problem is defined as:

[K Jow} = vy} (5.45A)

Substituted Eq. (5.44) into Eq. (5.45) to get
(K —pM )y = uMy (5.45B)

or

(KK} = (p+n)MKy} (5.46)

Comparing the “new” eigen-problem of Eq. (5.46) with the “original” eigen-problem
shown in Eq. (5.1), one has
A=p+U (5.47)

and

{o}={w} (5.48)

Thus, the eigen-vectors of Eq. (5.1) and Eq. (5.46) are the same, and the eigenvalues
of Eqgs. (5.1, 5.46) are different only by the shifted value p .

For the numerical data shown in Eq. (5.43), one has:

2 el e 549
Or ey T

For non-trival solution, we require the determinant of the coefficient matrix
(=K —-2AM ) in Eq. (5.50) to be vanished, thus:

det|K —AM|=0=3\* 184 =0 (5.51)

or
A=A, =0 (5.52)

A=A, =6 (5.53)
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Substituting Eq. (5.52) into Eq. (5.50), one obtains the first eigen-vector:

(1)
(1) 1/\/_ (5.54)
RIS
Substituting Eq. (5.53) into Eq. (5.50), one obtains the second eigen-vector
o _[ 142 555
(2) ~1/42 32
Now, using the shifted value p =-2 into Eq. (5.45B), one obtains:
7
[_ | }{w} u{ }{w} (5.56)
The 2 eigen-values from Eq. (5.56) can be obtained as
u=u, =2,hence A, =p+p, =-2+2=0 (5.57)
u=u, =8, hence A, =p+u, =—2+8=6 (5.58)

Substituting the eigenvalues pfrom Egs. (5.57-5.58) into Eq. (5.56), one obtains the
following eigen-vectors

{w(”} {i;ﬁ } (5.59)
o) {_1 1/ /*%} (5.60)

5.5 Transformation Methods

The eigen-vectors { m}obtained from solving the generalized eigen-equation (5.1)
have the following propekrties:

[o]' [K]@]= \7» (5.61)
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[ (MJ@]=| ™1 (5.62)

Where the eigen-matrix [(ID] is defined as:

[@]= [q)(” o ... q)(“)] (5.63)
The basic ideas in the transformation methods is to reduce (or transform) the
matrices [K] and [M] into diagonal forms, by using successive pre-and post
multiplication by matrices [Pk ]T, and [Pk], respectively. These ideas are based on
the properties given in Eqs. (5.61-5.62). The main ideas behind the transformation

method can be summarized in Table 5.3.

Table 5.3 Transformation Methods

LetKi=Kand M;=M (5.64)
Then:

K, =P/ K,P, (5.65)
K; =Py K,P, =Py (P KPP, (5.66)
Ky =P KPP =P, ---PDK (PP, - P,) (5.67)

Similarly:
M, =P'M,P, (5.68)
M, = PYM,P, = PY(PTM,P))P (5.69)

3 2 242 2 1 14172 .

My, =B{MP = (P P, --- P )M, (PP, ---P,) (5.70)

Comparing Egs. (5.67, 5.70) and Eqgs. (5.61, 5.62), one clearly sees that if matrices
Py are properly selected, then

[Kis1] =[A ] and [Mis] [ 1] as k— e

in which case; with [ being the last iteration, then the eigen-marix [@]can be
symbolically represented as
$=PP, P (5.71)
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In practice, it is NOT necessary that [Ky,;] converges to the diagonal eigen-values
matrix [k], and [My,,] converges to the identity matrix [I]. Rather, it is only required
that both [Ky,] and [My,] will converge to diagonal matrices, then:

di 1k D
b= .1agona i 5.72)
diagonal M (*!
and
1
[®]=(P P, - P)* (5.73)

\/diagonal Mglﬂ)

[A] Jacobi Method For The Standard Eigen-Problems

In this section, the following standard eigen-problem
[KHo}=2fo} (5.74)

will be solved by the Jacobi method. Eq. (5.74) is a special case of the generalized

eigen-equation (5.1), where [M] is set to be the identity matrix.

From Egs. (5.70, 5.62), and realizing [M] = [1], one has:
My, =B [IR =11]
or

[P I" [P 1= 1] (5.75)

Thus, the transformation methods (such as Jacobi method) requires the selected
matrix [Py] to have the properties as indicated in Eq. (5.75). The matrix [Py],

therefore, should have the following form:
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i™column

cos0

sin O

—sin©

cos0

j™column

1

305

—i"row

(5.76)

.|= j"row

Where 0is selected such that the element (i, j) of [Ky,] at (k+1)lh iteration will

become zero (since the main objective of the Jacobi method is to transform the

original matrix [K] into a diagonal matrix, where all the off-diagonal terms K ; will

become zeros).

Considering the following tripple products:

cos O

—sin 6

- 0o a0 o o

sin ©

cos 0

R el = o0l o

B CHEN =" e R )

Ky = BOK Py, or

[—

o = B

= 5 e o

e

—-

= o s 3

[—

o B B

- »l 9 B .l o0

- = O X

—

= o s 3B

- »n 0O 5 «—. o

- - o ~ h

cos 0

sin ©

(5.77)

(5.78)

—sin 0

cos 0
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Assuming that i = 2™ and j = 5" locations, and observing Eq. (5.78), one clearly sees
that [Ky,;] and [Ky] are only different at locations (2, 2), (2, 5), (5, 2) and (5, 5), all
remaining terms of matrices [Ky,(] and [Ky] are unchanged. Thus, at the (k+1)th

iteration, one only needs to consider the following portions of the triple product:

K ()

_ T _| cos® sin6 ii ij cosO —sin O
K =P Ky = [— sin© cos 9} K® () [sin 6 cos6 } (5.79)
] 1

where:

(k+]) 1 (k+D)
Kji Kjj

[Kk+1] =
K(k+1) K(k+1)
ji Ii

The objective to select the matrix Py (at the k™ iteration) is to make sure that in the
next iteration (or the (k+1)th iteration), the off-diagonal terms of [Ky,,] will be driven

to zeros. Hence, setting the off-diagonal terms K = K™ =0, and equating with

the corresponding right-hand-side terms of Eq. (5.78), one can solve for the

unknown 6, from either of the following formulas:

KW
k) (k)
tan(20) = —— — for K™ 2k} (5.80)
KO g T
1 1]
n ) ®)
or 6=—,forK."” =K' (5.81)
4 i 1
If “I” is the last iteration, then:
[K[ +1] = A = diagonal eigenvalues matrix (5.82)

and we said convergence to a tolerance & has been achieved, provided that the

following conditions are met:
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(a) Diagonal terms do NOT change much, or

k(D _g®
ii

11

<1075 . i=1,2,--.n (5.83)

(b) Off-diagonal terms approach zeros, or

1
kD2 o
! <1075

S S i< (5.84)
K(K+I)K§jf+l)

ii

The step-by-step Jacobi method for the solution of the standard eigenvalue problem

can be given as followings:
Step 1: At the s™ sweep, a threshold for a near zero tolerance value is defined as
107,

Step 2: For all K; j terms (with i<j, and i, j = 1, 2, ..., n = size of matrix [K]), compute
the coupling factor according to the left-hand-side of Eq. (5.84), and apply the

transformation (see Eq. 5.79) if the factor is larger than the current threshold.

Step 3: Using Eq. (5.83) to check for convergence. If convergence is achieved, then

the process is stopped, or else, returning to step 1 for another sweep.

Example
5 -4 1 0
-4 6 -4 1
Gi K|= =(K
ven [K]=| & =K
0 1 -4 5

For sweep 1 we have as a threshhold 10, We therefore obtain the following results.

Fori=1,j =2, applying Eq.(5.80), one gets:
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c0s0=0.7497; sin0=0.6618
and thus, from Eq (5.76), one has:

0.7497 —0.6618 0
106618 07497 0
oo 0 1
0 0 0

- o O O

1.169 0 —1.898 0.6618
0 9.531 -3.661 0.7497
=[K,]
—1.898 —-3.661 6 -4
0.6618 0.7497 -4 5

PlKP, =

Fori=1,j=3:
cos0=0.9398; sin0=0.3416

0.9398 0 -0.3416 O
0 1 0 0
P, =
0.3416 0 09398 0
1

0o 0 0
07792 12506 0  —0.7444
- ~12506  9.5314 —3.4402 07497
PIPKP,P, = = K]
0 —34402 66891 —3.9853

-0.7444 0.7497 —-3.9853 5.

0.7046 —0.6618 —0.2561 0
106220 07497 -0.2261 0
27103416 0 0.9398 0
0 0 0 1

Fori=1,j=4:

cos0=0.9857; sin0=0.1687
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09857 0 0 -0.1687
0 1 0 0
P3 =
0 01 0
0.1687 0 0 0.9857

0.6518 —1.106 -0.6725 0

-1.106  9.531 —3.440 0.9499

-0.6725 -3.440 6.690 —3.928
0 0.9499 -3.928 5.127

P3TP2TP1TKP1P2P3 = :[K4]

0.6945 —0.6618 —0.2561 —0.1189
ppp. _| 06131 07497 -02261 -0.1050
72737103367 0 0.9398 —0.0576

0.1687 0 0 0.9857

Fori=2,j=3:
cos®=0.8312; sin 6 =-0.5560

1 0 0
|0 08312 05560
*710 -0.5560 0.8312
0 0 0

- o O O

0.6518 0.5453 -1.174 0
-0.5453 11.83 0 2974
-1.174 0 4.388 —2.737
0 2974 -2.737 5.127

Py Py Py P/KPP,P;P, = =[K;]

0.6945 —0.4077 —0.5808 —0.1189
ppop.p. _| 06131 07488 02289 ~0.1050
1725354 7103367 05226 07812 —0.0576

0.1682 0 0 0.9857

To complete the first sweep, we |zer0 element (3,4), using
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cos0 =0.7335; sin® =—-0.6797

0 0 0
1 0 0
0 0.7335 0.6797
0 -0.6797 0.7335

S O O =

and hence the approximation obtained for A and & are
A=P] .. P'KP,...P,
ie.,

0.6518 -0.5098 0.9926 —0.6560
0.5098 1296 -0.7124 -0.6601

1209926 -0.7124  6.7596 0
—-0.6560 —0.6602 0 1.6272
and
d=P ...Pg

i.e.,

0.6945 -0.4233 -0.4488 -0.3702
.|0.6131 0.6628  0.4152 -0.1113
103367 —0.5090 0.4835  0.6275

0.1687 0.3498 -0.6264 0.6759

And after the third sweep we have

0.1459
13.09
6.854
1.910

0.3717 -0.3717 -0.6015 -0.6015
0.6015 0.6015 03717 —0.3717
0.6015 -0.6015 0.3717  0.3717
0.3717 0.3717 -0.6015 0.6015
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The approximation for A is diagonal to the precision given and we can use

0.3717
0.6015
0.6015
0.3717

A =0.1459; 0, =

[—0.6015]
-0.3717
0.3717
| 0.6015 |

Ay =1910; 0, =

[—0.6015 |
0.3717
0.3717
|—0.6015 |

7\.3 =6.854 5 ¢3

[—0.3717
0.6015
-0.6015
| 0.3717

Ay =13.09; 04 =

[B] Generalized Jacobi Method For Generalized Eigen-Problems

For the generalized eigen-problem as described by Eq. (5.1), we wish to diagonalize
both the stiffness and mass matrices [K], and [M], respectively. Thus, the
transformation matrix [P] will be selected as:

1
1

1 0, i row
P, = 1 (5.85)

0, 1 ™ row
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The new, updated matrices [K] and [M] in the next iteration can be computed from
the current iteration as following:

[Kin] = PK P (5.86)
or
el U e (K
Kgm) K%‘“) 0, 1 Kﬁ() KS{) o, 1 :
_ KoK K +oK [1 92}(5 58)
K40,k K40,k (6 1]
or

= 5.89
0 } (5.89)

(k+1)
Ki; 0 |_|x (K +0K ) +(KE +0,K ()
KD ||« x

i

The off-diagonal terms on both sides of Eq. (5.89) are equated to each other, thus:

Ki(jk+l) =0= ezKi(ik) +{1+ 9192}Ki(jk) + elKﬁjk) (5.90)

Similarly, one has:
[Myii]= RIM P (5.91)
M =0=0,M( +{1+6,6, )M +6,M ) (5.92)

The two unknowns 6,and6,can be found by solving Eqgs. (5.90, 5.92)
simultaneously [5.5]

(k) (k)
0, = _Czll() and 0, =% (5.93)
Gy Gy
where:
(k) — &gk k) (k)
G{Y =k {PME -MK (5.94)
(k) — (pgk) [92749)
G =kPMP -MPK (5.95)

() = g &) _ g Rpgk)
GV = K{OME - KOM{ (5.96)
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n_ G k a® |’ K) s (k
G = ; +sign{G{V}* ; +G G (5.97)

Remarks

(a) Eq.(5.93) for 0, and 6, have been developed for the case [M] is a positive

definite, full or banded matrix, and it can be proved that Gflk) is always

non-zero.
(b) The generalized Jacobi procedure can also be adopted for the case [M] is a
diagonal matrix, with or without zero diagonal elements.

(c) Assuming “I” is the last iteration, then convergence is achieved if

L UD_ 5 ()

! (z+1)1 <107, fori=1,2,..,n (5.98)
A
1
where:
) 1+1
S0 K _ K (5.99)
ooy ® 1 M)
11
and
I
g

— 1 2 | <q0° (5.100)
(I+D) g (1+1)
KK

<107 (5.101)

for all (i, j) with i<j

5.6 Subspace iteration method”"!

Subspace iteration method is an effective algorithm to find the “few” lowest eigen-
pairs of fairly large generalized eigen-problem. Both inverse iteration, and the
generalized Jacobi iteration methods have been incorporated into the subspace
iteration algorithm. The main steps involved in this method can be described as
following:
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Assuming the first “m” eigen-pair solution for Eq. (5.1) are sought. One computes:
L= Minimum (2*m, m+8) (5.102)

and L <n (= size of matrix [K])

“Guess” the first L eigen-vectors matrix [Xl]nxL

Fork =1, 2, 3, ... until convergence is achieved.

e Solve §k+1 from:

[K][ X1 |=[M][X] (5.103)

¢  Find the “reduced” stiffness and mass matrices from:
[KEH ]LxL = |:)_(E+1 }an (K] xn |:)_(k+1 lle (5.104)
[M113+1 }LxL = [)_(EH ] [M] [)_(kﬂ] (5.105)

e  Solve the “reduced” eigen-problem
R _ R
[Kk+1 }LxL |:Qk+1 ]LxL =[Aes ] [Mk+1 ]LxL [Qk+1 }LxL (5.106)

¢ Find the improved eigen-vectors

[Xk+1]n><L = [ikﬂ]nxL [Qk+1]L><L (5.107)
Then
[/\k+1] - [7»] =eigenvalues and [Xk+1] — [CID] =eigenvectors (see Eq.5.1)
as k — oo
Remarks:

(a) Inverse iteration method is employed in Eq. (5.103)

(b) Generalized Jacobi iteration method can be used to solve the reduced eigen-
equation (5.106).

(c) The initial guess eigen-vector [X;] should contain independent columns.
The simplest guess for [X,] is:

[Xl]nxL:le(l) e@ ... e(L)J (5.108)

where
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-th

e = — i row = unit vector

(5.109)

S o O =

nx1

Example:

The numerical data for the stiffness and mass matrix [K] and [M] are given as:

1
2 -1 0 P’y

2
K]=|-1 4 -1 and [M]= 1 (5.110)
0 -1 2

Assuming the initial guess for eigen-vectors is given by

0 2
x,]=|1 1 (5.111)
20
[iz] can be solved from Eq. (5.103):
1 3
— 1
[Xz]:[zj 2 2 (5.112)
31

Reduced stiffness and mass matrices can be found from Eqgs. (5.104-5.105):

(ljs 3 (5.113)
4)3 5 '

ME]-%,"™X, = [i][g 7} (5.114)

[Kl;]:XzTKiz

16)7 9

Solution of the reduced eigen-problem
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[KzR] [Q:]= [Azl[M}; J [Q]

can be solved “iteratively” (by using Generalized Jacobi method), or can also be
solved “directly”, and “exactly” since the system involved with only 2X2 matrices.

Thus:
2 0] .
A,]= [O Nk eigenvalues of the reduced system (5.115)
L,
[Qz] = ‘/15 = eigen-vectors of the reduced system (5.116)
— =2
V2

The new, improved eigen-vectors can be obtained from Eq. (5.107):

N
[X,]=[X,][Q;]=| = 0 (5.117)

1

Sl ~Sl~Sl~

In this particular example, we obtained the “exact” eigen-values (see Eq. 5.115), and
“exact” eigen-vectors (see Eq. 5.117) in 1 interation (of the subspace iteration loop)!
This quick convergence is due to the fact that the starting iteration vectors [X;] (see

Eq. 5.111) span the subspace defined the “exact” eigen-vectors q)“) and ¢<2> .

Proof ( for the above paragraph)

The first 2 “exact” eigen-vectors from a 3x3 system given by Eq. (5.110) are:

1
Vi =
o = %/5 and 0 =10 (5.118)

)i 1
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S P
o = %/E =ajilp+arsl (5.119)
1 2 0
O
2" column of [X;]
1** column of [X]

where a; =1/(2x/5)=a2

and
-1 0 2
2
0% =10 ¢=a311r+a,4l (5.120)
1 2 0
1 -1
where a3:E;a4 :7

In other words, the exact first 2 eigen-vectors (])(1) and (])(2) can be expressed as linear

combinations of the columns of the starting iteration vectors [X;]. Thus, subspace
iteration algorithm converges in just 1 iteration.

5.7 Lanczos eigen-solution algorithms

For large-scale system, if one has interests in obtaining the “first few” eigen-pair
solutions for the generalized eigen-equation (5.1), then subspace iteration algorithms
can be employed. However, if the number of requested eigen-pair solutions increase,
then the computational cost involved in subspace iteration algorithms will increase
very quickly. Thus, in this case, Lanczos eigen-solution algorithms is highly
recommended (due to its highly computational efficiency)



