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B(u, w)= jbﬂidx

(v) = Jvfdx-&(i’)

The quadratic form, commonly known as the rotal potential energy of the beam, is
obtained using (2.56¢) and (2.43b):

G [ 35 -] (3

Note that for the fourth-order equation, the essential boundary conditions
involve not only the dependent variable but aiso its first derivative. As pointed out
earlier, at any boundary point, only one of the two boundary conditions (essential or
natural) can be specified. For example, if the transverse deflection is specified at a
boundary point then one cannot specify the shear force V at the same point, and vice
versa. Similar comments apply to the slope dw/dx and the bending moment M. Note

. that in the present case, w and dw/dx are the primary variables, and V and M are the
secondary variables. Geomatric blc. Nabturad b. .

The next example is concerned with a second-order differential equation
governing conductive and convective heat transfer in two dimensions. It should
be noted that the boundary condition for a convective boundary contains both
primary and secondary variables.

(2.56¢)

M it]

xwml

M()

xml

(2.57)

CIOSEY mes AB, BC, CD, DE, EF, FG, GH, and HA (see Fig. 2.2). The
governing equation is

where g, is the uniform heat generation, k is the conductivity of the isotropic material
of the domain, and T is the temperature. We wish to construct the weak form of the

Exposed to ambient

’Ltemperature (convection)
_éx_ == T - Tx)

\ a ~ ¢

T=Tstx)

FIGURE 2.2
. Conduction and convection heat transfer in two-dimensional domains.

equation. Equation (2
engineering (see Table
Proceeding as de
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Substituting (2.61) in

o=
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Collecting terms inv.
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(2.56¢)
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equanon Equatxon (2 58) known as the Poisson equation, arises in many fields of

tgmpemmre (convection)

}'(i———- N ;}(T T )

where w denotes the weight function. Using (2.22) [with G =3T/dx in (2.22a) and
G = 3T /3y in (2.22b)], we obtain

Stmilar dwdT awd oT T
k( +—-—~——1:)- ]dXd —-§ k(—— = )ds 2.5
A )‘pa.r{- J, { \3x dx Jy dy Wa Y rw 5 3y ny (2.59)

The reader should verify the last step [i.e. the application of (2.22)]. From the
boundary expression, it follows that the secondary variable of the problem is of the

form
k(iz’n,}-——-n )= =gq,
3x 3y 3n /
and the primary variable is T. The secondary variable g, denotes the total flux across

(i.e., along the normal to) the boundary. In general, g, is composed of fluxes due to
conduction, convection, and radiation.

The boundary T of the domain consists of several line segments, and they are
subject to different types of boundary conditions (see Fig. 2.2):
onl'=AB(n,=~1,n,=0)
onT,=BC(n = 0 n,=—1):
onI,=CD(n,=1,n,=0):

specified heat flux, §(y)
specified temperature, ﬁ(x}
convective boundary wit
temperature L. ar@ filn coeﬂimmt }3?':
kar/opf+ (T - F)=0

insulated boundary, 3T/3n =0

Using the boundary information, the boundary integral in (2.59) can be slmphﬁed as
follows (note that w =0 on I,):

aT oT\

(2D Yas= [ wanas+ [ o(kS]
iw( n l_lwq ds + l_20 3 ds
—J’r

3

onT',= DEFGHA:

w[B(T - T.)l ds +j w0 ds

=- [ w0 dy =B [ wanIT@n-Tdy 26D

. Substituting (2.61) into (2.59), we obtain the weak form

8waT ow T
o[ [MZ Jasdys [ w0
axax T oy oy) WP Edy | wO.9)a0) dy

+8 [ W, T 9 - T dy @62)

Collecting terms involving both w and T into B(-,
I(-), we can write (2.62) in the form

B(w, Ty=1(w)

-}, and those invelving only w into
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Consider the v

B(w, T) —f (2:2: g;vg;l) dx dy + BJ w(a, y)T(a, y) dv
(2.63b) for all sufficiently dif

i) = [ wavaxay = [ wo iy ay +8 [ wantay of any specified esee

o o o bilinear and symmet
minimization of the .

The quadratic functional is given by ;

=5 [E) (D
X ay Q . .
3 In the Rayleigh

+ [ 1000 v+ 8 [ UTHa ) - M@y e E in the form of a fini

Note that the boundary integrals in this example are defined along the y and x
axes, respectively. This is because the boundaries are parallel to either the x or the y

3xis.
’ where the constants
, i holds for w=¢, (i =
| mmTIONAL METHODS OF APPROXIMATION w. so that N inde
2.4.1 Introduction - : requirements on ¢, 2

is obtained by substi
Our objective in this section is to study the variational methods of approxima-

tion. These include the Rayleigh-Ritz, Galerkin, Petrov—Galerkin, least-
squares, and collocation methods. In all these, we seek an approximate
solution in the form of a linear combination of suitable approximation s
functions ¢; and undetermined parameters c;: L, c;¢;. The parameters c; are I B is bilinear, th
determined such that the approximate solutxon satlsﬁes the weighted- mtegral operator. We have
form or weak form of the governing equation or minimizes the quadratic
functional associated with the equation studied. Various methods differ from
each other in the choice of weight function w and approximation functions ¢;.
The primary objective of this section is to present a number of classical or
- variational methods. The finite element method makes use of variational »
methods to formulate the discrete equations over an element. As we shall see
. in Chapters 3-14, the choice of the approximation functions in the finite .
element methods is different from that in the classical variational methods. !

which represents th
- N . > equations in N cons
2.4.2 - The Rayleigh-Ritz Method) B, =B(¢:, ¢;) mus

In the Rajielgh—thz method, the coefficients ¢; of the approximation are matrix in (2.67) can

e e AR

(s

Mz

B,'I'CI' =

It
-

etermined using the weak form of the roblem and the_choice of weighi . For symmetri
functwns is rMons, w= 2‘. Recall that the viewed as one tha
weak form contains both the governing differential equation and the natural parameters are dete
boundary conditions of the problem, and it places less stringent continuity ing to thf" symmetri
requirements on the approximate solution than the original differential substituting uy from
L equation or its weighted-integral form. The method is described below for a : becomes an ordinai

linear variational problem. the necessary cond
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Consider the variational problem of finding the solution u such that

B(w, u) =HKw) . 647

for all sufficiently differentiable functions w that satisfy the homogeneous form
of any specified essential boundary conditions on u. When the functional B is
bilinear and symmetric and [ is linear, the problem in (2.64) is equwalent to
minimization of the quadratic functional

w
@= \B(u, u) - I(u) (2.6@

In the Ra viezgh—guz method, we seek an approximate solution to (2. 64)
in the form of a finite series \

N

u~=2,ci¢i+¢’o o (266) ,

where the constants ¢;, called the Ritz coefficients, are chosen such 1l
holds forw=¢,; (i=1,2,..., N); t.e., (2.64) holds for N dxﬁere'
‘ ent algebraic equations in ¢; are

reqmrements on ¢; and ¢, will be discussed shortly. The zth alge ]
is obtained by substituting ¢; for w: -

B(¢,,2c¢,+¢n)—-l(¢.) (=12 2 N3

j=1

If B is bilinear, the summation and constants ¢; can be taken outsxde ‘the
operator. We have

2 B(¢;, @;)c; =1(¢;) — B(¢i, do)

i=1

(2.67a)

2 Bic=F, B;=B(¢, ). FE=U¢)—B(di. ¢s) (2.67b)

j=1

which represents the ith algebraic equation in a system of N linear algebraic
equatxons in N constants ¢;. The columns (and rows) of the matrix coefficients

By = B(¢;, ¢;) must be hnearly independent in order that the coefficient
matrix in (2.67) can be inverted.

For symmetric bilinear forms, the Rayleigh-Ritz method can aiso be
viewed as one that seeks a solution of the form in (2.66) in which the
parameters are determined by minimizing the quadratic functional correspond-
ing to the symmetric bilinear form, that is, the functionat I{u) in {2.65). After
substituting uy from (2.66)for u into (2.65) and integrating, the functional /(u)
becomes an ordinary (quadratic) function of the parameters ¢y, ¢4, . ... Then
the necessary condition for the minimization of ey, €, ..., Ex) S that its
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partial derivatives with respect to each of the parameters be zero:

ol al al
— =0, =0, ..., —= 2.68
¢, 3¢~ den 0 ()

Thus there are N linear algebraig uations in N unknowns, ¢, (j=
1,2,. .., N). These equations are exactly the same as those in (2.67) for all
problems for which the variational problem (2.64) is equivalent to 81 =0. Of
course, when B( -, - ) is not symmetric, we do not have a quadratic functional.
In other words, (2.67) is more general than (2.68), and they are the same when
B(-, ) is bilinear and symmetric. In most problems of interest in the present
study, we shall have a symmetric bilinear form.

Returning to the Rayleigh—Ritz approximation uy in (2.66), we note that
u, must satisfy the specified essential boundary conditions of the problem; any
specified natural boundary conditions are already included in the variational

' problem (2.64). The particular form of uy in (2.66) facilitates satisfaction of
. specified boundary conditions.@we were to use the form X Qa

W= ,i"b%
0

N

Uy = 2 c;P;(x)

j=1

then it would @e easy to satisfyfnonhomogeneouslboundary conditions. For

example, suppose that uy is required to satisty the condition un{xp) = up at a
boundary point x = Xg:
M

N

2 ci@i(xo) = uo

j=1

Since ¢; are unknown parameters to be determined, it i@to choose
¢,(x) such that this relation holds. If uy=0 then any ¢, such that ¢;(xe) =0

would meet the requirement. By writing the approximate solution uy in the
form (2.66), a sum of homogeneous and nonhomogeneous parts, the nog-
homogeneous essential boundary conditions can be satisfied by ¢, $92x0; =
iy, and @, are Tequired to sahsé The NOMOgENeous form of the same boundary

condition, @;(xo)=0. In this way, uy satisfies the specified boundary

conditions: w0 b.c. ( ""“‘i‘l ‘; ¢,

boc. (Essential ey

iti(x0) + @olxo)

If all specified essential boundary conditions are homogeneous (i.e., the
specified value u, is zero) then ¢, is taken to be zero and ¢; must still satisfy
the same conditions, ¢;(xo) =0. Since ¢; satisfy the homogeneous essential
boundary conditions, the choice w = ¢; is consistent with the requirements of a
weight function. The approximation functions ¢, satisfy the following

condition

1’ (a) 4)
[
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conditions:

1. (a) ¢; should be such that B(¢;, ¢;) is well defined and nonzer
[i.e., sufficiently differentiable as required by the bilinear form

B(-, )l
(b) ¢; must satisfy at least the homogeneous form of the essential

boundary conditions of the problem.

2. For any N, the set {¢;}/., along with the columns (and rows) of
., ¢;) must be linearly independent.

3.f{p;} must be complete) For example, when ¢, are algebraic

nomials, completeness requires that the set {¢,} should contain

all terms of the lowest order admissible, and up to the highest order
desired.

(2.69)

The only role that ¢, plays is to satisfy the specified nonhomogeneous
essential boundary conditions of the problem. Any low-order function that
satisfies the specified essential boundary conditions should be used. If ail
specified essential boundary conditions are homogeneous then ¢, =0 and

F=1(¢) - B(9:, #0)=1($)) (2.70)

Next, we consider a few examples of tfation of the Rayleigh—Ritz
method. —
—

Example 2.4.) Consider the differential equation [cf. Example 2.1, with a =¢ = 1]

d®u
dxz

We consider two sety of boundary conditions:

Csetl:  u(0)=0, u(1)=(D (2.72a)

~u+x*=0 for 0<x<1 2.71)

du
12 u(0)=0, (——) =1 726)
se u{0) =/l (2.72b)
@The bilinear functional and the linear functional are [see (2.47c)]

Since boﬂ‘ff boundary conditions [u(0) =u(1re of the essential type. we must
select @, in the N-parameter Ritz a proximation to satisfy the conditions
$i(1) = 0. We choose the following functions: P =

$r=x(1-x), ¢=x’(1-x), ..., py=x"(1-1x) (2.74)

It should be pointed out That 1 one selects, for example, the functions ¢, =x*(1 —x),
¢',=x’(1 —x), etc. [not including x(1 - x)], requirement 3 in the conditions (2.69) is
vmlafed, because the set cannot be used to generate the linear term x if the exact
solution contains it. As a rule, one must start with the lowest-order admissible function
and include all admissible, higher-order functions up to the desired degree.

Nole: Basic ¢;= (x-0)(-1)[a +a,2 + 52
it = b Py
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The N-parameter Rayleigh-Ritz solution for the problem is of the form

N

Up=c g+ cirt+.. . FonPy= 2 <9 . (2.75)
j=1
Substituting this into the variational problem B{w, u) = I{w), we obtain
19,5990 (5 oo e -
L [dx (E,C*dx) (,,2,“@ dr = j Pux’ dx
d . dep,
f "’ﬁ—w,)dx——J o
j=3 (1
or
> c,mcp,, cp,) = l(¢,> (2.76a)

1-'l

B0 &)= j ,(.‘%%

. The same 1esU

n' r‘ma.\'lv
‘2 y;roae& ¢

—@43;) 5, Ko)=-[ Poax b))

1 du 2 2 .
s — — + 3,
—_——— H(u)= L [(dx) u+2x u]dx
Substituting for u = u, from (2.75) into the above functional, we obtain

I6)=3 [(ﬁv‘, ,‘Z’) (ﬁ c,¢,)2+2x2(j_§l o) | ax

The necessary conditions for the minimization of I, which is a quadratic function of the

variables ¢,, €., . .., ¢, are ;
[ 405 2)- () o]
ac,‘“O"L[dx(,_z,c'dx 2 ,2,””' il
N
=EB:7C:“E

i=1

B;= ‘(%%"(P@i)dxv i;"“J;ixzd’xd’«’

which are the same as those in (2.76). Equations (2.76a, b) hold for any choice of
admissible approximation functions ¢,.

For the choice of approximation functions in (2.74), the matrix coefficients
B,, B(¢i, ¢;) and vector coefficients F = 1(¢)) — B(¢;, o) = I{¢;) can be computed

We have

Equation (2.76) ca

For example

and the use of Cre

The two-paramete
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{2.79). A compar
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is of the form

(2.75)
2 obtain
ot dx
x
(2.76a)
( ¥
j x ¢, dx (2.76b)
0

f {2.64)]. We have

we obtain

‘, c,@ﬂ dx @2.77)

a quadratic function of the

: dJ,-x:} dx

X, dx
. b) hold for any choice of

74}, the matrix coefficients
o) ={¢;) can be computed
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We have
B [ (= - G DI = o+ D)= (= =)
—— o

2if 2

TEANEE) -1 (Hj DG+ +j+3) (2.78a)
- ' zli__ i+l - 1
E= Lx(x #de = - (2.78b)

Equation (2.76) can be written in matrix form as

CBle) = (FT D

For examgle, when N =2, (2.79) becomes
1 {126 63]{:."} __ 1 {3}
4201 63 S2itc, 60 12
and the use of Cramer’s rule to solve the equations gives
o= —15=-0.0813, c,=—5=-0.1707
The two-parameter Rayleigh—Ritz solution i given, by
( Uy =€, @1 + €22 = (— i) (x — ¥7) + (—B)x" — X)
= —5(10x + 11x* - 21x%)
The exact solution of (2.71) and (2.72a) is given by

_sinx+25in(1—x)
sin 1

(2.79)

~

+xi =2 (2.80)

u(x)

The values of the Ritz coefficients for various values of N can be obtained by solving
(2.79). A comparison of the Rayleigh—Ritz solution (2.75) with the exact solution
{2.80) js-gresented in Table 2.1 and Fig. 2.3.

@ or the second set of boundary conditions (2.72b), the bilinear form is the
same "#8t given in (2.73) and (2.76b). The linear form is given by {(Ppa=0)

FrO/W) Ez, (2.47 C) —F l(w)= —-J'l wx* dx + Ev(l) (2.81a)

and we therefore have

(2.815)

(2.82)
.76b) and (2.81b)

The coefficients B, and F, can be computed using (2.82) in
respectively: T )

P ij 1
(i1 = 27 dx = —

’Bii T T
o I+j-1 i+j+1

a 1
>

(2.83)

(] =4

: @;t:dl
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TABLE 2.1

Comparison of the Rayleigh-Ritz and exact solutions of the

equation

d*u

~dx2—u+x2=0 for 0<x<1; w(@=u(l)=0
Rayleigh—Ritz solution, —10u
Rite ayleigl solution: Exacl
coefficientst x N=1 N=2 N=3 solution
N=1: 0.0 6.6 0.0 0.0 0.0
o ¢, =—0.1667 0.1 0. 1506 0.0885 0.0954 0.0955
N=2 0.2 0.2667 0.1847 0.1890 0.1890
c,=—0.0813 0.3 0.3500 0.2783 0.2766 0.2764
¢, =~0. 1707 0.4 0.4000 0.3590 0.3520 0.3518
N=3 0.5 0.4167 0.4167 0.4076 0.4076 ~
c,=—-0.0952 0.6 0.4000 0.4410 0.4340 0.4342
c,=—0.1005 0.7 0.3500 0.4217 0.4200 0.4203
c;=-0.0702 0.8 0.2667 0.3486 0.3529 0.3530
0.9 0.1500 0.2115 0.2183 0.2182
1.0 0.0 0.0 0.0 0.0

1+ The four-parameter Rayleigh~Ritz solution coincides with the exact solution up to four
decimal places.

—— Three-parameter solution
and exact

~-- Two-parameter solution

—— One-parameter solution

FIGURE 2.3
Comparison of the Rayleigh-Ritz
solution with the exact solution of
(2.71) and (2.724). The three-
parameter solution and the exact
solution do not differ on the scale
of the plot.

TABLE 22
Comparison of the R

equation
d’u

——&—x-i-—u+x2=03 fc

Ritz
coefficientst
N=1:
¢, =1.1250
N=2
¢, =1.2950
¢, = —0.15108
N=3
c,=12831
T ey=—0.11424
¢y = —0.02462

1 The four-parametes Rayleigh-
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Table 2.2.

Example 2.5. Consider
beam under a uniform !
M, using Euler—-Bernou
this theory are

- (%)

The variational form «
Example 2.2, and is giv

We now constru
(2.56), B(v, w)=I{v),

x=

B(v, w)=




the

to four

E 2.3

rison of the Rayleigh—Ritz
1 with the exact solution of
and' (2.72a). The three-
ster sofution and the exact
a do not differ on the scale
plot.

INTEGRAL FORMULATIONS AND VARIATIONAL METHODS 47

TABLE 2.2
Comparison of the Rayleigh-Ritz and exact solutions of the
equation '

d*u

du
————u+x’=0 for 0<x<1; wu(0)=0, (——) =1
e (0) )
Rayleigh—Ritz solution, u
Ritz Exact
coefficients? x N=1 N=2 N=3 solution
N=1: 0.0 0.0 0.0 0.0 0.0
¢, = 1.1250 0.1 0.1125 0.1280 0.1271 0.1262
N=2: 0.2 0.2250 0.2530 0.2519 0.2513
c, = 1.2950 0.3 0.3375 0.3749 0.3740 0.3742
cy=—0.15108 0.4 0.4500 0.4938 0.4934 0.4944
N=3: 0.5 0.3625 0.6097 0.6099 0.6112

¢, = 12831 0.6 0.6750 0.7226 0.7234 0.7244
¢y = ~0.11424 0.7 0.7875 0.8325 0.8337 0.8340
¢y = —0.02462 0.8 0.9000 0.9393 0.9407 0.9402
0.9 1.0125 1.0431 1.0443 1.0433
1.0 1.1250 1.1439 1.1442 1.1442

1 The four-parameter Rayleigh—Ritz solution coincides with the exact solution up to four
decimal places.
The exact solution in the present case is given by

2cos(l—-x)—sinx
= +x° =2 (2.84)
cos 1

u(x)

A comparison of the Rayleigh-Ritz solution with the exact solution is presented in
Table 2.2.

Example 2.5. )Consider the problem of finding the transverse deflection of a cantilever
beam under a uniform transverse load of intensity f, per unit length and end moment

M, using Euler—Bernoulli beam theory (see Example 2.2). The governing equations of
this theory are

d? d*w
= (Elzx—z> ~£=0 for {

d*w
=0 (EI dﬁ)

O<x<L
EI>0

o-(2 Lo (St

The variational form of (2.85) (which includes the specified NBC) was derived in
Example 2.2, and is given by (2.56).

’ We now construct an N-parameter Ritz solution using the variational form,
(2.56), B(v, w) = I(v), wher

(2.85)

=0 (2.86)

x=0 x=L

' L dv
R z(u)~f0 foudx+(MOE>

xamf
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Note that the specified EBC, w(0) =0 and {dw/dx}} _, are homogeneous. Therefore,
*0 We select algebralc apprexamauon funcnons 49, that sansfy the contmmty

= O,
fupctiqn that meets these conda,tlons is{g, =x" ’!The next funcnon in the sequem:c is

(¢.=x". fThus we have

The N-parameter Rayleigh—Ritz approximation is

wylx) = 2 iP5

j=1

Substituting (2.88) for w and v = ¢, into (2.87), we obtain

(2.88)

- . | ELj(i + 1)(j + DL~
B,= f EIG + 1)ir'™(j + Djr' de = ZIEF DG+ 1)

i+j—1
fLY™?
i+2

F=""" 4 M+ 1)L

For N =2 (i.e., the two-parameter solution), we have
————

EI(4Lc, + 6L%c;) = 4, L* + 2M, L

) . (2.90a)
EI(6L%c, + 12L%c,) = Y, L* + 3M,L?

or, in matrix form,

2 3 \
E’[:I{; 1?212;‘]{?} s {3L}+M°L{3L} (2'90by

Solving for ¢, and ¢,, we obtain

f _5f,L*+12M, . _—fiL
! 24EI  ° T 12E1

and the solution (2.88) becomes

_SHhL+12M, , .
@:451 gy 12151 @9

For the three-parameter approximation (N = 3), we€ Obtain the matrix equation

4 6L 8L |« ol +2M,
Elf 6L 12L* 18L* [{ca¢ =14 Yol*+3M,L
8L* 18L* *#L* ., Yol +aM,L?
The solution of this when substituted into (2.88) for N =3, gives
e Mox?
W) =457 OF 2E1

which coincides with the exact solution of (2.85) and (2.86). If we try to compute the
four-parameter solution without knowing that the three-parameter solution is exact, the

parameters ¢; (j > 3) will be zero. Figure 2.4 shows a comparison of the Rayleigh-Ritz
solution with the exact solution.
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Comparison of the Rayleigh—Ritz solution with the exact solution of a cantilever beam under a
uniform transverse load (Euler—Bernoulli beam theory).

books.

La
Example 2.6. XConsider the Poisson equation in a unit square region:

-kV’T=q, in Q={(x,y):0<(x, y)<1} \
T=0 ‘
oT

5;:0 onsides x=0 and y =0

on sides x =1 and v—l“

where g, is the rate of uniform heat generation in the region. The vananonal problem is

of the form (see Example 2.3)
B{w, Ty=Hlw) } (2.93a)

where the bilinear and linear functionals are
T awaT owaly TN

= J k(—:~+ ) dx dy Vr
o Jo dx dx = 3y 3y

[P b

wego dx dy ‘Jw o o)
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2.96) involves p“double summation. Simce the boundary conditions are
eous, we have $,=0. In'dentaily, d also sansﬁcs the sfatural bounda

Gundary conditiops, it is not completd\ b cauﬁe it cannot bg used to genera "the
solution that do “not vanish on the sidg§ x'¢ Gand y=0 H fce, qb are no\ ad ss:ble

notatje

Owi

2.99)

72—7(—( 285 cos $7x dosAy — 0.0219(cog5nx co

+ cos 3nx cos L) + ON)041 cos x cos dy] (2.100)

f alggh;alc golznomaals are to be used it the aEEroxxmanon of T, one can cho
o =(1-x)1 -y bmh of whxch satisfy the (homogen eous)

—x W1~ - ¥) also meets the

natu;aLhoundam conditions of the Erob!cm The one parameter Ritz solution for the
choice ¢, = (1 — x)(1 ~ y?) is e A —
R —

54, , ;
Tx, y) = 22 (1 =) (1= ¥?) (2.101)
The exact solution of {2.94a, b} is
(—1)" cos o, y cosh a,,x]
=90 4 .
T(x,y)= {(1 )+ 21 2 coh e (2.102)
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(2.94) in two dimensions.
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