
 
 
 
 
 
 
 

 

                       
        S11 S12 0 S14 0 0 0 0 0    
         S22 S23 0 0 0 0 0 0    
            S33 S34 0 S36 0 0 0    
  s   =        S44 S45 S46 0 0 0    
            S55 S56 0 S58 0    
         sym.    S66 S67 0 S69    
              S77 S78 0    
               S88 S89    
                S99    

 
 
 

STORAGE  SCHEMES : 
 

• FULL      81 WORDS 
• SYMMETRIC    45 WORDS 
• BANDED     36 WORDS 
• VARIABLE BAND   28 WORDS 
• SKYLINE     25 WORDS 

 
SPARSE 



 
Matrix Storage Methods 

2910 Equation Stiffness Panel 
 

 

 
 



 

                       
        S11 S12 0 S14 0 0 0 0 0    
         S22 S23 0 0 0 0 0 0    
            S33 S34 0 S36 0 0 0    
  s   =        S44 S45 S46 0 0 0    
            S55 S56 0 S58 0    
             S66 S67 0 S69    

              S77 S78 0    
               S88 S89    
                S99    

 
 
 
 
 

A(1)  A(3)  A(9)      

 A(2) A(5) A(8)      

  A(4) A(7)  A(15)    

   A(6) A(11) A(14)    

    A(10) A(13)  A(21)  

     A(12) A(17) A(20) A(25) 

      A(16) A(19) A(24) 

       A(18) A(23) 

        A(22) 
 
 
 
SKYTLINE STORAGE SCHEME FOR STIFFNESS MATRIX 

 
 
 



 

       
 

     
    1    0   
    2    1   

    3    1   

    4    3   

COLH    5   = 1      = Column Height = "Known" 

    6    3   

    7    1   

    8    3   

    9    3   
 

       
 

     
    1    1   
    2    2   

    3    4   

    4    6   

    5    10   

MAXA    6   = 12 = Location of Diagonal Terms 

    7    16   

    8    18   

    9    22   

    10=N+1    26   
 
MAXA (1) = 1                                                                                   ALWAYS ! 
MAXA (I+1) = MAXA(I) + COLH(I) + 1 
 
THUS:  SIJ = A[ MAXA(J) + J – I ] 
 
Example: S55= A[ MAXA(5) + 5 - 5 ]  = A [10] 
  S69= A[ MAXA(9) + 9 - 6 ]  = A [25]    
 
 



How To Find The Column Height of Each Column 
Example: 
 
 

2

22

1 3

4

6 9

    5 8

4 7
1

2

7

8

10

9
3

4

6

5 11

12

NEL= Number of
Elements = 4

NNODES = Number
of Nodes = 9

3

2

1

 
 
 
       1 2 3 4 5 6 7 8 9   
    Tx   1 1 1 0 0 0 0 0 0   
    Ty   1 1 1 0 0 0 0 0 0   
      Tz   1 1 1 1 1 1 1 1 1   
  ID   = Rx   1 1 1 1 1 1 1 1 1   
    Ry   1 1 1 1 1 1 1 1 1   
    Rz   1 1 1 1 1 1 1 1 1   
                

 
 
Convention : 
 

1 If the Degree of Freedom (DOF) is fixed 
0 If the DOF is free to move 

 
 
 
 



 
      1 2 3 4 5 6 7 8 9   
      0 0 0 1 3 5 7 9 11  Tx 
      0 0 0 2 4 6 8 10 12  Ty
        0 0 0 0 0 0 0 0 0  Tz 
  ID   =   0 0 0 0 0 0 0 0 0  Rx
      0 0 0 0 0 0 0 0 0  Ry
      0 0 0 0 0 0 0 0 0  Rz

 
 
 
 
 
 
 
The following are element connectivities: 
 
LM(1)= nodes 5,2,1,4  = (3,4,0,0,0,0,1,2) 
 
LM(2)= nodes 6,3,2,5  = (5,6,0,0,0,0,3,4) 
 
LM(3)= nodes 8,5,4,7  = (9,10,3,4,1,2,7,8) 
 
LM(4)= nodes 9,6,5,8  = (11,12,5,6,3,4,9,10) 
 
 
 
 
 
 
 
 
 
 



 
     1 2 3 4 5 6 7 8 9 10 11 12 

    1 1 1 1 1                 

    2 1 1 1 1                 

    3 1 1 1    2 1    2 2 2            

    4 1 1 1    2 1    2 2 2             

    5     2 2 2 2            

      6     2 2 2 2            

  S   = 7                         

    8                         

    9                         

    10                         

    11                         

    12                         
 

 

 

 

 

Thus, the column height for each column is given as: 
 

       
 

  
 

   
   1     0  
   2     1  
   3     2  
   4     3  
   5     2  

COLH   6   =  3  
   7     6  
   8     7  
   9     8  
   10     9  
   11     8  
   12     9  



 
The following is a skeletal Fortran statements to compute the column height of 

each column: 
 
  DO 1 I = 1, NEL 
 
C… For I = 1, the smallest DOF = 1, hence 
  

 3  3-1  2 
COLH 4 = 4-1 = 3 

 1  1-1  0 
 2  2-1  1 

      
      
C…For element I= 2, the smallest DOF = 3, hence  

 5  5-3  2  
COLH 6 = 6-3 = 3  

 3  3-3  0 2 
 4  4-3  1 3 

  
C…For element I= 3, the smallest DOF = 1, hence  
  

 9  8 
 10  9 
 3  2 

COLH 4 = 3 
 1  0 
 2  1 
 7  6 
 8  7 

 
C…For element I= 4, the smallest DOF = 3, hence  
  

 11  8  
 12  9  
 5  2  

COLH 6 = 3  
 3  0 2 
 4  1 3 

  9  6 8 
 10  7 9 

     
1 continue 
 



SEQUENTIAL CHOLESKI METHOD 
 
     ?   

  S   
  

Z = 
 

 F 

 
Step 1. Factorization 
  
                     T    

  S   =   L      U   =   U   U  

Hence 
   T          

  U     U   Z       =    F

 
 
 
Step 2. Forward Substitution, Solve For    y 
 
   T        
  U        Y   =    F 

 
    
Step3. Backward Substitution, Solve For    Z 
        

  U   
   

    Z 
   

       = 
  

 Y 

 
 
 
 
 
 
 
 
 
 
 



TO FIND FACTORIZED MATRIX   [U] 
  

Example           known 
                     

  s11 s12 s13      U11 0 0    U11 U12 U13   

  s21 s22 s23   =   U12 U22 0    0 U22 U23   

  s31 s32 s33      U13 U23 U33    0 0 U33   

 
Thus: 

       

s11 = 
U11

2

U11 = 
 SQRT (S11) 1st

s12 = U11 U12 U12 = s12/ U11 2nd

s13 = U11 U13 U13 = s13/ U11 4th

s22 = U12
2
 + U22

2 U22 = SQRT(S22-U12
2) 3rd

s23 = U12 U13+U22 U23  U23 = (S23-U12U13)/U22 5th

s33 = U13
2
 + U23

2 + U33
2 U33 = SQRT(S33-U13

2-U23
2) 6th

              

 
Notes:     
                        [U] overwrite [S]           ! 
 
                Column Oriented Approach 
   
 
 
 
 
 
 
 
 
 
 

 
 



PV- Solve (INCORE Version) 
 
In the sequential Choleski method, a symmetric, Positive definite  
  
stiffness matrix,    [K] , can be decomposed as 
                                                                            
 [K] = [U]T[U]                                                            (1) 
 
with the coefficients of the upper-triangular matrix, [U]: 
 Uij = 0 for  i > j                                                           (2) 
                                           

1111 Ku =   
11

1
1 u

K
u j

j =   for  j ≥ 1                  (3)                             

 
                                                        
            
 
                                                                                             (4) uii K ( )∑−ii

1

i 1−

k

Uki
2

=

for i 1≥
 
 
 i 1−

U ki U kj∑ 
 
  
                                                                                             (5) u 1k

ij

Kij

=

−

Uii
for i j 1≥,

 
 
 
 
                                                                                             (8) u57

k57 u15 u17⋅− u25 u27⋅− u35 u37⋅− u45 u47⋅−

u55 
 
 
 
 



 
 

      
 

I=4    
 

J=7       
               
               
                 
    S11 S12 S13 S14 S15 S16 S17 S18 S19     
     S22 S23 S24 S25 S26 S27 S28 S29     

      S33 S34 S35 S36 S37 S38 S39   
 

  Row I -1 =3 

       S44 S45 S46 S47 S48 S49   

 
 

 Row I = 4 
[S] =       S55 S56 S57 S58 S59     

    sym     S66 S67 S68 S69     

          S77 S78 S79   
 

  Row J = 7 
           S88 S89     
            S99     

 

U47

S47

1

I 1−

K

U14 U17 U24 U27+ U34 U37+( )∑
=

−

U44
 

 
U77 =? 
U11 = SQRT (S11)                 col # 
 
Do 1 J = 2,n                                                       (say J = 7th Column) 
Do 2 I = Top Row of Col J , Row J                  (say I = 4th Row ) 
 
Do 3 k = Top Row of Col I , Row I –1 

3 
 
 
 
2 
1 

Compute ∑ UKI U KJ
Compute SIJ - ∑ UKI U KJ
          . 
          . 
continue 
continue 



 
Version 1 Basic (Column oriented) Choleski 
 
       U11 = SQRT (S11) 
       DO 1 J = 2, N                                            (say J=7th Column) 
       DO 2 I = top row of Col J, Row J             (say I = 4th Row) 
       Sum 1 = 0 
       DO 3  K = Top Row of Col I ,Row I-1             
 3     Sum 1 = Sum 1 + UKI * UKJ                             
       UIJ =  SIJ – SUM1 
 
If    (I.EQ.J) Then   
       UII = SQRT(UIJ) 
Else 
 

UIJ
UIJ

UII  
 Endif 
  2     continue                                                           
  1     continue                                                           
 



 
Version 5 Parallel Vector “ Skyline” Choleski Code 

“Exactly” same as version 4 , except : 
UKI                                                  A[MAXA(I)+I-K]      
UKJ                                                                         A[MAXA(J)+J-K]                         
UIJ                                                                                          A[MAXA(J)+J-I]                         
SIJ                                                                                           A[MAXA(J)+J-I]                         
UII                                                                                          A[MAXA(I)]       
UII                                                                                          A[MAXA(I)]                
 
Note:    In actual coding, the decomposed matrix U will overwrite 
the original stiffness matrix S. For clarity, however, these 2 
matrices have been shown under different names              

 

 

 

 



 
Forward Substitution 
                              
To solve [U]T{y} = {F}                          for {y} 
 
Example : 
 
        
           

  U11 0 0    y1  F1

y3
F3 U13 y1⋅− U23 y2⋅−

U33

  U12 U22 0    y2 = F2

  U13 U23 U33    y3  F3

 
           U11y1   = F1                                       y1 = F1/U11 

 
U12y1+U22y2     = F2                              y2 = F2 –U12   y1/U22 

 
                                                                                             multipliers 
 
Similarly   
 
 

y j

Fj

1

j 1−

i

uij yi⋅∑
=

−

Ujj

 
 
 
In general : 
 
 
 
 
 



 
Version 1      Basic scheme 

DO 1 J = 1, NEQ 
Sum1 = 0 
DO 2 I = 1, J-1 

2 Sum1 = Sum1 + U(I,J)*y(I) 
          y(J) = (y(J) – Sum1)/U(J,J) 
1 continue 
 
 
Version 2       Skyline scheme 
 DO 1 J= 1, NEQ 
 Sum1= 0 
c… DO 2 I = Top row of column J, next to diagonal term, +1 
 DO 2 I = colh(J), 1 , -1 
2 Sum1 = Sum1 + U[MAXA(J)+I]* y (J-I) 
1 y(J) = (y(J) – Sum1)/U(MAXA (J)) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

      
J th 

Column   

         

            

    x x 0 x 0 0  

     x x x x 0  

U =     x x x 0  

    
 
x x x x x x  

    
 

sym    x x  

         x  

         



Backward Substitution 
     To solve [U]{Z} = {y} 
Example: 
 

Z1
y1 U12 Z2⋅− U13 Z3⋅− U14 Z4⋅−

U11

            

  U11 U12 U13 U14    Z1  y1

  0 U22 U23 U24    Z2 = y2

  0 0 U33 U34    Z3  y3

  0 0 0 U44    Z4  y4

 
 
U44 Z4 = y4  , hence   Z4

y4

U44 
 
 

Z3
y3 U34 Z4−

U33
U33 Z3 +U34 Z4 = y3 , hence  
 
 
Similarly:   Z2

y2 U23Z3− U24Z4−

U22    
 
 
 
 

Zj

y j

j 1+

NEQ

i

Uji Zi∑
=

−

Ujj

 
 
 
In general:  
 
 
Note 
        Once Z4  is known , we can update the right hand side vector {y} as 
following :  
  y3 = y3 – U34Z4 

y2 = y2 – U24Z4 
y1 = y1 – U14Z4 

 



Version 1 Basic Scheme 
 In practice, the solution vector {Z} will overwrite the right hand side 
vector {y} 
  
 DO 1 J = NEQ , 1, -1    (say, J = 4) 
 Y(J) = y(J) / U(J,J) 
  
 Do 2 I = J-1, top row of column J, -1 
 
2 y(I) = y(I) – U(I,J)* y(J) 
1 continue 
 
Version 2 Loop Unrolling Scheme 
  
 Do 1 J = NEQ , 1 , -2 
 y(J) = y(J)/U(J,J) 
 y(J-1) = [ y(J-1)- U(J-1,J) * y(J)] / U(J-1,J-1) 
 Do 2 I = J-colh(J), J-2, +1 
C…   Do 2 I = J-1, top row of column J, -1 
 
2        y(I) = y(I) –U(I,J) *y(J) – U(I,J-1) * y(J-1) 
 
1        continue 
 
 



A.3 LDLT Algorithm (or UTDU) 
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1

0
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1−
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      =  
 
 
 
Notes 

(1) LDLT is essentially the same as the 2nd version (see A.2) of Gauss 
(2) Computer implementation of LDLT 

 
 
 
 Do 11 I = 1, N 
   
  Do 22 K = 1, I-1 
   
   xmult=u()/D(I)=u(K,I)/u(K,K) 
    
   Do 33 J = I, N (or I+Irowlength) 
      
    u(I,J) = u(I,J)-xmult*Kth Row 
      
33   Continue 
     
   u(K,I) = xmult 
   
22  Continue 
 
11 Continue 

1−

0

0

1
3

⎛ ⎞⎜
⎜
⎜
⎜
⎜
⎝

⎟
⎟
⎟
⎟
⎟
⎠

1

0

0

2−
3

1

⎛ ⎞⎜ ⎟
⎜
⎜
⎜

⎟
⎟
⎟

⋅

⎜ ⎟
⎝ ⎠

u(K,J) 



For I = 1  Temporary no change in 1st row 
For I = 2 , Hence K = 1  1 
 

2
1)2,1(

11

−
==

u
uxmult  

 
 u2,2 = u2,2 – (xmult)(u1,2) = 2-(-1/2)(-1) = 3/2 
 u2,3 = u2,3 – (xmult)(u1,3) = -1-(-1/2)(0) = -1 
 

Loop 33 

 u(1,2) = xmult = -1/2 
 
For I=3 , Hence K= 1  2 
 

0
2
0)3,1(

1,1

===
u

uxmult  

  
u3,3 = u3,3 – (xmult=0)*(u1,3=0) = 1 
 

 

Loop 33 

 u(1,3)=0 
 
Now K = 2 
 

3
2

2
3
1)3,2(

2,2

−
=

−
==

u
uxmult  

 
 u3,3 = u3,3 – (xmult = -2/3)(u2,3 = -1) = 1/3 
 

Loop 33 

 u(2,3) = xmult = -2/3     ----------------- QED 
 
Hence: 

 

U
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[U] matrix, with Uii = 1

[L]T matrix, with Lii = 1

[D]



1 1 1 1

1

1

1
1

1

1
1

1
1

1 1 1

2 2
2 2

2 2 2

2

3 3
3 3

3 3
3

34 4 4
4

2 2 2 2

3 3 3 3

3
3

3
3

2
2

4
2

2

4
4 4

4
4

4
4

4 4 4 4

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9
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Figure 2 :   Total (stiffness) Matrix 
Could be 
unordered  IA  =  1, 4, 9, 15, 16, 17, 18, 20, 21, 21 

 JA  =  3, 8, 6, 7, 3, 4, 5, 6, 8, 6, 7, 4, 5, 9, 7, 6, 8, 9, 8, 9

 

How to impose (Dirichlet) boundary conditions 
Assuming  [A] x   =   b   ,   ndof = 4 and with Dirichlet boundary conditions 

x   =  k   and   x  = k2 2 3 3 

A11
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⋅
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Note: After all x  are found, reactions i

R2

1

4

j

A2j Xj⋅∑
=

and R3

1

4

j

A3j Xj⋅∑
=  
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