
1 A Review of Basic
Finite Element Procedures

1.2 Numerical Techniques For Solving Ordinary Differential Equations (ODE)

sections.

2

2
d y x(L x)EI

2dx
ω −

= (1.1)

with the following boundary conditions:
)Lx(@y0)0x(@y ==== (1.2)

The above equations (1.1-1.2) represent a simply supported beam, subjected to a
uniform load applied throughout the beam, as shown in Figure 1.1.

To facilitate the derivation and discussion of the Galerkin method, the ODE given in
Eq.(1.1) can be re-casted in the following general form
 Ly=f (1.3)

L and f in Eq.(1.3) represent the “mathematical operator”, and “forcing” function,
respectively. Within the context of Eq.(1.1), the “mathematical operator” L, in this
case, can be defined as

)(
dx
dEIL

2

2
≡ (1.4)

Figure 1.1 A SimplySupported Beam Under Uniformly Applied Load

2

2

dx

)y(dEILy = and
2

)xL(xw
f

−
≡ (1.5)

E=Young Modulus
I=Moment of Inertia

A B

L

ω

the virtual work can be computed as
 ∫∫∫∫∫∫ δ≡δ=δ

vv

dvy*)yL(dvy*)f(w (1.6)

In Eq.(1.6), yδ represents the “virtual” displacement, which is consistent with (or
satisfied by) the “geometric” boundary conditions (at the supports at joints A and B
of Figure 1.1, for this example).

 ∑
=

φ=
N

1i
ii)x(a)x(y~ (1.7)

where ai are the unknown constant(s), and φ i

(x) are selected functions such that all
“geometric boundary conditions” (such as given in Eq.(1.2)) are satisfied.

Substituting)x(y~ from Eq.(1.7) into Eq.(1.6), one obtains:

 dvy)y~L(dvy)f(
vv

δ≠δ ∫∫∫∫∫∫ (1.8)

However, we can adjust the values of ai y~ (for), such that Eq.(1.8) will be satisfied,
hence:
 dvy)y~L(dvy)f(

vv

δ≈δ ∫∫∫∫∫∫ (1.9)

or
 0dvy)fy~L(

v

=δ−∫∫∫ (1.10)

Based upon the requirements placed on the virtual displacement yδ , one may take
the following selection:
)x(y iφ=δ (1.11)

Thus, Eq.(1.10) becomes the “Galerkin” equations, and is given as

 0dv)fy~L(
v

Function
Weighting

i

erroror
sidualRe

=φ−∫∫∫ 
 (1.12)

Thus, Eq.(1.12) states that the summation of the weighting residual

 is set to be zero.
Substituting Eq.(1.7) into Eq.(1.12), one gets:

0dv]f))x(a(L[
v

i

N

1i
ii =φ−φ∫∫∫ ∑

=
 (1.13)

Eq.(1.13) will provide i=1,2,…,N equations, which can be solved simultaneously for
obtaining ai

 unknowns.

For the example provided in Figure 1.1, the “exact” solution y(x) can be easily
obtained as

 








 ω−ω−ω






=

24
xLxLx2*

EI
1)x(y

343
 (1.14)

Assuming a 2-term approximated solution for)x(y~ is seeked, then (from Eq.(1.7)):
)x(*)xAA(y~ 121 φ+= (1.15)
or
)x(xA)x(Ay~ 1211 φ+φ= (1.16)

or
)x(A)x(Ay~ 2211 φ+φ= (1.17)
where
)x(*x)x(12 φ=φ (1.18)

Based on the given geometric boundary conditions, given by Eq.(1.2), the function

)x(1φ can be chosen as:

 





 π=φ

L
xsin)x(1 (1.19)

Substituting Eqs.(1.18-1.19) into Eq.(1.17), one has:

 





 π+






 π=

L
xsinx*A

L
xsin*Ay~ 21 (1.20)

Substituting the given differential equation (1.1) into the approximated Galerkin
Eq.(1.12), one obtains:

 0dx)x(*]
2

)xL(xy~EI[i

L

0x

=φ
−ω

−′′∫
=

 (1.21)

For i=1, one obtains from Eq.(1.21):

 0dx)]
L
xsin()x([*]

2
)xL(xy~EI[1

L

0x

=
π

=φ
−ω

−′′∫
=

 (1.22)

For i=2 one obtains from Eq.(1.21):

 0dx)]
L
xsin(x)x([*]

2
)xL(xy~EI[2

L

0x

=
π

=φ
−ω

−′′∫
=

 (1.23)

Substituting Eq.(1.20) into Eqs.(1.22-1.23), and performing the integrations using
MATLAB, one obtains the following 2 equations:
 0]L8L**EIA*EIA2[45

2
5

1 =ω+π+π (1.24)

 0]L12L**EIA2L**EIA3*EIA3[45
2

3
2

5
1 =ω+π+π+π (1.25)

or, in the matrix notations:













ω−
ω−=





















π+ππ
ππ

4

4

2

1
535

55

L12
L8

A
A

*
L2L33

L2*)EI((1.26)

Using MATLAB, the solution of Eq.(1.26) can be given as:

EI523.382

L5

EI)
4
5(

L5
EI)5(

L)5(*)4(
EI
L4A

4

5

4

5

4

5

4

1
ω−

=
π

ω−
=

π

ω−
=

π

ω−
= (1.27)

 0A2 = (1.28)

Thus, the approximated solution)x(y~ , from Eq.(1.20), becomes:

)
L
xsin(*

EI523.382
L5)x(y~

4 π









 ω−
= (1.29)

At
2
Lx = , the exact solution is given by Eq.(1.14):

EI384
L5y

4ω−
= (1.30)

At
2
Lx = , the approximated solution is given by Eq.(1.29):

EI523.382

L5y~
4ω−

= (1.31)

Remarks

(a) The selected function)x(1φ can also be easily selected as a polynomial, which
also satisfies the geometrical boundary conditions (see Eq.(1.2))
)Lx)(0x()x(1 −−=φ (1.32)
and, therefore we have:
)x(*)xAA()x(y~ 121 φ+= (1.33)
or
)x(A)x(A)x(y~ 2211 φ+φ= (1.34)
where
)x(x)x(12 φ=φ (1.35)

(b) If the function)x(1φ has to satisfy the following “hypothetical” boundary
conditions,

 0)0x(@y == (1.36)

 0)0x(@y ==′ (1.37)
 0)Lx(@y == (1.38)
 0)0x(@y ==′′ (1.39)

then a possible candidate for)x(1φ can be chosen as:

 32
1)Lx()0x()x(−−=φ (1.40)

The first and second terms of Eq.(1.40) are raised to the power 2 and 3 in order to
satisfy the “slope” and “curvature” boundary conditions, as indicated in Eq.(1.37),
and Eq.(1.39), respectively.

1.3 Identifying the “Geometric” versus “Natural” Boundary Conditions

Let’s consider the following “beam” equation:
)x(yEI ω=′′′′ (1.45)

Since the highest order of derivatives involved in the ODE (1.45) is four, one sets:
 4n2 = (1.46)
hence
 11n =− (1.47)

Based on Eq.(1.47), one may conclude that the function

y′
 itself (=y), and all of its

derivatives up to the order “n-1” (=1, in this case, such as) are the “geometrical”
boundary conditions. The “natural” boundary conditions (if any) will involve with
derivatives of the order),...3(1n),2(n =+= and higher (such as y,y ′′′′′ ,…).

1.4 The Weak Formulations

Let’s consider the following differential equation

)x(b
dx
dy)x(a

dx
d

=




− for Lx0 ≤≤ (1.48)

 0y)0x(@y == (1.49)

0
Lx@

Q
dx
dya =









=
 (1.50)

 ∑
=

φ+φ=≈
N

1i
0ii)x()x(A)x(y~)x(y (1.51)

Based on the discussions in Section 1.3, one obtains from Eq.(1.48):
 2n=2 (=the highest order of derivative) (1.52)

Hence:
 n-1=0 (1.53)

Thus, Eq.(1.49) and Eq.(1.50) represent the “geometrical” and “natural” boundary
conditions, respectively.

The non-homogeneous

)x(0φ
 “geometrical” (or “essential”) boundary conditions can be

satisfied by the function , such as 000 y)x(@ =φ . The functions)x(iφ are
required to satisfy the homogeneous

0)x(@ 0i =φ
 form of the same boundary condition

.
If all specified “geometrical” boundary conditions are homogeneous (for example,
y0)x(0φ=0), then is taken to be zero, and)x(iφ must still satisfy the same
boundary conditions (for example, 0)x(@ 0i =φ).
The “weak formulation”, if it exists, basically involves the following 3 steps:

Step 1:

 []  0dx)x(W*)x(b
dx
dy)x(a

dx
d

u
i

L

0

dv

=−






−∫

  
 (1.54)

Step 2:

 0dx)]x(W*)x(b
dx

)x(dW
*

dx
dy)x(a[

dx
dy)x(a*)x(W i

L

0

i
L

0
i =−+




− ∫ (1.55)

 ≡≡ Qn*
dx
dy)x(a x “secondary” variable (=Heat, for example) (1.56)

Figure 1.2 Normal (=nx

) to the boundary of the beam

nx

x-axis

x=L x=0

nx

dx)]x(W)x(b

dx
)x(dW

dx
dy)x(a[

]
dx
dy)x(a*)x(W[]

dx
dy)x(a*)x(W[0

i
iL

0

0x@i
Lx@

i

−+

+−=

∫

=
=

@ x L
i x i x @ x 0

L i
i0

dy dy0 [W (x) *a(x) * n] [W (x) *a(x) * n]
dx dx
dW (x)dy[a(x) b(x)W (x)]dx

dx dx

=
== − −

+ −∫

or:

0x@i
Lx@

i

i
iL

0

]Q*)x(W[]Q*)x(W[

dx)]x(W)x(b
dx

)x(dW
dx
dy)x(a[0

=
= +−

−= ∫ (1.57)

It should be noted that in the form of Eq.(1.54), the “primary” variable y(x) is
required to be twice differentiable, but only once

 in Eq.(1.57).

Step 3:

In this last step of the weak formulation, the actual boundary conditions of the
problem are imposed. Since the weighting function Wi

(x) is required to satisfy the
homogeneous form of the specified geometrical (or essential) boundary conditions,
hence:

0)0x(@Wi == ; because y(@x=0)=y0

 (1.58)

Eq.(1.57) will reduce to:

)Lx(@Q*)Lx(@Wdx)]x(W*)x(b
dx
dy)x(a[ii

L

0

==−−∫

or, using the notation introduced in Eq.(1.50), one has:

 0ii

L

0

Q*)L(@Wdx)]x(W*)x(b
dx
dy)x(a[−−∫ (1.59)

Eq.(1.59) is the weak form equivalent to the differential equation (1.48), and the
natural boundary condition equation (1.50).

1.5 Flowcharts For Statics Finite Element Analysis

 1nxxn3i1x3i }r{*)]x(N[)}x(f{ ′= (1.60)

 }r{*)]x(N[
x

}{ i
i

′
∂
∂

=ε (1.61)

or
 }r{*)]x(B[}{ i ′=ε (1.62)
where:

)]x(N[
x

)]x(B[i
i

i ∂
∂

≡ (1.63)

The internal virtual work can be equated with the external

 virtual work, therefore

 { } { }p*rdV* T

V

T ′′ε=σεδ∫ (1.64)

 }]{D[}{ ε=σ (1.65)

 xxxx E ε=σ (1.66)

From Eq.(1.62), one obtains:
 TTT]B[}r{}{ ′=ε (1.67)

 TTT]B[}r{}{ ′δ=δε (1.68)

 0}p{}r{dV}rB]{D[*]B[}r{ TT

V

T =′′δ−′=ε′δ∫

 (1.69)

 0}p{}r{*dV]B][D[]B[*}r{ T

V

T =











′−′′δ ∫ (1.70)

 }0{}p{}r{*]k[=′−′′ (1.71)

 ∫≡′

V

T dV]B][D[]B[]k[(1.72)

Since the element local coordinate axis, in general will NOT coincide with the
system global
(see Figure 1.3):

 coordinate axis, the following transformation need be done

 y

global

 y'

local

 A
 x'

local

 y'

A

xA x

global

Figure 1.3 Local-Global Coordinate Transformation

yA

x'A

θ

θ
















θθ−
θθ

=








θ−θ
θ+θ

=







′
′

=′
A

A

AA

AA

A

A
y
x

)cos()sin(
)sin()cos(

)sin(x)cos(y
)sin(y)cos(x

y
x

}r{ (1.73)

 }r]{[
y
x

][}r{
A

A λ≡








λ=′ (1.74)

 







θθ−
θθ

≡λ
)cos()sin(
)sin()cos(

][; for 2-D problems (1.75)

 }p]{[}p{ λ=′ (1.76)

 }p]{[}r]{[*]k[λ=λ′ (1.77)

 }p]{[][}r{*]][k[][TT λλ=λ′λ (1.78)

 }p{}r{*]][k[][T =λ′λ (1.79)

 }p{}r{*]k[= (1.80)

=≡λ′λ=]k[]][k[][]k[)e(T element stiffness in global coordinate reference (1.81)

 }P{}R{*]K[= (1.82)

 ∑
=

=
NEL

1e

)e(]k[]K[(1.83)

}p{}P{
NEL

1e

)e(∑
=

= ; and }p{)e(is the right-hand-side of Eq.(1.80)

{R} = system unknown displacement vector

}{}R]{M[][}{)0()0(T Λ≡Φ=Λ (1.126)

1.8 One-Dimensional Rod Finite Element Procedures

 3K/in x
A
CF 





=

Figure 1.4 Axially Loaded Rod

)x(q
x

uEA
2

2
=

∂

∂
− (1.127)

 0u)0x(@u 0 === (1.128)

 1
L3x@

F
x
uEA =
∂
∂

=
 (≡ Axial Force) (1.129)

F1=0

3L

x΄Local ≡ xGlobal axis

Figure 1.5 An Axially Loaded Rod With 3 Finite Elements

1.8.1 1-D Rod Element Stiffness Matrix









=+=
2

1
21 a

a
*]x,1[xaa)x(u (1.130)

 At x = 0; u = u1 = a1 + a2
 At x = L; u = u

(x = 0) (1.131)
2 = a1 + a2

(x = L) (1.132)

















=









2

1

2

1
a
a

*
L1
01

u
u

 (1.133)

 {u} = [A]{a} (1.134)









≡
2

1
u
u

}u{ (1.135)

 







≡

L1
01

]A[(1.136)

 L

x

 L

x

 L

x

1

2

3









≡
2

1
a
a

}a{ (1.137)

 }u{*]A[}a{ 1−= (1.138)

 







−







=−

11
0L

L
1]A[1 (1.139)

 }u{*]A[*]x,1[)x(u 1−= (1.140)




















−=

2

1
u
u

*
L
1

L
1

01
*]x,1[)x(u (1.141)

Eq.(1.141) has exactly the same form as described earlier by Eq.(1.160), where
)x(u)}x(f{ i ≡ (1.142)

 }
L
x,

L
x1{

L
1

L
1

01
*]x,1[)]x(N[−=












−≡ (1.143)









≡′
2

1
u
u

}r{ (1.144)

The shape (or interpolation) functions]
L
x)x(;

L
x1)x([)]x(N[e

2
e
1 =φ−=φ= ,

shown in Eq.(1.143), have the following properties :





=
≠

=δ=φ
jiif,1
jiif,0

)x(@ ijj
e
i (1.143a)

elementperdofofnumberthenwhere

0
dx

)x(d
therefore,1)x(

n

1i

n

1i

i
i

≡

=
φ

=φ∑ ∑
= = (1.143b)







−=

∂
∂

=
L
1,

L
1)]x(N[

x
)]x(B[(1.145)

 ∫=′
L

0

T dx]B)[D(]B[]k[(1.146)

 dx
L
1,

L
1)D(

L
1
L
1

]k[
L

0




−















−
=′ ∫ (1.147)

 







−

−
=








−

−
=′

11
11

L
)AE(

11
11

L
)D(]k[(1.148)

1.8.2 Distributed Loads and Equivalent Joint Loads

The given traction force per unit volume (see Figure 1.4)

A
cxF = K/in3

can be converted into the distributed load as

 (1.156)

 q = F*A = cx K/in (1.157)

The work done by the external loads acting on finite element rod #1 can be
computed as:

 ∫∫∫∫
=

==
L

0xV

FuAdxdV*u*FW (1.158)

 ∫ ′=
L

0

dx})r]{N([*)cx(W (1.159)

 ∫ ∫′=′=
L

0

L

0

TTTT dx]N[*q}r{dx]N[}r{*)cx(W (1.160)

 dx

L
x

L
x1

)cx(*}r{W
L

0

T ∫














 −
′= (1.161)

 Let dx

L
x

L
x1

)cx(}F{
L

0
equiv ∫















 −
≡ (1.162)

 {F1
equiv









=
2
1

*
6

cL2
} (1.163)

 }F{*}r{W equiv

T′= (1.164)

 dx)]x(N[*)q(}F{
L

0

T
equiv ∫≡ (1.165)

Similarly, for finite element rod #2 and #3, one obtains (see Fig. 1.4)

 dx]N)[xL(c}F{
L

0

T
equiv

2 ∫ +≡ (1.166)


















=

5
4

6
cL}F{

2
2
equiv (1.167)


















=+≡ ∫ 8

7
6

cLdx]N)[xL2(c}F{
2L

0

T
equiv

3 (1.168)

1.8.3 Finite Element Assembly Procedures

Thus, in this case the transformation matrix [λ] (see Eq.1.75) becomes an identity
matrix, and therefore from Eq.(1.81), one gets:

[k] = [k']

 ∑
=

=
=

3NEL

1e

)e(
4x4]k[]K[(1.169)







































−
−

+



















−
−

+


















−

−







=

1100
1100

0000
0000

0000
0110
0110
0000

0000
0000
0011
0011

*
L

AE]K[4x4



















−
−−

−−
−







=

1100
1210

0121
0011

*
L

AE]K[4x4 (1.170)

Similarly, the system nodal load vector can be assembled from its elements’
contributions:

 ∑ ∑
=

=

=

=
≡=

3NEL

1e

3NEL

1e

)e(
.Equiv

)e(
1x4 }F{}p{}P{ (1.171)









































+





















+































=

8
7
0
0

0
5
4
0

0
0
2
1

*
6

cL}P{
2

1x4 (1.172)































=

8
12
6
1

*
6

cL}P{
2

1x4 (1.173)































=







































−
−−

−−
−









8
12
6
1

6
cL

u
u
u
u

*

1100
1210

0121
0011

L
AE 2

4

3

2

1

 (1.174)

 1x41x44x4 }P{}D{*]K[= (1.175)

1.8.4 Imposing The Boundary Conditions

To make the discussions more general, let’s assume that the boundary condition is
prescribed at node 1 as”
 u1 = α1 (where α1

 = known value) (1.176)

Let Funknown1





















=



















 α=



















4

3

2

1unknown

4

3

2

11

44434241

34333231

24232221

14131211

P
P
P

F

u
u
u

u

*

KKKK
KKKK
KKKK
KKKK

 be defined as the unknown axial “reaction” force at the supported node
1, then Eq.(1.174), after imposing the boundary condition(s), can be symbolically
expressed as

 (1.177)

Eq.(1.177) is equivalent

 to the following matrix equation





















α−
α−
α−

α

=







































1414

1313

1212

1

4

3

2

1

444342

343332

242322

*KP
*KP
*KP

u
u
u
u

*

KKK0
KKK0
KKK0

0001

 (1.178)

 }P{}D{*]K[bcbc = (1.179)

1.8.5 Alternative Derivations of System of Equations from Finite Element
Equations

From a given ODE, shown in Eq.(1.127), which can be applied for a typical eth

element (shown in Figure 1.5), as following :

Step 1

: Setting the integral of weighting residual to zero

dx)x(q
x

uEARw0
B

A

x

x
2

2

∫











−

∂

∂
−== (1.179a)

Step 2

: Integrating by parts once

dx)x(q*w

dx
x
w*)

x
uEA()

x
uEA(*w0

B

A

B

A

B

A

x

x

x

x

x

x

∫

∫

−

∂
∂

∂
∂

−−





∂
∂

−=

 (1.179b)

Let xn
x
uEAQ
∂
∂

+≡ (for the boundary terms) (1.179c)

 where xn has already been used/defined in Eq.(1.56)

B B A A
x x

x xA A

0 [w(@ x) *Q(@ x)] [w(@ x) *Q(@ x)]
u w(EA) * dx w *q(x) dx
x x

Β Β

= − −

∂ ∂
+ −

∂ ∂∫ ∫
 (1.179d)

Step 3

dx)x(q*w

Q*)x(wQ*)x(wdx
x
w*)

x
uEA(0

B

A

B

A
x

x

BBAA

x

x

∫

∫

−

−−
∂
∂

∂
∂

=

: Imposing “actual” boundary conditions

 (1.179e)

Step 4

: Finite Element Equations

 Let)x(w e
iφ≡ (1.179f)

 Let)x(uu e
j

n

1j

e
j φ≡ ∑

=
 (1.179g)

dx)x(q*

Q*)x(@dx
x

*)u(
x

EA0

B

A

B

A
x

x

e
i

j

n

1j
j

e
i

x

x

e
ie

j

n

1j

e
j

∫

∑∫ ∑

φ−

φ−
∂

φ∂
φ

∂
∂

=
==

(1.179h)

 e
ij

n

1j
ijjj

n

1j

e
i QQ*Q*)x(@ ≡δ=φ ∑∑

==
 (1.179i)

x eB n

e e ei
j j i

j 1xA
xB

e
i

xA

0 EA (u) * dx Q
x x

*q(x) dx

=

∂φ∂
= φ −

∂ ∂

− φ

∑∫

∫ (1.179j)

 [] e
i

e
i

e
j

n

1j

e
ij Qfu*k0 −−













= ∑

=
 (1.179k)

where i=1, 2, …, n (= number of dof per element)

and dx)
x

*
x

EA(]k[
e
j

x

x

e
ie

ij

B

A
∂

φ∂

∂

φ∂
≡ ∫ ≡ element “stiffness” matrix (1.179l)

 { } dx*)x(qf
B

A

X

X

e
i

e
i ∫ φ≡ ≡ “Equivalent” nodal load vector (1.179m)

 ≡}Q{ e

i “Applied” nodal load vector (1.179n)

 }Q{}f{}u{*]k[eeee += (1.179o)

Remarks :

(1) Referring to Figure 1.5, a typical eth

 finite element will have :

• 2 equations [see Eq.(1.179k), assuming n=2]
• 4 unknowns (say, for the 2nd

can be identified as
 finite element), which

2
3

2
2

2
3

2
2 QandQ,u,u

(2) Thus, for the “entire” domain (which contains all 3 finite elements, as shown in
Figure 1.5), one has :

equationselements
element

equations 63*2 =•

• 12 unknowns, which can be identified as
3
4

3
3

3
4

3
3

1
2

1
1

1
2

1
1 Q,Q,,,,QQ,, uuanduu 

(3) The additional (6, in this example) equations can be obtained from :

• System, geometrical boundary condition(s), such as
 01 =u

•Displacement compatibility requirements at “common” nodes
 (between “adjacent” finite elements), such as :

2
2

1
2 uu =

3
3

2
3 uu =

• Applied “nodal” loads, such as :
0QQ 2

2
1
2 =+

0QQ 3
3

2
3 =+

1
3
4 FQ = (see Figures 1.4 and 1.5)

1.9 Truss Finite Element Equations

Figure 1.6 A Typical 2-D Truss Structure

Figure 1.7 A Typical 2-D Truss Member With Its Nodal Displacements

u4
 u3

u1

u2 θ
xG

yG

y΄
x΄

13

j=2

i=5



















−

−







=

0000
0101
0000
0101

L
AE]k[)e(1

 (1.180)

The 4x4 global element stiffness matrix of a 2-D truss element can be computed
from Eq.(1.81) as:

 














λ

λ



















−

−









λ

λ
=

L
AE

][]0[
]0[][

0000
0101
0000
0101

][]0[
]0[][

]k[
T

4x4
)e(

 (1.181)

1.10 Beam (or Frame) Finite Element Equations

y΄

Figure 1.8 A Typical 2-D Beam Element Without Axial dof

 Lx0for),x(f
dx
dD

dx
d

2

2

2

2
≤≤=









 ω
 (1.182)

 EI]D[1x1 = (1.183)
The transverse displacement field ω(x) within a 4 dof 2-D beam element can be
given as:





















=+++=ω

4

3

2

1

323
4

2
321

a
a
a
a

]x,x,x,1[xaxaxaa)x((1.184)

u5

u3

u2 θ

xG

yG

x΄

1

i=1

L

j=2
u6





















=++=
ω

=ω′

4

3

2

1

22
432

a
a
a
a

]x3,x2,1,0[xa3xa2a
dx
d)x((1.185)

 At x = 0, ω = ω1

 At x = 0,

 (1.186)

2
0xdx

d
θ=

ω
=ω′

=
 (1.187)

 At x = L, ω = ω3

 At x = 0,

 (1.188)

4
Lxdx

d
θ=

ω
=ω′

=
 (1.189)







































=





















θ
ω
θ
ω

4

3

2

1

2

32

a
a
a
a

L3,L2,1,0
L,L,L,1

0,0,1,0
1,0,0,1

4
3
2
1

 (1.190)

 1x44x41x4 }a{]A[}u{ = (1.191)

 }u{]A[}a{ 1−= (1.192)

 1x4
1

4x44x1
32 }u{]A[]x,x,x,1[)x(−=ω (1.193)

 1x44x1 }u{*)]x(N[)x(=ω (1.194)

1

2

32
32

4x1

L3L210
LLL1
0010
0001

]x,x,x,1[)]x(N[

−



















= (1.195)











 +−+−−+−+−

=
2

2

3

2

2

22

3

323

L
)xL(x,

L
)x2L3(x,

L
)xLx2L(x,

L
x2Lx3L)]x(N[(1.196)

 ∫=
L

0

T
0equiv dx)]x(N[*)f(}F{ (1.197)

































−

=

12
L*f

2
L*f

12
L*f

2
L*f

}F{

2
0

0

2
0

0

equiv (1.198)

1.11 Weak Formulation for the Beam (or Frame) Finite Element Equations

Applying the Galerkin Weighted Residual Integral (see Eq.1.12) into the given
beam’s differential equation (1.182), one gets

Step 1

 ∫ 










−









 ω
=

L

0
2

2

2

2

i dx)x(f
dx
dD

dx
dW0 (1.199)

Upon integrating by parts TWICE, Eq.(1.199) becomes:
Step 2

L

0
2

2
i

2

2

i

L

0
i2

2

2
i

2

dx
dD

dx
dW

dx
dD

dx
dWdx)x(fW

dx
d

dx
WdD0











 ω
−









 ω
+












−

ω
= ∫ (1.200)

To simplify the notations, let’s define:

0x@

2

2
)e(

1 dx
dD

dx
dQ

=





















 ω
≡ (1.201)

0x@

2

2
)e(

2 dx
dDQ

=









 ω
≡ (1.202)

Lx@

2

2
)e(

3 dx
dD

dx
dQ

=





















 ω
−≡ (1.203)

Lx@

2

2
)e(

4 dx
dDQ

=









 ω
−≡ (1.204)

)e(
2

0x@

i)e(
1i

)e(
4

Lx@

i)e(
3i

L

0
i2

2

2
i

2

Q*
dx

dW
Q*)0x(@W

Q*
dx

dW
Q*)Lx(@Wdx)x(fW

dx
d

dx
Wd

D0

=

=








+=−








+=−











−

ω
= ∫

(1.205)

)e(
i

i
L

0
i

L

0
2

jj
2

2
i

2
Q)1(dx)x(fNdx

dx

)uN(d
*

dx
Nd

D0 −+−













= ∫∫ (1.206)

)e(
i

i
L

0
ij

L

0
2

j
2

2
i

2
Q)1(dx)x(fN}u{*dx

dx

Nd
*

dx

Nd
D0 −+−














= ∫∫ (1.207)

)e(
i

i
L

0
ij

L

0
2

j
2

2
i

24

1j
Q)1(dx)x(fN}u{*dx

dx

Nd
*

dx

Nd
D −−=




























∫∫∑

=

 (1.208)

 ∑
=

=
4

1j

)e(
i

)e(
j

)e(
ij }R{}u{*]k[(1.209)

 dx
dx

Nd

dx
Nd

D]k[
L

0
2

j
2

2
i

2
)e(

ij ∫ 












≡ (1.210)





















θ
ω
θ
ω

=

4

3

2

1

)e(
ju (1.211)

 ∫ −+=
L

0

)e(
i

i
i

)e(
i Q)1(dx)x(fNR (1.212)



















−
−−−

−
−

=
=

22

22

3
)e(

ij

L2L3LL3
L36L36

LL3L2L3
L36L36

*
L

)EID(2]k[(1.213)

























−

−

+

































−

=

)e(
4

)e(
3

)e(
2

)e(
1

2

2

)e(
i

Q
Q

Q
Q

12
L*f

2
L*f

12
L*f

2
L*f

}R{ (1.214)

In general, the equilibrium of the generalized forces at a node between two adjacent
elements (e) and (e+1) requires that

 =−+− +)Q()Q()1e(
1

)e(
3 applied external concentrated force (1.215)

 =+)e(
2

)e(
4 QQ applied external concentrated moment (1.216)

1.13 Tetrahedral Finite Element Shape Functions

The governing 3-D Poisson equation can be given as

 f
z

c
zy

c
yx

c
x 321 =








∂
ω∂

∂
∂

−







∂
ω∂

∂
∂

−







∂
ω∂

∂
∂

− in Ω (1.268)

with the following geometric boundary condition(s):
 ω = ω0 on Γ
and the natural boundary condition(s)

1

 0z3y2x1 qn
z

cn
y

cn
x

c =
∂
ω∂

+
∂
ω∂

+
∂
ω∂ on Γ2

where c

 (1.269)

i=ci(x,y,z) and f=f(x,y,z) are given functions on the boundaries Γ1 and Γ2

,
respectively.

The weak formulation can be derived by the familiar 3-step procedures:

Setting the weighted residual of the given differential equation to be zero, thus:
Step 1

 Ω











−








∂
ω∂

∂
∂

−







∂
ω∂

∂
∂

−







∂
ω∂

∂
∂

−= ∫
Ω

df
z

c
zy

c
yx

c
x

W0 321
e

 (1.270)

where dΩ ≡ dxdydz (1.271)

Eq.(1.270) can be integrated by parts once, to give:
Step 2

Ω








+

∂
∂

∂
ω∂

−
∂
∂

∂
ω∂

−
∂
∂

∂
ω∂

−−









∂
ω∂

−
∂
ω∂

−
∂
ω∂

−=

∫

∫

Ω

Γ

dWf
z

W
z

c
y
W

y
c

x
W

x
c

n
z

cn
y

cn
x

cW0

e

e

321

z3y2x1

 (1.272)

Let

 z3y2x1n n
z

cn
y

cn
x

cq
∂
ω∂

+
∂
ω∂

+
∂
ω∂

≡ (1.273)

Then, Eq.(1.272) can be re-written as

∫∫
ΓΩ

Γ−Ω







−

∂
∂

∂
ω∂

+
∂
∂

∂
ω∂

+
∂
∂

∂
ω∂

=
ee

dqWdWf
z
W

z
c

y
W

y
c

x
W

x
c0 n321

 (1.274)

The primary dependent function ω can be assumed as:

 ∑
=



























ω

ω
ω

≡ω=ω
n

1j

1nxn

2

1

xn1
e
jj *)]z,y,x(N[)z,y,x(N



 (1.275)

In Eq.(1.275), n, ω j and Nj

 represent the number of dof per element, element nodal
displacements, and element shape functions, respectively.

For a 4-node tetrahedral element (see Figure 1.10) n=4, the assumed field can be
given as
)zayaxa(a)z,y,x(4321 +++=ω (1.276)
or





















=ω

4

3

2

1

a
a
a
a

*]z,y,x,1[)z,y,x((1.277)

For an 8-node brick element (see Figure 1.10), n=8, the assumed field can be given
as:
)xyza()zxayzaxya()zayaxa(a)z,y,x(87654321 +++++++=ω (1.278)

 Figure 1.10 Three-Dimensional Solid Elements

The shape functions for the 4-node tetrahedral element can be obtained by the same
familiar procedures. The geometric boundary conditions associated with an eth
element are given as

1

4

2

3
1 2

 3
4

5 6
7

z

 y

x
x

z
(a) Tetrahedron Element (b) Brick Element

 y 8

Substituting Eq.(1.279) into Eq.(1.277), one obtains:







































=





















ω
ω
ω
ω

4

3

2

1

444

333

222

111

4

3

2

1

a
a
a
a

zyx1
zyx1
zyx1
zyx1

 (1.280)

In a more compacted notations, Eq.(1.280) can be expressed as

 1x44x4 }a{]A[=ω


 (1.281)

From Eq.(1.281), one gets:

 ω= − 1]A[}a{ (1.282)

Substituting Eq.(1.282) into Eq.(1.277), one obtains:





















ω
ω
ω
ω

=ω −

4

3

2

1

1
4x44x1 *]A[*]z,y,x,1[)z,y,x((1.283)

or





















ω
ω
ω
ω

=ω

4

3

2

1

4x1 *)]z,y,x(N[)z,y,x((1.284)

where the shape functions can be identified as
 1

4x1]A[*]z,y,x,1[)]z,y,x(N[−≡ (1.285)

Let W=Ni

(x, y, z), for i=1,2,3,4 (tetrahedral) (1.286)

and substituting Eq.(1.284) into Eq.(1.274), one obtains the following (finite)
element equations:

At node 1: x = x1; y = y1; z = z1, then ω = ω1



At node 4: x = x4; y = y4; z = z4, then ω = ω4

 (1.279)

∫∫

∫

ΓΩ

Ω

Γ−Ω−

Ω








∂
∂

∂

ω∂
+

∂
∂

∂

ω∂
+

∂
∂

∂

ω∂
=

ee

e

dqNfdN

d
z

N
z

)N(
c

y
N

y
)N(

c
x

N
x

)N(
c0

nii

ijj
3

ijj
2

ijj
1

(1.287)
or

∫∫

∫

ΓΩ

Ω

Γ+Ω=

ωΩ












∂
∂

∂

∂
+

∂
∂

∂

∂
+

∂
∂

∂

∂

ee

e

dqNfdN

}{*d
z

N
z

N
c

y
N

y

N
c

x
N

x

N
c

nii

j
ij

3
ij

2
ij

1

 (1.288)

or

 }F{}{*]k[)e(
i1x4

)e(
j4x4

)e(
ij =ω (1.289)

where:

 Ω







∂
∂

∂

∂
+

∂
∂

∂

∂
+

∂
∂

∂

∂
≡ ∫
Ω

d
z

N
z

N
c

y
N

y
N

c
x

N
x

N
c]k[

e

ij
3

ij
2

ij
1

)e(
ij

 ∫∫
ΓΩ

Γ+Ω=
ee

dqNfdN}F{ nii1x4
)e(

i (1.290)

The first term on the right side of Eq.(1.290) represents the equivalent joint loads
due to the distributed “body” force “f”, while the second term represents the
equivalent joint loads due to the distributed “boundary” force “qn

”.

1.14 Finite Element Weak Formulations For General 2-D Field Equations

The two-dimensional time-dependent field equation can be assumed in the following
form:

t
uc

t
uc

x
u)x(ctgc

x
u)u(ctgc

cucuc
y
uc

x
uc

yx
uc

y
uc

x
uc

102

2

91211

87
2

654

2

32

2

22

2

1

∂
∂

+
∂

∂
=

∂
∂

+
∂
∂

+

+++
∂
∂

+
∂
∂

+
∂∂

∂
+

∂

∂
+

∂

∂

(1.291)

where 121i,ci −= are constants;)t,y,x(uu =

It should be noted that the terms associated with constants c11 and c12

 are included
for handling other special applications [1.14].

The weighted residual equation can be established by the familiar procedure

0dxdy)
x
u)x(ctgc

x
u)u(ctgc

t
uc

t
uc

cucuc
y
uc

x
uc

yx
uc

y
uc

x
uc(w

1211102

2

9

87
2

654

2

32

2

22

2

1
e

=
∂
∂

+
∂
∂

+
∂
∂

−
∂

∂
−

+++
∂
∂

+
∂
∂

+
∂∂

∂
+

∂

∂
+

∂

∂
∫∫
Ω (1.292)

where w ≡ Weighting functions.

The following relationships can be established through integration by parts:

;dxdy
x
u

x
wcdsn

x
uwc

dxdy]
x
u

x
w

x
uw

x
[c

dxdy)
x
u(

x
wc

dxdy
x

uwc

ee

e

e

e

1x1

1

1

2

2

1

∫∫∫

∫∫

∫∫

∫∫

ΩΓ

Ω

Ω

Ω

∂
∂

∂
∂

−
∂
∂

=

∂
∂

∂
∂

−







∂
∂

∂
∂

=

∂
∂

∂
∂

=

∂

∂

 (1.293)

;dxdy
y
u

y
wcdsn

y
uwc

dxdy]
y
u

y
w

y
uw

y
[c

dxdy)
y
u(

y
wc

dxdy
y

uwc

ee

e

e

e

2y2

2

2

2

2

2

∫∫∫

∫∫

∫∫

∫∫

ΩΓ

Ω

Ω

Ω

∂
∂

∂
∂

−
∂
∂

=

∂
∂

∂
∂

−







∂
∂

∂
∂

=

∂
∂

∂
∂

=

∂

∂

 (1.294)

;dxdy
x
u

y
w

2
cdxdy

y
u

x
w

2
cdsn

x
uw

2
cdsn

y
uw

2
c

dxdy]
x
u

y
w

x
uw

y
[

2
cdxdy]

y
u

x
w

y
uw

x
[

2
c

dxdy)
x
u(

y
w

2
cdxdy)

y
u(

x
w

2
c

dxdy
yx
uwc

eeee

ee

ee

e

33
y

3
x

3

33

33

2

3

∫∫∫∫∫∫

∫∫∫∫

∫∫∫∫

∫∫

ΩΩΓΓ

ΩΩ

ΩΩ

Ω

∂
∂

∂
∂

−
∂
∂

∂
∂

−
∂
∂

+
∂
∂

=

∂
∂

∂
∂

−







∂
∂

∂
∂

+
∂
∂

∂
∂

−







∂
∂

∂
∂

=

∂
∂

∂
∂

+
∂
∂

∂
∂

=

∂∂

∂

(1.295)
Substituting Eqs.(1.293-1.295) into Eq.(1.292), one gets:

0ds]
x
u

2
c

y
ucn

y
u

2
c

x
ucn[w

dxdy)
x
u)x(wctgc

x
u)u(wctgc

t
uwc

t
uwcwcwucwuc

y
uwc

x
uwc

x
u

y
w

2
c

y
u

x
w

2
c

y
u

y
wc

x
u

x
wc(

e

e

3
2y

3
1x

1211

102

2

987
2

6

54
33

21

=







∂
∂

+
∂
∂

+







∂
∂

+
∂
∂

+

∂
∂

+
∂
∂

+

∂
∂

−
∂

∂
−+++

∂
∂

−
∂
∂

−
∂
∂

∂
∂

−
∂
∂

∂
∂

−
∂
∂

∂
∂

−
∂
∂

∂
∂

−

∫

∫∫

Γ

Ω

(1.296)
Let

 n
3

2y
3

1x q
x
u

2
c

y
ucn

y
u

2
c

x
ucn ≡








∂
∂

+
∂
∂

+







∂
∂

+
∂
∂

 (1.297)

Then Eq.(1.296) becomes:

0dswqdxdy)
x
u)x(wctgc

x
u)u(wctgc

t
uwc

t
uwcwcwucwuc

y
uwc

x
uwc

x
u

y
w

2
c

y
u

x
w

2
c

y
u

y
wc

x
u

x
wc(

e

e

n1211

102

2

987
2

65

4
33

21

=+
∂
∂

+
∂
∂

+

∂
∂

−
∂

∂
−+++

∂
∂

−

∂
∂

−
∂
∂

∂
∂

−
∂
∂

∂
∂

−
∂
∂

∂
∂

−
∂
∂

∂
∂

−

∫

∫∫

Γ

Ω

(1.298)

The dependent variable field u(x,y,t) is assumed to be in the following form:

)y,x()t(u)t,y,x(u e
j

n

1j

e
j ψ≈∑

=
, where n ≡ the dof per element (1.299)

Let the weighting function)y,x(w e
iψ= ,(see Eq.1.292) , then Eq.(1.298) becomes

n n

j ji i
1 j 2 j

j 1 j 1
n n

j j3 3i i
j j

j 1 j 1
n n n

j j
4 i j 5 i j 6 i j j

j 1 j 1 j 1
n n

je
7 i j j 8 i 11 i j

j 1 j 1

12

c (u) c (u)
x x y y

c c
(u) (u)

2 x y 2 y x

c (u) c (u) c (u)u
x y

c (u) c c ctg(u)(u)
x

c

= =

= =

= = =

Ω

= =

∂ψ ∂ψ∂ψ ∂ψ
− −

∂ ∂ ∂ ∂
∂ψ ∂ψ∂ψ ∂ψ

− −
∂ ∂ ∂ ∂

∂ψ ∂ψ
− ψ − ψ + ψ ψ

∂ ∂
∂ψ

+ ψ ψ + ψ + ψ
∂

+

∑ ∑

∑ ∑

∑ ∑ ∑
∫∫

∑ ∑
2n n

j
i j 9 i j2

j 1 j 1
n

10 i j
j 1

n
e

dxdy

d uctg(x)(u) c ()
x dt

duc ()
dt

wq ds 0

= =

=

Γ

 
 
 
 
 
 
 
 
 
 
 
 
 ∂ψ ψ − ψ ψ ∂
 
 − ψ ψ 
 

+ =

∑ ∑

∑

∫

(1.300)
Eq.(1.300) can also be expressed as:

0dswqdxdyc

dxdy

)
dt

du
c

dt

ud
c

u)
x

ctgxc
x

ctgucc

uc
y

c
x

c
xy2

c

yx2
c

yy
c

xx
c(

ee

e

ni8

j
ji102

j
2

ji9

j
j

i12
j

i11ji7

ji6
j

i5
j

i4
ji3

ji3ji
2

ji
1

n

1j

=+ψ+

































ψψ−ψψ−

∂

ψ∂
ψ+

∂

ψ∂
ψ+ψψ+

ψψ+
∂

ψ∂
ψ−

∂

ψ∂
ψ−

∂

ψ∂

∂
ψ∂

−

∂

ψ∂

∂
ψ∂

−
∂

ψ∂

∂
ψ∂

−
∂

ψ∂

∂
ψ∂

−

∫∫∫

∫∫∑

ΓΩ

Ω=

(1.301)

In matrix form, Eq.(1.301) becomes:

 }Q{}f{}u]{M[}u]{C[}u]{K[eeeeeeee +=++  (1.302)

where

dxdy]
x

)x(ctgc
x

)u(ctgccuc
x

c

x
c

xy2
c

yx2
c

yy
c

xx
c[(K

j
i12

j
i11ji7ji6

j
i5

j
i4

ji3ji3ji
2

ji
1

e
ij

e

∂

ψ∂
ψ+

∂

ψ∂
ψ+ψψ+ψψ+

∂

ψ∂
ψ−

∂

ψ∂
ψ−

∂

ψ∂

∂
ψ∂

−
∂

ψ∂

∂
ψ∂

−
∂

ψ∂

∂
ψ∂

−
∂

ψ∂

∂
ψ∂

−= ∫∫
Ω

(1.303)

 ∫∫
Ω

ψψ−=
e

dxdycC ji10
e
ij (1.304)

 ∫∫
Ω

ψψ−=
e

dxdycM ji9
e
ij (1.305)

 dxdycf
e

i8
e
i ∫∫

Ω

ψ−= (1.306)

 dsqQ
e

ni
e
i ∫

Γ

ψ−= (1.307)

	ω
	L
	B
	A
	The weighted residual equation can be established by the familiar procedure

