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Abstract. Linear Programming (LP) is a very popular/important topic, with very broad/real-world
Engineering/Economic, and Social Science applications. In addition to Operation Research, LP course
has been offered in most (if not all) engineering curriculum in the USA. Teaching LP topic, however, may
not be an easy task, especially at the undergraduate, and/or even at the high-school levels. Through
simple Head-Tail game strategies, and coupling with graphical methods, the authors hope that the
formulation and optimal solution for LP problem can be easily understood even by high-school students.

1. SIMPLE HEAD-TAIL GAME STRATEGIES

In the proposed “Matching Head/Tail” game,
suppose both players (S for Susan and V for
Victoria) use different strategies such as varying
the relative frequency for observing Heads or
Tails when tossing the coins. For example, player
S might adopt her strategy to be 0.7 probability of
selecting Heads and 0.3 of selecting Talils.
Similarly, player V might want to play Heads and
Tails using a different probability: 0.6 for Heads
and 0.4 for Tails. This game with different
strategies can be conveniently represented in
matrix notation as shown in Table 1.

Table 1: A 2x2 Payoff Matrix (unequal frequency
for Heads and Tails)

Player V
H T
c=06 d=04
PlayerS |H| a=0.7 1 -2
T|b=03 -3 4

In the above table, an entry 1 means S wins $1 for
the case S has Heads and V also has Heads.
Similarly, an entry -2 means S loses $2 for the
case S has Heads and V has Tails. Using the
above turning wheel strategies (shown in Figure
1), the probability of having Heads and Tails for V
are six-tenth and four-tenth, respectively. One can
easily show (see the following 3-step derivation)
that in this game, S actually loses to V an average
of $0.2 per play in the long run.

Step 1. S plays Heads seven-tenth of the time,
while V plays Heads six-tenth of the time and
Tails four-tenths of the time respectively. Thus,

S’s average winnings for this scenario can be
computed as:

S1=(0.7) [ (0.6) (1) + (0.4) (-2) ] = -$0.14 per play

Player S turning wheel

Player V turning wheel

Figure 1: Turning wheel strategy for both players

Step 2. S plays Tails three-tenth of the time, while
V plays Heads six-tenth of the time and Tails four-
tenths of the time. Thus, S’s average winnings for
these occasions are:

S2 =(0.3) [ (0.6) (-3) + (0.4) (4) ] = -$0.06 per play
Step 3. Adding the above 2 amounts, S will win
an average of:

Stota = S1 + S2 = (-0.14) + (-0.06) = -0.20

The negative result implies that in fact, in the long
run, S actually loses to V an average of $0.2 per
play. For this given 2x2 payoff matrix, the best
strategies for S and V are (a=0.7, b=0.3), and
(c=0.6, d=0.4), respectively. The value for this
game is, therefore, $0.2. This value represents
maximum gain for V, and at the same time,
minimum loss for S. Clearly, this game scenario
favors V! A classroom discussion, and computer
implementation (using powerful animated FLASH
software [1]) of the above game strategies can
potentially draw students to broaden their thinking.

2. GAME-BASED LINEAR PROGRAMMING (LP)
OPTIMIZATION FORMULATION



Game strategy for Sis (a,b) , such that
a>0;b>0 (1)
at+b=1 (2)

In the above Egs. (1-2), “a” and “b” represents the
desired/selected probability for S to observe
HEAD and TAIL, respectively.

S expects to win over V’s two “pure strategies”
(1,0), and (0,1) respectively by the following
amounts:

al(H(D) +(0)(=D)]+ bI(1)(=3) + (0)(4)] = 1a = 3b (©)
al(OD)+MEI+HON3) + (DA =~2a+4b  (4)

Define:
§ = minimum (a-3b, -2a+4b) (5)

Notes: §= minimum (amount to win) = worse
case for S

S does NOT know exact strategies played by V.
However, S knows for sure that V’s strategies
(c,d) must be some things between the 2 pure
strategies!

(Ma+(=3)b=s (6)
(-2)a+@)b=s (7)

It is valid to assume that s to have positive value,
since if this is NOT true, then one can add a
suitable positive constant k to each term of 2x2
matrix (shown earlier in Table 1), so that Egs.
(6,7) become:

(l+k)a+(-3+kb=>s (8)
(2+k)a+@G+k)b=>s (9)
or

la=3b+k(a+b)>s (10)
—2a+4b+k(a+b)=s (11)

Utilizing Eq. (2), Egs. (10-11) becomes:

la=3b+k>s (12)
—2a+4b+k=>s (13)
where k can be selected as:

k = absolute value of {smallest entry of the given
matrix}. (14)

For this particular data:

k = abs{smallest entry of (1,-3,-2,4)}
k = abs{-3} = 3 (15)

Substituting Eq. (15) into Egs. (8-9), then:

4a+0b>s (16)
la+7b>s (17)

Due to Eq. (1), the left-hand-side (LHS) of Egs.
(16-17) are positive, and the required Eq. (5)
becomes:

s =min(4a +0b,1la+7b) 20 (18)
Thus, by adding a suitable positive constant k (if
necessary, see Eq. 14), it would simply increase
the expected payoff by the amount k£ (comparing

Egq. 5 with Egs. 12-13), and it would “NOT”
change the optimal strategies.

Dividing Egs. (1, 2, 16, 17) by s, one obtains:
>0 (19)

1 (20)
S

R)
4(ﬁj + o(éj >1 1)
R) R)
1(% + 7@) >1 (22)
) S

Since “S = Susan” would like to maximize the
payoff (or winning amount) s, she would like to
1
minimize | —
S
Define:
1 a b
=—u=—;and v=— (23)
s Ry s

Then, Egs. (19-22) become the following “Dual”
problem:

Minimize t =u +v (24)
such that



@Du+Opw=1 (25)
Du+ (7 =1 (26)
u=>0;v=0 (27)

3. DUALITY LINEAR PROGRAMMING (LP)
PROBLEMS

Now, consider “V’s = Victoria’s” strategies (c,d),
such that

c20;d=>20 (28)
c+d=1 (29)

V expect to lose over S’'s two pure strategies
(1,0), and (0,1), respectively by the following
amounts:

AMD +O)(=3]+d[D2) +(0) D] =1c—-2d (30)
AO)XD +DED]+d[0)(=2) + (DH(H] = =3¢ +4d (31)

Since not all entries of the given 2x2 matrix are
positive, a positive constant k = 3 can be selected
(see Eqg. 14) and added to Eqgs. (30-31) to give:

A+k)c+(2+k)d =@)c+)d (32)

(3+k)c+@+k)d=0)c+(T)d (33)

Define:

w = maximum (4c+1d, Oc+7d) (34)
= worse case for V

Then:

De+Dd <w (35)

O)c+(T)d <w (36)

Dividing Egs. (28, 29, 35, 36) by w, one gets:

50,50 (37)

w w

c d_1 (38)

w w w

4(£j + 1(% <1 (39)
w w

O[ij + 7(ij <1 (40)
w w

Since, V would like to minimize (the loss) w, or

1 .
maximize — , one defines:
w

X sand z (41)

1 c d
w w w
Then, Egs. (37-40) become the following “Primal”
Problem:

Maximize x =y +z (42)
such that

@y+Dz<l (43)
0)y+(7)z<1 (44)
y=20;z20 (45)

The linear programming (LP) problems, shown in
Egs. (24-27): the “Dual” problem, and Egs. (42-
45): the “Primal” problem, respectively, will have
the following properties [2, 5]:

1. If optimum solution exists for either LP
problem, then so does the other LP
problem, and

t =t

*

=|x =x

2. If the optimum solution of one of the
above LP problems is unbounded, then
the other LP problem has no feasible
solution!

4. GRAPHICAL SOLUTION FOR THE LP
“PRIMAL” PROBLEM

The LP primal problem, shown in Eqgs. (42-45),
can be presented in a graphical form as shown in
Figure 2
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Figure 2: Optimum Point is at Point B

The coordinates at ‘optimal point” B can be
obtained from the two constraint Egs. (43-44):

1 « 3
dy+lz=1=24y+—-—=1=>y =—
Y Y 7 Y 14

7z:1:>z*=l
7

The “optimum solution” can be computed from Eq.
(42) as:

Xy =y AT =i
14 7 14

i_ Ed

14_ Max

5. STANDARD FORM OF LP PROBLEMS [2]

The standard form of LP problems should satisfy
the following requirements:

a) Solving an “Maximization” problem.

b) All “inequality” constraints must be
converted to “equality” constraints.

c) All right hand side (RHS) values of the
constraints must be >0 (or non negative).

d) All “original” and newly created ‘slack,
surplus, artificial” variables must be >0.

As a quick example, Tables 2-4 can be used to
explain the process to convert the original LP
problem (see Table 2) into the (final) standard LP
problem (see Tables 3-4).

Table 2: Original Problem

F., =x+5y
2x-3y<8
x+2y=2-4
x+y=6
x>0

y = No restrictions in signs.
Table 3: Standard LP problem

F,. =—(x+5y)=—x-5y

ax

2x-3y+5S, =8

—(x+2y) <4=-x-2y+S§,=4
x+y -5,=6

x20

y=y,—y,,wherey 20& y, 20
Table 4. Standard LP problem (final form)

Fmax =_‘x—5(yl _yZ)

2x=3(y, —y,)+S, =8
-x=2(y,—Y,) +S, =4
x+(y,—y,) =S, +4 =6

x20;8,20;5,=20;5, =0
y,20,y,20;4 20

Notes: x,y,, y,= Original variables
S,,S,,S,=Slack/Surplus variables
A, = Artificial variable.

6. SIMPLEX SOLUTION FOR THE LP “PRIMAL”
PROBLEM

In the standard form, the LP primal problem,
shown in Egs. (42-45), can be expressed as:

4y +1z+S, =1 (46)
Oy+7z+ S, =1 (47)
y+z = Xyt (48)
y,2,8,8,20 (49)

For the above standard LP problem, one has 2
(equality) constraints (see Egs. 46-47) and 4
unknown variables (basic variables §,,S, and

non-basic variables y, z). Non-basic variables, by

definitions, will have “Zero” numerical values.
Basic variables, therefore, are the ones which
have “canonical forms” and have their numerical



values to be equal to the RHS of constraint
equations (46-47).

The basic/popular Simplex Algorithms [2,5] are
based on the following main ideas:

1. In each iteration, we have to decide which
non-basic variable will be selected to
ENTER into the basic variable group?,
and

2. Which basic variable will be KICKED OUT
from the basic variable group?

3. The objective function (see Eq. 48) should
always be expressed in terms of “non-
basic variables” to satisfy the “canonical
form” requirement.

4. The iterative process will be stopped if no
further improvements can be done.

. To answer the above question 1, we need to
look at the objective function (see Eq. 48). The
selected (non-basic) variable to ENTER the basic
variable group should be the one associated with
the largest positive coefficient, since this choice
will help the objective function (x __)the most!

In this example, since both variables yand z

have the same coefficient value (=1), we can
arbitrarily select variable 7z to ENTER the basic
variable group. This implies the variable yto be

remained in the “non-basic” group, and hence:
y=0 (50)

. To answer the above question 2, the current
basic variables S, and S, can be solved from the

constraint equations (46-47):

S, =1-4y-2z>0 (51)
S, =1-0y-7z>0 (52)

Egs. (51-52) imply:

z<1 (51A)

z< (52A)

1
7
In the above 2 equations, Eq. (52A) will control
since if this equation (or constraint requirement) is

satisfied, then the other constraint requirement
(see Eqg. 51A) is also automatically satisfied!

The largest value z may have, therefore, is

. (52B)
7
Substituting Eq. (52 B) into Egs. (51-52), one
gets:
5 = —(z=1]=6 (53)
7 7
1
S2=1—7(z=7)=0 (54)

Comparing Egs. (53-54), since S, =0, hence the
basic variable §,should be one to be kicked out

from the basic group (or entering into the non-
basic group)!

The above iterative process is repeated (see the
following Simplex tables) until optimum solution is
obtained. Large-scale LP revised Simplex matrix
factorization algorithms can also be implemented
in parallel computer environments [3] to fully
exploit parallel processing capability offered by
most modern computers.
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Hence, optimum point is (y*,z*)=(3,lj
147

and the optimum solution is _:i, which has
“ 14

the same value as earlier obtained in Section 4
(using the Graphical Method) !

7. BIG_M SIMPLEX SOLUTION METHOD [2,5]

Artificial variables are “NOT” required in the above
LP problem, since it only involves “<” type
constraints. However, for those LP problems that
have “>, or =" type constraints, then artificial
variables need be introduced (in order to have
proper canonical form, and to have the starting
SIMPLEX table !). for convenience, let’s introduce

artificial variables A , and A, into the 2 constraint
Egs. (46-47), and the objective function Eq. (48),



respectively. Then, the following Big_M SIMPLEX
LP problem can be formulated:

4y+1z+S, +A, =1 (55)
Oy+7z +8S, +A4, =1 (56)
and

(y+2)-M(A, +A4,) =x_max (57)

In Eqg. (57), the “new” objective function x max

consists of the “original” objective function, and
augmented by adding a “penalty function”, where
M = any “big” number, say M = 1,000,000. This
arbitrarily large value of M will ensure the
SIMPLEX algorithm to force all artificial variables
to eventually become “zero” (meaning A, = A, =0),
and Eq. (57) will become the original objective
function Eq. (48)!

Since the objective function has to be expressed
in terms of “non-basic variables” only (in order to
preserve the canonical form), the basic/artificial
variables 4, and A,can be expressed in term of
“non-basic” variables by solving the 2 constraint
Egs. (55-56), as following:

A =1-4y-z-3S, (58)
A, =1 -7z =S, (59)

Substituting Egs. (58-59) into Eq. (57), one
obtains:
(1+4M)y+1+8M)z+(M)S, +(M)S, = x_max+2M (60)

Based on the above Egs. (55-56, 60), the familiar
SIMPLEX procedures can be
generated/computed, as shown in the following

0 = ‘xmax v 3 XITI('IX =
14 14

8. REAL-WORLD “RACIAL DESEGREGATION
OF SCHOOL/BUS SYSTEMS” APPLICATION
[2,4]

Since the landmark Supreme Court decision in
1954 invalidating school segregation, the problem
of racial desegregation of school systems has
received a great deal of attention. In urban
communities, where residential patterns produce
de facto segregation of schools, many school
administrations have adopted an official policy of
eliminating such segregation by busing students
(or else face the loss of federal funds).

With the above considerations in mind, the
problem chosen is that of using available mass
transportation most effectively to achieve a given
ethnic mix in each school in a community.

The following data are given, which can be
obtained from census data, or resulting from
policy decisions.

Table 5: Distributions of Ethnic Groups, School
Districts and Student Populations

District Total by
Ethnic 1 2 3 Ethnic %
Group Group
A 900 100 0 1,000 40

B 200 600 100 900 36

C 100 100 400 600 24

tables: Totals | 1200 800 500 2,500 100
Basic y z S S, 4 4 RHS=b 3
p; i T T i 3 Table 6: Schools’ Capacities
4 0 @ 0 1 0 1 1 [
1+4M 1+4:?{| M M 0 0 — S h |N M - C -
— Mo | - — . o chool No. aximum Capacity
7 o T e T o T . (No. of Students)
1M ) Y] Jjﬂ ) 717ﬂ f 7;% | 500
y 1 0 1 ; 17 1 - 17 - 73 :
= | |lw | = Il 800
) 1 ) i ) i 1
: 7 ’ 1 700
0 0 o d | B} %
4 28 4 28 IV 700
3
Y T4
.1
z ==
7
8§ =0=8,=A"=A,=0




Table 7: Allowable Percentage of Ethnic Groups

at any school

Allowable Composition

Ethnic Group | Minimum % Maximum %
A 36 46
B 32 40
C 20 28

Table 8: Travel Times (minutes) between any
district to any school

District I ] ]! v
1 12 13 21 31
2 18 13 12 22
3 34 30 25 17

Using the above given data, and the Simplex
algorithm explained in Section 6, undergraduate
students will be able to formulate the LP problem,
and find the “optimum” solution which

1. Places each student in a school.

2. Achieves an ethnic composition within the
given ranges for each school.

3. Minimizes the total daily student
transportation time (or any other objective
that one might consider pertinent).

9. ACKNOWLEDGEMENTS

The authors would like to acknowledge the partial
support, provided in this work through the National
Science Foundation (NSF Grant #0836916).

10. REFERENCES

1. www.brothersoft.com/downloads/flash-
animation-software.html

2. Duc T. Nguyen, Cee-715/815:
Engineering Optimization l;
http://www.lions.odu.edu/~skadi002

3. Duc T. Nguyen, “Finite Element Methods:
Parallel-Sparse  Statics and Eigen-
Solutions”, Springer Publisher (2006).

4. P.A Steenbrink, Optimization of
Transport Networks; John Wiley & Sons
Publisher (1974).

5. A. D. Belegundu, and T. R. Chandrupatla,
“Optimization Concepts and Applications

in Engineering”, Prentice-Hall publisher
(1999).



