Sll SlZ 0

S22 Ses
Sss

s

sym.

STORAGE SCHEMES :

FULL
SYMMETRIC
BANDED
VARIABLE BAND
SKYLINE

SPARSE

Sis] O 0 0 0 0
0 0 O O 0 0
Sas| 0 |S3z| O 0 0
Sas Sas S| O 0 O
Ss5 Ss6| O |Sss| O
Ses Se7 0 Seg
S77 S O
Sgs  Sso
Soo

81 WORDS

45 WORDS

36 WORDS

28 WORDS

25 WORDS




Matrix Storage Methods
2910 Equation Stiffness Panel

—

Variable Band
Row: SAXPY
ref: SDM 31

Skyline (Column)
Dot Product
ref: SDM 30




Si1 Si12/ 0 1Sl 0O 0O O O O
S»» S;3 0/ 0 O O O O
_ Sz Sz 0 S| O 0 O
NE St Sus Sss| O 0 0
Sss| O |Ssg| O
Ses Ser O (Ses
S77 S O
Sgs  Sgo
_ Seo | _|
A1) AQ) A(9)
A(2) A(5) A(8)
A4) A7) A(15)
A(6) A(11) A(14)
* AL3) A(21)
A(12) A(17) A(2o‘_

A(16) A(19) A(24)
A(18) A(23)
A(22)

SKYTLINE STORAGE SCHEME FOR STIFFNESS MATRIX



—
__

COLH > = Column Height = "Known"

~—

OO ~NO O PA~WDN P
1
WwWwkrwWwkEFEkrwWweErEr o

O~ N -

10
= 12 = Location of Diagonal Terms
16
18
22
.~ 10=N+1 | 26 )

MAXA

©Ooo~Nooh~,wNDdDN Pk

MAXA (1) =1 ALWAYS !
MAXA (1+1) = MAXA(I) + COLH(I) + 1

Example: Sss= Al MAXAG() +5-5] =A[10]
Ses= A[ MAXA(9) +9-6] = A [25]



How To Find The Column Height of Each Column
Example:

6 12
3 .5 BN
6 9
NEL= Number of
2 4 4 10 Elements = 4
2 5 8 9
L—> 3 NNODES = Number
of Nodes =9
1 3
8
1 4 7T 7
T 1
2
1 2 3 4 5 6 7 8 9
Tx 1 1 1 0 0 0 0 0 O
T, 1 1 1 0 0 0 0O 0 O
B Tz 1 1 1 1 1 1 1 1 1
[ ID J = Ry 1 1 1 1 1 1 1 1 1
R, 1 1 1 1 1 1 1 1 1
R, | 1 1 1 1 1 1 1 1 1 |
Convention :

1 If the Degree of Freedom (DOF) is fixed
0 If the DOF is free to move



123456789
0001357 911] Tx
000246 81012 Ty

B 0000O0O0OOO]| Tz

'ID|/=| 000000000 | R
0000O0O0O0O0O | R
~0000000O0O0 | R,

The following are element connectivities:
LMY= nodes 5,2,1,4 = (3,4,0,0,0,0,1,2)
LM®@= nodes 6,3,2,5 = (5,6,0,0,0,0,3,4)
LM®= nodes 8,5,4,7 =(9,10,3,4,1,2,7,8)

LM®= nodes 9,6,5,8 = (11,12,5,6,3,4,9,10)



m% _
- B
-
7////////

222222222222

11111

dNmtwo~oo 9 dY
11111

o <«
111111111111

Thus, the column height for each column is given as:



The following is a skeletal Fortran statements to compute the column height of
each column:

DO11=1, NEL

C... For I =1, the smallest DOF = 1, hence

3-I 2

COLH 4 = 4-1 = 3
1 1-1 0

2- 1

C...For element I= 2, the smallest DOF = 3, hence

5-3 A
COLH 6 = 6-3 = 3(
3 3-3 AR
4 4-3 25 R

C...For element I= 3, the smallest DOF = 1, hence

9 ) (8

10 9

3 2

COLH 4 = 3
1 < 0 >

2 1

7 6

-8 _/ \ 7/

C...For element I= 4, the smallest DOF = 3, hence

110 [ 8
12 9
5 2
COLH 6 = 3
3 S e
4 =+ 3
9 6 > 8
21>
10 . ) 9

1 continue



SEQUENTIAL CHOLESKI METHOD

AANEA

Step 1. Factorization

L0

Hence

LR )

Step 2. Forward Substitution, Solve For {y}

[uﬁ@{F}

Step3. Backward Substitution, Solve For {Z}

o et A




TO FIND FACTORIZED MATRIX [U]

Example known
S11 S12 Si3 Un 0 0
S21 S22 S23 = U, Uxy O
S31 Ss32 S33 Uiz Uz Uz
Thus:
Uis? SORT (S
Sll - 11 Ull — Q ( 11) 15t
S12 = U Ugp, Ui, = S12/ U1 2"
313 = Ull U]_3 Ulg = 513/ U]_]_ 4th
S22 = U’ Uy’ Uz, = SQRT(Sz-U1,) 3"
S23 = U UgatUzp Uyps Uzs = (S23-U1oU13)/Us 5"
S33 = Uss’+ Ups” + Ugs Uss = SQRT(Sz3-U1s™-U23) 6"
Notes:
[U] overwrite [S] !

Column Oriented Approach



PV- Solve (INCORE Version)
In the sequential Choleski method, a symmetric, Positive definite

stiffness matrix, [K], can be decomposed as

[K] = [U]'[U] (1)
with the coefficients of the upper-triangular matrix, [U]:
Uij:OfOr 1> (2)
_ Ky .
U=yKy Uy =—" for  j21 (3)
11
i—1
2 )
ui = |Kji — (Uki) for i>1 (4)
k=1
i—1
Kij — Z Ui Uy
k=1 .
Uji = for 1,j>1 (5)
! Uii

_ kg7 —Uy5U17 — UpsUp7 — UgsUg7 — Ugs Uyy
Us7 = (8)
Uss




=4 J=7

Sll SlZ S13 S14 S15 SlG S17 S18 Slg
S22 S23 S24 S25 S26 S27 S28 S29

Sa3 Sas S35 Sz Say S3g Sag <— Rowl-1=3

Sus Sus Su6 Su Sus Su9 — Row | =4
[S] = Sss Sse Ss7 Ssg Ssg
sym Ses  Ser  Ses  Seo

So, S.s S RowJ=7
Ses  Ss
899

-1

Sa7 - z (Ugq Uz + UpgUg7 + Ugy Ugy)
K=1

Uy7 =
Ugs

U77 =?

Uy = SQRT (Sll) col #

DolJ%2n (say J = 7" Column)
Do 2 | =T op Row of Col J, Row ] (say | = 4" Row )
Do 3 k @ Col I, @

Compute > Uk U k3
Compute S);- 2 Uk U g

continue
continue



Version 1 Basic (Column oriented) Choleski

Ui = SQRT (S11)

—> DO1J=2,N (say J=7" Column)
—> DO 21 =top row of Col J, Row J (say | = 4" Row)
Sum1l=0

DO 3 K=Top Row of Col I ,Row I-1
3 LSum1=Sum1+ Ug * Ug;
U|J: SU—SUM].

If (1.EQ.J) Then
Ui =SQRT(U}))
Else

Endif
continue
continue

by



Version 5 Parallel Vector * Skyline” Choleski Code
“Exactly” same as version 4 , except :

Uk > A[MAXA(|)+|-K]
Uk > A[MAXA(J)'l‘J-K]
UU > A[MAXA(J)+J-|]
S, > A[MAXAQ)+-1]
Un » AIMAXA()]

Un » AIMAXA(D]

Note:  In actual coding, the decomposed matrix U will overwrite
the original stiffness matrix S. For clarity, however, these 2
matrices have been shown under different names



Forward Substitution

To solve [U]'{y} = {F} for {y}
Example :
Uq1 0 0 Y1 Fi
U, Uy 0 Y2 = F>
Uiz Uz  Ug Y3 Fs
Uny:r =k »Y1=F1/Uy;

UpyitUxny, =F; > Y2 = Fz@)ﬁ/ Uz,
g multipliers
. F3 £ Uigyr { Uz yo
Similarly Y3 =
Us3

In general : Yj



Version1l  Basic scheme

DO 1J=1, NEQ
Suml=0
DO21=1,J1

2 Suml = Suml + U(1,J)*y(l)
y() = (y(9) - Sum1)/U(J,J)
1 continue

Version2  Skyline scheme
DO 1J=1, NEQ
Suml=0

c... DO 21=Top row of column J, next to diagonal term, +1
DO 21=colh(J),1,-1

2 Suml =Suml + UIMAXA)+I]*y (J-1)

1 y(J) = (y(J) — Sum1)/UMAXA (J))

J th
Column
_ ¥ _
X X 0 X 0 0
X X X X 0
] = X X X 0
X X X X X X
sym X X
L X J—




Backward Substitution
To solve [U{Z} = {y}

Example:
Uy U Ui ,/I U14‘\\ Z, Y1
0 Ux Uzs:' U24|'. Z, = Y2
0 0 U33I'I Usa;I Zs Y3
0 0 0'\Uy | (%) Ya
Ya
U44 Z4 =VY4 , hence Z4 = —
Usg
Uiz Z3tU3 Z4 = V3, hence Z3 =
Uss
- —Uy3Z3 €Uy Z
Similarly: z, = Y2~ V23 3@
Uz

_Y1-UpL—UigZz-UipZy

Ui
NEQ

Yi— Z Uji Zi

_ i = j+1
In general: Zj=
Uii

1

Note
Once Z, is known , we can update the right hand side vector {y} as
following :
Y3 =Y3— UzuZy
Y2 = Y2 — UxuZy
y1=Yy1—UuZ,



Version 1 Basic Scheme
In practice, the solution vector {Z} will overwrite the right hand side

vector {y}

—> DO1J=NEQ,1,-1 (say,J=4)
Y(J) =y(Q)/U@)

T Do 2 | = J-1, top row of column J, -1
:

L 1 continue

Version 2 Loop Unrolling Scheme

—> D01J=NEQ,1,-2
y(J) =y@)/U{d,J)
y(-1) = [y(J-1)- U(-1,J) * y()] / U(J-1,J-1)
Do 2 | = J-colh(J), J-2, +1

C Do 2 | = J-1, top row of column J, -1

—>1 continue




A.3 LDL" Algorithm (or U'DU)

1 0 0)(200 1
2 -1 0 1= 0
21 o0l|o2o
0 -1 1 ) )
0 = 1/loo0 =
i 3)]lo 0 1
2 0 0\(, 1
150
3
+2 0 2
= 1o 1 %;
0 112
00 1

Notes
(1) LDLT is essentially the same as the 2™ version (see A.2) of Gauss
(2) Computer implementation of LDL"

[ Do 11 1 =1, N
Do 22 K =1, 1-1
-

xmult=u()/D(1)=u(K, N/ulK,K)

Do 33 J =1, N (or I+lrowlength)
< { u(1,3) = u(l,d)-xmult*Kth Row
33

Continue

ulK, 1) = xmult

N 22 Continue UU<J)

\ 11 Continue



For | = 1 & Temporary no change in 1% row
Forl=2,HenceK=1=>1

xmult = ud2) _-1
ull
Uz,2 = Uz2 — (Xmult)(uy ) = 2-(-1/2)(-1) = 3/2
Loop 33 Uz = Uzz — (Xmult)(Uys) = -1-(-1/2)(0) = -1

u(1,2) = xmult = -1/2

For 1I=3,Hence K=1=> 2

xmult = u(t.3) = 9 =0
U, 2
Loop 33 { Us3 = Uz 3 — (xmult=0)*(u; 3=0) = 1
u(1,3)=0
Now K =2
xmult = M — __l — __2
u2,2 § 3
2
Loop33  H uss = Uss — (xmult = -2/3)(Ups = -1) = 1/3
u2,3) =xmult=-2/3 s QED
Hence:

[U] matrix, with U; = 1

( 1 ™

! ~
! N,
N — 0™
\ \
\

.

AN

/\ [L]" matrix, with L;; = 1

[D]



3 3
2 2 3 3 2
2 2
2142 2 3 4 4
O : ®
3 1 3 1 2 1
4 2 2 2 2
[Al= 5 3 3 3 3

e
e
S
ol aIcHo
8

Figure 2 . Total (stiffness) Matrix Could bo
IA = 1,409, 15, 16,17, 18, 20, 21, 21 unordered
JA =3,86,7,3,4,56,86,74,59768989

How to impose (Dirichlet) boundary conditions

Assuming [A]X "="b", ndof = 4 and with Dirichlet boundary conditions

Xo = k2 and X3:k3

Anr A Az Au X1 by Ay 00 Ay (X by — Arxky — Agzks
AstArrAsAot Xo=k by 0 10 0 X2 ko
Ast Asp Ags Ass || Xs=ks | | by |9 01 0 ISR ks
Ay Ry Agg Ay X4 by A 00 Ay ) X by — Agarky — Agzks



Note: After all x; are found, reactions

4 4
Roz D, AyX; and  Ry= D, AgX|

i=1 ji=1
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