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Abstract. Linear Programming (LP) is a very popular/important topic, with very broad/real-world 
Engineering/Economic, and Social Science applications. In addition to Operation Research, LP course 
has been offered in most (if not all) engineering curriculum in the USA. Teaching LP topic, however, may 
not be an easy task, especially at the undergraduate, and/or even at the high-school levels. Through 
simple Head-Tail game strategies, and coupling with graphical methods, the authors hope that the 
formulation and optimal solution for LP problem can be easily understood even by high-school students.

1.  SIMPLE HEAD-TAIL GAME STRATEGIES 

In the proposed “Matching Head/Tail” game, 
suppose both players (S for Susan and V for 
Victoria) use different strategies such as varying 
the relative frequency for observing Heads or 
Tails when tossing the coins. For example, player 
S might adopt her strategy to be 0.7 probability of 
selecting Heads and 0.3 of selecting Tails. 
Similarly, player V might want to play Heads and 
Tails using a different probability: 0.6 for Heads 
and 0.4 for Tails. This game with different 
strategies can be conveniently represented in 
matrix notation as shown in Table 1. 

Table 1: A 2x2 Payoff Matrix (unequal frequency 
for Heads and Tails) 

 

   Player V  

   H T 

   c = 0.6 d = 0.4 

Player S H a = 0.7 1 -2 

 T b = 0.3 -3 4 

 
In the above table, an entry 1 means S wins $1 for 
the case S has Heads and V also has Heads. 
Similarly, an entry -2 means S loses $2 for the 
case S has Heads and V has Tails. Using the 
above turning wheel strategies (shown in Figure 
1), the probability of having Heads and Tails for V 
are six-tenth and four-tenth, respectively. One can 
easily show (see the following 3-step derivation) 
that in this game, S actually loses to V an average 
of $0.2 per play in the long run. 

Step 1. S plays Heads seven-tenth of the time, 
while V plays Heads six-tenth of the time and 
Tails four-tenths of the time respectively. Thus, 

S’s average winnings for this scenario can be 
computed as: 

S1 = (0.7) [ (0.6) (1) + (0.4) (-2) ] = -$0.14 per play 

T (30%)

H (70%)

Player S turning wheel

T (40%)

H (60%)

Player V turning wheel  

Figure 1: Turning wheel strategy for both players 

Step 2. S plays Tails three-tenth of the time, while 
V plays Heads six-tenth of the time and Tails four-
tenths of the time. Thus, S’s average winnings for 
these occasions are: 

S2 = (0.3) [ (0.6) (-3) + (0.4) (4) ] = -$0.06 per play 
 
Step 3. Adding the above 2 amounts, S will win 
an average of: 

Stotal = S1 + S2 = (-0.14) + (-0.06) = -0.20 

The negative result implies that in fact, in the long 
run, S actually loses to V an average of $0.2 per 
play. For this given 2x2 payoff matrix, the best 
strategies for S and V are (a=0.7, b=0.3), and 
(c=0.6, d=0.4), respectively. The value for this 
game is, therefore, $0.2. This value represents 
maximum gain for V, and at the same time, 
minimum loss for S. Clearly, this game scenario 
favors V! A classroom discussion, and computer 
implementation (using powerful animated FLASH 
software [1]) of the above game strategies can 
potentially draw students to broaden their thinking.  
 
2. GAME-BASED LINEAR PROGRAMMING (LP) 
OPTIMIZATION FORMULATION 



Game strategy for S is ),( ba , such that 

0;0 ≥≥ ba                                                         (1) 

1=+ ba                  (2) 

 
In the above Eqs. (1-2), “a” and “b” represents the 
desired/selected probability for S to observe 
HEAD and TAIL, respectively. 
 
S expects to win over V’s two “pure strategies” 
(1,0), and (0,1) respectively by the following 
amounts: 
 

baba 31)]4)(0()3)(1[()]2)(0()1)(1[( −=+−+−+             (3)  

baba 42)]4)(1()3)(0[()]2)(1()1)(0[( +−=+−+−+       (4) 

 
Define: 
 
s = minimum (a-3b, -2a+4b)               (5) 
 
Notes: s = minimum (amount to win) = worse 
case for S 
 
S does NOT know exact strategies played by V. 
However, S knows for sure that V’s strategies 
(c,d) must be some things between the 2 pure 
strategies! 
 

sba ≥−+ )3()1(                             (6) 

sba ≥+− )4()2(                                                  (7) 

 
It is valid to assume that s  to have positive value, 
since if this is NOT true, then one can add a 

suitable positive constant k  to each term of 2x2 
matrix (shown earlier in Table 1), so that Eqs. 
(6,7) become: 
 

sbkak ≥+−++ )3()1(                                         (8) 

sbkak ≥+++− )4()2(                                      (9) 

 
or 
 

sbakba ≥++− )(31                (10) 

sbakba ≥+++− )(42                                    (11) 

 
Utilizing Eq. (2), Eqs. (10-11) becomes: 
 

skba ≥+− 31                                                  (12) 

skba ≥++− 42                                              (13) 

where k  can be selected as: 
 

k = absolute value of {smallest entry of the given 
matrix}.                                                        (14) 

 
For this particular data: 
 

k = abs{smallest entry of (1,-3,-2,4)} 

k = abs{-3} = 3                                                 (15) 
 
Substituting Eq. (15) into Eqs. (8-9), then: 
 

sba ≥+ 04                                                        (16) 

sba ≥+ 71                                                       (17) 

 
Due to Eq. (1), the left-hand-side (LHS) of Eqs. 
(16-17) are positive, and the required Eq. (5) 
becomes: 
 

0)71,04min( ≥++= babas                       (18) 

 

Thus, by adding a suitable positive constant k (if 

necessary, see Eq. 14), it would simply increase 

the expected payoff by the amount k  (comparing 

Eq. 5 with Eqs. 12-13), and it would “NOT” 
change the optimal strategies. 
 
Dividing Eqs. (1, 2, 16, 17) by s , one obtains: 
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Since “S ≡ Susan” would like to maximize the 
payoff (or winning amount) s , she would like to 

minimize 








s

1
. 

 
Define: 
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Then, Eqs. (19-22) become the following “Dual” 
problem: 
 
Minimize vut +=                                                 (24) 

such that  
 



1)0()4( ≥+ vu                                (25) 

1)7()1( ≥+ vu              (26) 

0;0 ≥≥ vu                                     (27) 

 
3. DUALITY LINEAR PROGRAMMING (LP) 
PROBLEMS 
 
Now, consider “V’s ≡ Victoria’s” strategies (c,d), 
such that  
 

0;0 ≥≥ dc               (28) 

1=+ dc                         (29) 

 
V expect to lose over S’s two pure strategies 
(1,0), and (0,1), respectively by the following 
amounts: 
 

dcdc 21)]4)(0()2)(1[()]3)(0()1)(1[( −=+−+−+         (30) 

dcdc 43)]4)(1()2)(0[()]3)(1()1)(0[( +−=+−+−+        (31) 

 
Since not all entries of the given 2x2 matrix are 

positive, a positive constant 3=k can be selected 

(see Eq. 14) and added to Eqs. (30-31) to give: 
 

dcdkck )1()4()2()1( +=+−++                          (32) 

dcdkck )7()0()4()3( +=+++−                        (33) 

 
Define: 
 
w  = maximum (4c+1d, 0c+7d)                        (34) 
     = worse case for V 
 
Then: 
 

wdc ≤+ )1()4(                                                    (35) 

wdc ≤+ )7()0(                           (36) 

 
Dividing Eqs. (28, 29, 35, 36) by w , one gets: 
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Since, V would like to minimize (the loss) w , or 

maximize 
w

1
, one defines: 

w

d
zand
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x ≡≡≡ ;;

1
                            (41) 

 
Then, Eqs. (37-40) become the following “Primal” 
Problem: 
 
Maximize zyx +=                                               (42) 

such that  
 

1)1()4( ≤+ zy                                                 (43) 

1)7()0( ≤+ zy                                                  (44) 

0;0 ≥≥ zy                                                     (45) 

 
The linear programming (LP) problems, shown in 
Eqs. (24-27): the “Dual” problem, and Eqs. (42-
45): the “Primal” problem, respectively, will have 
the following properties [2, 5]: 
 

1. If optimum solution exists for either LP 
problem, then so does the other LP 
problem, and 
 

imumimum xxtt max

*

min

*
≡=≡  

        
2. If the optimum solution of one of the 

above LP problems is unbounded, then 
the other LP problem has no feasible 
solution! 

 
4. GRAPHICAL SOLUTION FOR THE LP 
“PRIMAL” PROBLEM 
 
The LP primal problem, shown in Eqs. (42-45), 
can be presented in a graphical form as shown in 
Figure 2 



 
 
 
The coordinates at ‘optimal point” B can be 
obtained from the two constraint Eqs. (43-44): 
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The “optimum solution” can be computed from Eq. 
(42) as: 
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5. STANDARD FORM OF LP PROBLEMS [2] 
  
The standard form of LP problems should satisfy 
the following requirements: 
 

a) Solving an “Maximization” problem. 
b) All “inequality” constraints must be 

converted to “equality” constraints. 
c) All right hand side (RHS) values of the 

constraints must be 0≥  (or non negative). 

d) All “original” and newly created ‘slack, 
surplus, artificial” variables must be 0≥ . 

As a quick example, Tables 2-4 can be used to 
explain the process to convert the original LP 
problem (see Table 2) into the (final) standard LP 
problem (see Tables 3-4). 
 
Table 2: Original Problem 
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Table 3: Standard LP problem 
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Table 4. Standard LP problem (final form) 
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Notes: 

21 ,, yyx = Original variables 

          
321 ,, SSS = Slack/Surplus variables 

 
1A = Artificial variable. 

 
6. SIMPLEX SOLUTION FOR THE LP “PRIMAL” 
PROBLEM 
 
In the standard form, the LP primal problem, 
shown in Eqs. (42-45), can be expressed as: 
 

114 1 =++ Szy                                        (46) 

170 2 =++ Szy                (47) 

Maxxzy =+               (48) 

0,,, 21 ≥SSzy                                                  (49) 

 
For the above standard LP problem, one has 2 
(equality) constraints (see Eqs. 46-47) and 4 
unknown variables (basic variables 

21 , SS  and 

non-basic variables zy, ). Non-basic variables, by 

definitions, will have “Zero” numerical values. 
Basic variables, therefore, are the ones which 
have “canonical forms” and have their numerical 



values to be equal to the RHS of constraint 
equations (46-47). 
 
The basic/popular Simplex Algorithms [2,5] are 
based on the following main ideas: 

1. In each iteration, we have to decide which 
non-basic variable will be selected to 
ENTER into the basic variable group?, 
and  

2. Which basic variable will be KICKED OUT 
from the basic variable group? 

3. The objective function (see Eq. 48) should 
always be expressed in terms of “non-
basic variables” to satisfy the “canonical 
form” requirement. 

4. The iterative process will be stopped if no 
further improvements can be done. 

 
. To answer the above question 1, we need to 
look at the objective function (see Eq. 48). The 
selected (non-basic) variable to ENTER the basic 
variable group should be the one associated with 
the largest positive coefficient, since this choice 
will help the objective function )( maxx the most! 

 
In this example, since both variables y and z  

have the same coefficient value (=1), we can 
arbitrarily select variable z  to ENTER the basic 
variable group. This implies the variable y to be 

remained in the “non-basic” group, and hence: 
 
        0=y                                                (50) 

 
. To answer the above question 2, the current 
basic variables 

21 SandS can be solved from the 

constraint equations (46-47): 
 

0411 ≥−−= zyS                                 (51) 

07012 ≥−−= zyS                               (52) 

 
Eqs. (51-52) imply: 

 
1≤z                                                  (51A) 

7

1
≤z                                               (52A) 

 
In the above 2 equations, Eq. (52A) will control 
since if this equation (or constraint requirement) is 
satisfied, then the other constraint requirement 
(see Eq. 51A) is also automatically satisfied! 
 
The largest value z may have, therefore, is  
 

            
7

1
=z                                                  (52B) 

Substituting Eq. (52 B) into Eqs. (51-52), one 
gets: 
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Comparing Eqs. (53-54), since 02 =S , hence the 

basic variable 
2S should be one to be kicked out 

from the basic group (or entering into the non-
basic group)! 
 
The above iterative process is repeated (see the 
following Simplex tables) until optimum solution is 
obtained. Large-scale LP revised Simplex matrix 
factorization algorithms can also be implemented 
in parallel computer environments [3] to fully 
exploit parallel processing capability offered by 
most modern computers. 
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and the optimum solution is 
14

5*
=Maxx , which has 

the same value as earlier obtained in Section 4 
(using the Graphical Method) ! 
 
7. BIG_M SIMPLEX SOLUTION METHOD [2,5] 
Artificial variables are “NOT” required in the above 
LP problem, since it only involves “<” type 
constraints. However, for those LP problems that 
have “>, or =” type constraints, then artificial 
variables need be introduced (in order to have 
proper canonical form, and to have the starting 
SIMPLEX table !). for convenience, let’s introduce 
artificial variables 

1A , and 
2A into the 2 constraint 

Eqs. (46-47), and the objective function Eq. (48), 



respectively. Then, the following Big_M SIMPLEX 
LP problem can be formulated: 

114 11 =+++ ASzy                          (55) 

170 22 =+++ ASzy                          (56) 

and 

max_)()( 21 xAAMzy =+−+              (57) 

 
In Eq. (57), the “new” objective function max_x  

consists of the “original” objective function, and 
augmented by adding a “penalty function”, where 
M = any “big” number, say M = 1,000,000. This 
arbitrarily large value of M will ensure the 
SIMPLEX algorithm to force all artificial variables 
to eventually become “zero” (meaning 021 == AA ), 

and Eq. (57) will become the original objective 
function Eq. (48)! 
 
Since the objective function has to be expressed 
in terms of “non-basic variables” only (in order to 
preserve the canonical form), the basic/artificial 
variables

1A , and 
2A can be expressed in term of 

“non-basic” variables by solving the 2 constraint 
Eqs. (55-56), as following: 
 

11 41 SzyA −−−=                                              (58) 

22 71 SzA −−=                                       (59) 

 
Substituting Eqs. (58-59) into Eq. (57), one 
obtains: 

MxSMSMzMyM 2max_)()()81()41( 21 +=+++++  (60) 

 
Based on the above Eqs. (55-56, 60), the familiar 
SIMPLEX procedures can be 
generated/computed, as shown in the following 
tables: 
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8. REAL-WORLD “RACIAL DESEGREGATION 
OF SCHOOL/BUS SYSTEMS” APPLICATION 
[2,4] 

Since the landmark Supreme Court decision in 

1954 invalidating school segregation, the problem 

of racial desegregation of school systems has 

received a great deal of attention. In urban 

communities, where residential patterns produce 

de facto segregation of schools, many school 

administrations have adopted an official policy of 

eliminating such segregation by busing students 

(or else face the loss of federal funds). 

With the above considerations in mind, the 
problem chosen is that of using available mass 
transportation most effectively to achieve a given 
ethnic mix in each school in a community. 

The following data are given, which can be 
obtained from census data, or resulting from 
policy decisions. 

 

Table 5: Distributions of Ethnic Groups, School 
Districts and Student Populations 

                          District                Total by 

Ethnic 
Group 

1 2 3 Ethnic 
Group 

% 

A 900 100 0 1,000 40 

B 200 600 100 900 36 

C 100 100 400 600 24 

Totals 1200 800 500 2,500 100 

 

Table 6: Schools’ Capacities 

 

School No. Maximum Capacity 

(No. of Students) 

I 500 

II 800 

III 700 

IV 700 

 

 



Table 7: Allowable Percentage of Ethnic Groups 
at any school 

               Allowable Composition 

Ethnic Group Minimum % Maximum % 

A 36 46 

B 32 40 

C 20 28 

 

Table 8: Travel Times (minutes) between any 
district to any school 

 

District I II III IV 

1 12 13 21 31 

2 18 13 12 22 

3 34 30 25 17 

 

Using the above given data, and the Simplex 

algorithm explained in Section 6, undergraduate 

students will be able to formulate the LP problem, 

and find the “optimum” solution which 

1. Places each student in a school. 
2. Achieves an ethnic composition within the 

given ranges for each school. 
3. Minimizes the total daily student 

transportation time (or any other objective 
that one might consider pertinent). 
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