

 S11 S12 0 S14 0 0 0 0 0
 S22 S23 0 0 0 0 0 0
 S33 S34 0 S36 0 0 0
 s = S44 S45 S46 0 0 0
 S55 S56 0 S58 0
 sym. S66 S67 0 S69
 S77 S78 0
 S88 S89
 S99

STORAGE SCHEMES :

• FULL 81 WORDS
• SYMMETRIC 45 WORDS
• BANDED 36 WORDS
• VARIABLE BAND 28 WORDS
• SKYLINE 25 WORDS

SPARSE

Matrix Storage Methods

2910 Equation Stiffness Panel

 S11 S12 0 S14 0 0 0 0 0
 S22 S23 0 0 0 0 0 0
 S33 S34 0 S36 0 0 0
 s = S44 S45 S46 0 0 0
 S55 S56 0 S58 0
 S66 S67 0 S69

 S77 S78 0
 S88 S89
 S99

A(1) A(3) A(9)

 A(2) A(5) A(8)

 A(4) A(7) A(15)

 A(6) A(11) A(14)

 A(10) A(13) A(21)

 A(12) A(17) A(20) A(25)

 A(16) A(19) A(24)

 A(18) A(23)

 A(22)

SKYTLINE STORAGE SCHEME FOR STIFFNESS MATRIX

 1 0
 2 1

 3 1

 4 3

COLH 5 = 1 = Column Height = "Known"

 6 3

 7 1

 8 3

 9 3

 1 1
 2 2

 3 4

 4 6

 5 10

MAXA 6 = 12 = Location of Diagonal Terms

 7 16

 8 18

 9 22

 10=N+1 26

MAXA (1) = 1 ALWAYS !
MAXA (I+1) = MAXA(I) + COLH(I) + 1

THUS: SIJ = A[MAXA(J) + J – I]

Example: S55= A[MAXA(5) + 5 - 5] = A [10]
 S69= A[MAXA(9) + 9 - 6] = A [25]

How To Find The Column Height of Each Column
Example:

2

22

1 3

4

6 9

 5 8

4 7
1

2

7

8

10

9
3

4

6

5 11

12

NEL= Number of
Elements = 4

NNODES = Number
of Nodes = 9

3

2

1

 1 2 3 4 5 6 7 8 9
 Tx 1 1 1 0 0 0 0 0 0
 Ty 1 1 1 0 0 0 0 0 0
 Tz 1 1 1 1 1 1 1 1 1
 ID = Rx 1 1 1 1 1 1 1 1 1
 Ry 1 1 1 1 1 1 1 1 1
 Rz 1 1 1 1 1 1 1 1 1

Convention :

1 If the Degree of Freedom (DOF) is fixed
0 If the DOF is free to move

 1 2 3 4 5 6 7 8 9
 0 0 0 1 3 5 7 9 11 Tx
 0 0 0 2 4 6 8 10 12 Ty
 0 0 0 0 0 0 0 0 0 Tz
 ID = 0 0 0 0 0 0 0 0 0 Rx
 0 0 0 0 0 0 0 0 0 Ry
 0 0 0 0 0 0 0 0 0 Rz

The following are element connectivities:

LM(1)= nodes 5,2,1,4 = (3,4,0,0,0,0,1,2)

LM(2)= nodes 6,3,2,5 = (5,6,0,0,0,0,3,4)

LM(3)= nodes 8,5,4,7 = (9,10,3,4,1,2,7,8)

LM(4)= nodes 9,6,5,8 = (11,12,5,6,3,4,9,10)

 1 2 3 4 5 6 7 8 9 10 11 12

 1 1 1 1 1

 2 1 1 1 1

 3 1 1 1 2 1 2 2 2

 4 1 1 1 2 1 2 2 2

 5 2 2 2 2

 6 2 2 2 2

 S = 7

 8

 9

 10

 11

 12

Thus, the column height for each column is given as:

 1 0
 2 1
 3 2
 4 3
 5 2

COLH 6 = 3
 7 6
 8 7
 9 8
 10 9
 11 8
 12 9

The following is a skeletal Fortran statements to compute the column height of

each column:

 DO 1 I = 1, NEL

C… For I = 1, the smallest DOF = 1, hence

 3 3-1 2
COLH 4 = 4-1 = 3

 1 1-1 0
 2 2-1 1

C…For element I= 2, the smallest DOF = 3, hence

 5 5-3 2
COLH 6 = 6-3 = 3

 3 3-3 0 2
 4 4-3 1 3

C…For element I= 3, the smallest DOF = 1, hence

 9 8
 10 9
 3 2

COLH 4 = 3
 1 0
 2 1
 7 6
 8 7

C…For element I= 4, the smallest DOF = 3, hence

 11 8
 12 9
 5 2

COLH 6 = 3
 3 0 2
 4 1 3

 9 6 8
 10 7 9

1 continue

SEQUENTIAL CHOLESKI METHOD

 ?

 S

Z =

 F

Step 1. Factorization

 T

 S = L U = U U

Hence
 T

 U U Z = F

Step 2. Forward Substitution, Solve For y

 T
 U Y = F

Step3. Backward Substitution, Solve For Z

 U

 Z

 =

 Y

TO FIND FACTORIZED MATRIX [U]

Example known

 s11 s12 s13 U11 0 0 U11 U12 U13

 s21 s22 s23 = U12 U22 0 0 U22 U23

 s31 s32 s33 U13 U23 U33 0 0 U33

Thus:

s11 =
U11

2

U11 =
 SQRT (S11) 1st

s12 = U11 U12 U12 = s12/ U11 2nd

s13 = U11 U13 U13 = s13/ U11 4th

s22 = U12
2
 + U22

2 U22 = SQRT(S22-U12
2) 3rd

s23 = U12 U13+U22 U23 U23 = (S23-U12U13)/U22 5th

s33 = U13
2
 + U23

2 + U33
2 U33 = SQRT(S33-U13

2-U23
2) 6th

Notes:
 [U] overwrite [S] !

 Column Oriented Approach

PV- Solve (INCORE Version)

In the sequential Choleski method, a symmetric, Positive definite

stiffness matrix, [K] , can be decomposed as

 [K] = [U]T[U] (1)

with the coefficients of the upper-triangular matrix, [U]:
 Uij = 0 for i > j (2)

1111 Ku =
11

1
1 u

K
u j

j = for j ≥ 1 (3)

 (4) uii K ()∑−ii

1

i 1−

k

Uki
2

=

for i 1≥

 i 1−

U ki U kj∑

 (5) u 1k

ij

Kij

=

−

Uii
for i j 1≥,

 (8) u57

k57 u15 u17⋅− u25 u27⋅− u35 u37⋅− u45 u47⋅−

u55

I=4

J=7

 S11 S12 S13 S14 S15 S16 S17 S18 S19
 S22 S23 S24 S25 S26 S27 S28 S29

 S33 S34 S35 S36 S37 S38 S39

 Row I -1 =3

 S44 S45 S46 S47 S48 S49

 Row I = 4
[S] = S55 S56 S57 S58 S59

 sym S66 S67 S68 S69

 S77 S78 S79

 Row J = 7
 S88 S89
 S99

U47

S47

1

I 1−

K

U14 U17 U24 U27+ U34 U37+()∑
=

−

U44

U77 =?
U11 = SQRT (S11) col #

Do 1 J = 2,n (say J = 7th Column)
Do 2 I = Top Row of Col J , Row J (say I = 4th Row)

Do 3 k = Top Row of Col I , Row I –1

3

2
1

Compute ∑ UKI U KJ
Compute SIJ - ∑ UKI U KJ
 .
 .
continue
continue

Version 1 Basic (Column oriented) Choleski

 U11 = SQRT (S11)
 DO 1 J = 2, N (say J=7th Column)
 DO 2 I = top row of Col J, Row J (say I = 4th Row)
 Sum 1 = 0
 DO 3 K = Top Row of Col I ,Row I-1
 3 Sum 1 = Sum 1 + UKI * UKJ
 UIJ = SIJ – SUM1

If (I.EQ.J) Then
 UII = SQRT(UIJ)
Else

UIJ
UIJ

UII
 Endif
 2 continue
 1 continue

Version 5 Parallel Vector “ Skyline” Choleski Code

“Exactly” same as version 4 , except :
UKI A[MAXA(I)+I-K]
UKJ A[MAXA(J)+J-K]
UIJ A[MAXA(J)+J-I]
SIJ A[MAXA(J)+J-I]
UII A[MAXA(I)]
UII A[MAXA(I)]

Note: In actual coding, the decomposed matrix U will overwrite
the original stiffness matrix S. For clarity, however, these 2
matrices have been shown under different names

Forward Substitution

To solve [U]T{y} = {F} for {y}

Example :

 U11 0 0 y1 F1

y3
F3 U13 y1⋅− U23 y2⋅−

U33

 U12 U22 0 y2 = F2

 U13 U23 U33 y3 F3

 U11y1 = F1 y1 = F1/U11

U12y1+U22y2 = F2 y2 = F2 –U12 y1/U22

 multipliers

Similarly

y j

Fj

1

j 1−

i

uij yi⋅∑
=

−

Ujj

In general :

Version 1 Basic scheme

DO 1 J = 1, NEQ
Sum1 = 0
DO 2 I = 1, J-1

2 Sum1 = Sum1 + U(I,J)*y(I)
 y(J) = (y(J) – Sum1)/U(J,J)
1 continue

Version 2 Skyline scheme
 DO 1 J= 1, NEQ
 Sum1= 0
c… DO 2 I = Top row of column J, next to diagonal term, +1
 DO 2 I = colh(J), 1 , -1
2 Sum1 = Sum1 + U[MAXA(J)+I]* y (J-I)
1 y(J) = (y(J) – Sum1)/U(MAXA (J))

J th

Column

 x x 0 x 0 0

 x x x x 0

U = x x x 0

x x x x x x

sym x x

 x

Backward Substitution
 To solve [U]{Z} = {y}
Example:

Z1
y1 U12 Z2⋅− U13 Z3⋅− U14 Z4⋅−

U11

 U11 U12 U13 U14 Z1 y1

 0 U22 U23 U24 Z2 = y2

 0 0 U33 U34 Z3 y3

 0 0 0 U44 Z4 y4

U44 Z4 = y4 , hence Z4

y4

U44

Z3
y3 U34 Z4−

U33
U33 Z3 +U34 Z4 = y3 , hence

Similarly: Z2

y2 U23Z3− U24Z4−

U22

Zj

y j

j 1+

NEQ

i

Uji Zi∑
=

−

Ujj

In general:

Note
 Once Z4 is known , we can update the right hand side vector {y} as
following :
 y3 = y3 – U34Z4

y2 = y2 – U24Z4
y1 = y1 – U14Z4

Version 1 Basic Scheme
 In practice, the solution vector {Z} will overwrite the right hand side
vector {y}

 DO 1 J = NEQ , 1, -1 (say, J = 4)
 Y(J) = y(J) / U(J,J)

 Do 2 I = J-1, top row of column J, -1

2 y(I) = y(I) – U(I,J)* y(J)
1 continue

Version 2 Loop Unrolling Scheme

 Do 1 J = NEQ , 1 , -2
 y(J) = y(J)/U(J,J)
 y(J-1) = [y(J-1)- U(J-1,J) * y(J)] / U(J-1,J-1)
 Do 2 I = J-colh(J), J-2, +1
C… Do 2 I = J-1, top row of column J, -1

2 y(I) = y(I) –U(I,J) *y(J) – U(I,J-1) * y(J-1)

1 continue

A.3 LDLT Algorithm (or UTDU)

 1

1−
2

0

0

1

2−
3

0

0

1

⎛⎜
⎜
⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎟
⎟
⎠

2

0

0

0

3
2

0

0

0

1
3

⎛⎜
⎜
⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎟
⎟
⎠

⋅

⎡⎢
⎢
⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎥
⎥
⎦

1

0

0

1−
2

1

0

0

2
3
−

1

⎛ ⎞⎜ ⎟
⎜
⎜
⎜
⎜
⎝

⎟
⎟
⎟

⋅[K] = =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−

110
121

012

2

1−

0

0

3
2

⎟ ⎠

1

0

0

1−
2

 =

Notes

(1) LDLT is essentially the same as the 2nd version (see A.2) of Gauss
(2) Computer implementation of LDLT

 Do 11 I = 1, N

 Do 22 K = 1, I-1

 xmult=u()/D(I)=u(K,I)/u(K,K)

 Do 33 J = I, N (or I+Irowlength)

 u(I,J) = u(I,J)-xmult*Kth Row

33 Continue

 u(K,I) = xmult

22 Continue

11 Continue

1−

0

0

1
3

⎛ ⎞⎜
⎜
⎜
⎜
⎜
⎝

⎟
⎟
⎟
⎟
⎟
⎠

1

0

0

2−
3

1

⎛ ⎞⎜ ⎟
⎜
⎜
⎜

⎟
⎟
⎟

⋅

⎜ ⎟
⎝ ⎠

u(K,J)

For I = 1 Temporary no change in 1st row
For I = 2 , Hence K = 1 1

2
1)2,1(

11

−
==

u
uxmult

 u2,2 = u2,2 – (xmult)(u1,2) = 2-(-1/2)(-1) = 3/2
 u2,3 = u2,3 – (xmult)(u1,3) = -1-(-1/2)(0) = -1

Loop 33

 u(1,2) = xmult = -1/2

For I=3 , Hence K= 1 2

0
2
0)3,1(

1,1

===
u

uxmult

u3,3 = u3,3 – (xmult=0)*(u1,3=0) = 1

Loop 33

 u(1,3)=0

Now K = 2

3
2

2
3
1)3,2(

2,2

−
=

−
==

u
uxmult

 u3,3 = u3,3 – (xmult = -2/3)(u2,3 = -1) = 1/3

Loop 33

 u(2,3) = xmult = -2/3 ----------------- QED

Hence:

U

2
1−

2

3
2

0

2−

3

1
3

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

[U] matrix, with Uii = 1

[L]T matrix, with Lii = 1

[D]

1 1 1 1

1

1

1
1

1

1
1

1
1

1 1 1

2 2
2 2

2 2 2

2

3 3
3 3

3 3
3

34 4 4
4

2 2 2 2

3 3 3 3

3
3

3
3

2
2

4
2

2

4
4 4

4
4

4
4

4 4 4 4

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

[A]=

Figure 2 : Total (stiffness) Matrix
Could be
unordered IA = 1, 4, 9, 15, 16, 17, 18, 20, 21, 21

 JA = 3, 8, 6, 7, 3, 4, 5, 6, 8, 6, 7, 4, 5, 9, 7, 6, 8, 9, 8, 9

How to impose (Dirichlet) boundary conditions
Assuming [A] x = b , ndof = 4 and with Dirichlet boundary conditions

x = k and x = k2 2 3 3

A11

A21

A31

A41

A12

A22

A32

A42

A13

A23

A33

A43

A14

A24

A34

A44

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

X1

X2 k2

X3 k3

X4

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

⋅

b1

b2

b3

b4

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

A11

0

0

A41

0

1

0

0

0

0

1

0

A14

0

0

A44

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

X1

X2

X3

X4

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

⋅

b1 A12 k2⋅− A13 k3⋅−

k2

k3

b4 A42 k2⋅− A43 k3⋅−

⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

Note: After all x are found, reactions i

R2

1

4

j

A2j Xj⋅∑
=

and R3

1

4

j

A3j Xj⋅∑
=

	Matrix Storage Methods
	SKYTLINE STORAGE SCHEME FOR STIFFNESS MATRIX
	How To Find The Column Height of Each Column
	1 If the Degree of Freedom (DOF) is fixed
	0 If the DOF is free to move

	SEQUENTIAL CHOLESKI METHOD

	Figure 2 : Total (stiffness) Matrix
	
	How to impose (Dirichlet) boundary conditions

