1 A Review of Basic
Finite Element Procedures

1.2 Numerical Techniques For Solving Ordinary Differential Equations (ODE)

sections.
2
g 47y _ox(L-x) (L.1)
dx? 2
with the following boundary conditions:
y(@x=0)=0=y(@x=L) (1.2)

The above equations (1.1-1.2) represent a simply supported beam, subjected to a
uniform load applied throughout the beam, as shown in Figure 1.1.

To facilitate the derivation and discussion of the Galerkin method, the ODE given in
Eq.(1.1) can be re-casted in the following general form
Ly=f (1.3)

L and f in Eq.(1.3) represent the “mathematical operator”, and “forcing” function,
respectively. Within the context of Eq.(1.1), the “mathematical operator” L, in this
case, can be defined as
d2
L=El—() (1.4)
dx?
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I=Moment of Inertia
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Figure 1.1 A SimplySupported Beam Under Uniformly Applied Load
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Ly —El dx;') andf = WX (=) (L5)



the virtual work can be computed as

5w=”j(f)*6y dv EM(L y)*dy dv (1.6)

In Eq.(1.6), 8y represents the “virtual” displacement, which is consistent with (or

satisfied by) the “geometric” boundary conditions (at the supports at joints A and B
of Figure 1.1, for this example).

N
() =D 2i0;(x) 1.7
i=1
where a; are the unknown constant(s), and ¢;(x) are selected functions such that all
“geometric boundary conditions” (such as given in Eq.(1.2)) are satisfied.

Substituting y(x) from Eq.(1.7) into Eq.(1.6), one obtains:
”_[(f)éydv # ”j(l_y) Sy dv (1.8)

However, we can adjust the values of a; (for y ), such that Eq.(1.8) will be satisfied,
hence:

I”(f)Sydv:I”(L?) Sy dv (1.9)

or
m(l_y—f)eSydv:o (1.10)

Based upon the requirements placed on the virtual displacement 8y, one may take

the following selection:
8y = i (x) (1.11)

Thus, Eq.(1.10) becomes the “Galerkin” equations, and is given as

m(l_y—f) ¢ dv=0 (1.12)

VvV Residual Weighting
orerror Function

Thus, Eq.(1.12) states that the summation of the weighting residual is set to be zero.
Substituting Eq.(1.7) into Eq.(1.12), one gets:

1l (L3276 ()~ 14y dv =0 (1.13)
v i=1

Eq.(1.13) will provide i=1,2,...,N equations, which can be solved simultaneously for
obtaining a; unknowns.



For the example provided in Figure 1.1, the “exact” solution y(x) can be easily

obtained as
20Lx3 —ox? - oL3x
1.14

y(x) = ( J [ 24 J (1.14)
Assuming a 2-term approximated solution for y(x) is seeked, then (from Eq.(1.7)):

Y= (A1 +Ax)*¢1(x) (1.15)
or

Y =A161(X) +Arxd1(X) (1.16)
or

Y =A101(X)+ A0 () (1.17)
where

02 (X) =Xx*¢1(X) (1.18)

Based on the given geometric boundary conditions, given by Eq.(1.2), the function
¢1(x) can be chosen as:

b1 (X) = sin(n—lj(] (1.19)

Substituting Eqgs.(1.18-1.19) into Eq.(1.17), one has:
Y/:Al*sin(n—EJ+A2*xsin(n—Ej (1.20)

Substituting the given differential equation (1.1) into the approximated Galerkin
Eq.(1.12), one obtains:

L
[lE"-

x=0

"’X(L XL =X)1w4 (x)dx =0 (1.21)

For i=1, one obtains from Eq.(1.21):
L
I[Ely” oax(L X) 1,

x=0

— " [<I>1(X)—Sm(—)]0|X 0 (1.22)

For i=2 one obtains from Eq.(1.21):

JI:[EIS‘/” mx(L X)
x=0

1*[92(x) = XSIn(—)]dX 0 (1.23)

Substituting Eq.(1.20) into Egs.(1.22-1.23), and performing the integrations using
MATLAB, one obtains the following 2 equations:

[2EIA; *1° + EIA, *1° *L+80L*]=0 (1.24)



[BEIA; *1° +3EIA, *n® * L+ 2EIA, *n® * L +120L4]=0

or, in the matrix notations:
< AL _ —8olL*
A, —120)L4

5 5
(EI)*I:ZTC n°L
Using MATLAB, the solution of Eq.(1.26) can be given as:

3n° 3nlL+2n°L

A - — 4ol  (-4*Bol?  -sol*  —5el?

LR OB (Sysg  62523E
4

A, =0

Thus, the approximated solution y(x), from Eq.(1.20), becomes:

~ —5wlL? . X
X) =| ———— |*sin(—
yex) [382.523Elj ( L)
L S
At X =7 the exact solution is given by Eq.(1.14):

_ ~50L*
Y= 384N

At X = % , the approximated solution is given by Eq.(1.29):

T

Y = 382.503E1

Remarks

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(@) The selected function ¢, (x) can also be easily selected as a polynomial, which

also satisfies the geometrical boundary conditions (see Eq.(1.2))
¢1(x) = (x=0)(x-L)

and, therefore we have:
Y(X) = (A1 +AX)*d1(X)

or
Y(X) = A161(X) + Az (%)

where

02 (X) = X1 (x)

(1.32)
(1.33)
(1.34)

(1.35)

(b) If the function ¢,(x)has to satisfy the following “hypothetical” boundary

conditions,

y(@x=0)=0

(1.36)



y'(@x=0)=0 (1.37)
y(@x=L)=0 (1.38)
y'(@x=0)=0 (1.39)

then a possible candidate for ¢, (x) can be chosen as:
9100 = (x-0)?(x-L)° (1.40)
The first and second terms of Eq.(1.40) are raised to the power 2 and 3 in order to

satisfy the “slope” and “curvature” boundary conditions, as indicated in Eq.(1.37),
and Eqg.(1.39), respectively.

1.3 Identifying the “Geometric” versus “Natural” Boundary Conditions

Let’s consider the following “beam” equation:

Ely"" = o(x) (1.45)
Since the highest order of derivatives involved in the ODE (1.45) is four, one sets:

2n=4 (1.46)
hence

n-1=1 (1.47)

Based on Eq.(1.47), one may conclude that the function itself (=y), and all of its
derivatives up to the order “n-1" (=1, in this case, such as y’) are the “geometrical”

boundary conditions. The “natural” boundary conditions (if any) will involve with
derivatives of the order n(=2),n +1(=3),... and higher (such as y”",y" ,...).

1.4 The Weak Formulations

Let’s consider the following differential equation

—i{a(x)d—y} =b(x) for 0<x<L (1.48)
dx dx
y(@x=0)=yj (1.49)
dy B
_ N
y(¥) = ¥(X) = D Aidi (X)+ o (X) (1.51)

i=1

Based on the discussions in Section 1.3, one obtains from Eq.(1.48):
2n=2 (=the highest order of derivative) (1.52)



Hence:
n-1=0 (1.53)

Thus, Eq.(1.49) and Eq.(1.50) represent the “geometrical” and “natural” boundary
conditions, respectively.

The non-homogeneous “geometrical” (or “essential”) boundary conditions can be
satisfied by the function ¢y (x), such as ¢ (@ Xg) =Yg . The functions ¢;(x) are
required to satisfy the homogeneous form of the same boundary condition
0 (@Xx()=0.

If all specified “geometrical” boundary conditions are homogeneous (for example,
¥0=0), then ¢q(x) is taken to be zero, and ¢;(x)must still satisfy the same
boundary conditions (for example, ¢; (@ Xg)=0).

The “weak formulation”, if it exists, basically involves the following 3 steps:

Step 1:
L d dy A B
fo [ —d—x{a(X) d—X} —b(x) ]* Wi (x)dx =0 (L54)
- u
dv
Step 2:
dy " F o dy, dwi(x)
-[wi (x)*a(x)—y} + [0 2L+ ==0 b * W (x)] dx =0 (1.55)
dx | 5 dx dx
a(x)d—y*nX = Q = “secondary” variable (=Heat, for example) (1.56)

dx

< > Ny >
Ny ?‘ X-axis

x=0 x=L

Figure 1.2 Normal (=n,) to the boundary of the beam



— _T\W. * d_y @x=L i * d_y
0 =—{W;(x)*a(x) dx] +[Wi (x)*a(x) dx]@x=o

L dy dW;(x)
+ [y 00— == bW (x)]dx

0 = -1, (a0 50, 12 W00 %200 21, T

dy dW dw, (x)
dx

+ [ Talx ) — (X)W, (x)]dx

or:

_ L ﬂdWi(x)_ ,
0= [ Ta(x) o = =~ bOOWh (x)]dx w5

—[W; () *Q1®*E 4 [W; () *Qlg x-0

It should be noted that in the form of Eq.(1.54), the “primary” variable y(x) is
required to be twice differentiable, but only once in Eq.(1.57).

Step 3:

In this last step of the weak formulation, the actual boundary conditions of the
problem are imposed. Since the weighting function W;(x) is required to satisfy the
homogeneous form of the specified geometrical (or essential) boundary conditions,
hence:
W; (@ x =0) =0 ; because y(@x=0)=y, (1.58)

Eq.(1.57) will reduce to:

L

d
J 200 2 =D *W; ()]~ W; (@ x = L) *Q(@x = L)
0

or, using the notation introduced in Eq.(1.50), one has:
L dy
j[a(X)&—b(X)*Wi ()]dx - W; (@ L)*Qo (1.59)
0

Eq.(1.59) is the weak form equivalent to the differential equation (1.48), and the
natural boundary condition equation (1.50).

1.5 Flowcharts For Statics Finite Element Analysis

{F(Xi)}axa =IN(Xi)]axn *{r'Faxa (1.60)



= - INGIr} (1.61)
Xj

or

{3 =[BO)]*{r} (1.62)
where:
[B(x})] zai[N(xi)] (1.63)
Xi

The internal virtual work can be equated with the external virtual work, therefore

[8eT*odv={er|T*{p} (1.64)
\Y
{c}=[DHKe} (1.65)
Oyx =E €yx (1.66)

From Eq.(1.62), one obtains:

3" ={r}'[B]" (1.67)
e} ={6r [B]T (1.68)
j{sr'}T[B]T *[D{e =B r'}dV—{5r'} {p}=0 (1.69)
Vv
{r1"*| [ [BI'[DIBIAV *{r}—{p}| =0 (1.70)
\Y
K" 1*{r}—{p}={0} (1.71)

[k'1= [[B]" [DI[BdV (172)
\Y



Since the element local coordinate axis, in general will NOT coincide with the
system global coordinate axis, the following transformation need be done

(see Figure 1.3):

'
Y iocal

Ya

Y global

'
X'local

XA Xglobal

Figure 1.3 Local-Global Coordinate Transformation



" Xa| [Xxacos(@)+yasin(®)| | cos(®) sin(6) |[xa
{ry= ya| |yacos(®)—xasin(®)| |-sin(®) cos®)||lya

{r}=m{x‘\} = A
YA

D] E{ cos(0)  sin(6)

. ; for 2-D problems
—sin(8) cos(0)

{p3=[1Kr}
[KT*[AKr} =2 Kp}
(AT K04y =[] [ 1}
[117 K T0 £y = {0}
[K1*{r} ={p}
[K] = [A]T [K'IM] = [k ©®)] = element stiffness in global coordinate reference

[KI*{R}={P}

NEL
[Kl= Y [k®)]
e=1
NEL
{Pr= "> {p®3}; and {p®} is the right-hand-side of Eq.(1.80)
e=1

{R} = system unknown displacement vector

(1.73)

(1.74)

(1.75)

(1.76)

(1.77)

(1.78)

(1.79)

(1.80)

(1.81)

(1.82)

(1.83)



Ay =[0]" MR D3 ={rO3 (1.126)

1.8 One-Dimensional Rod Finite Element Procedures

F,=0 X Local = XGlobal aXIS
> —

v

3L
Figure 1.4 Axially Loaded Rod
2
- EAa—‘ZJ —q(x) (1.127)
OX
u@x=0)=ug =0 (1.128)
aou .
EA— =F (= Axial Force) (1.129)

OX|@x=3L



Figure 1.5 An Axially Loaded Rod With 3 Finite Elements

1.8.1 1-D Rod Element Stiffness Matrix

U(X) = &y +apX = [, x]*{al} (1.130)
ay

Atx=0;u=u;=a; +a,(x=0) (1.131)

Atx=L;u=u,=a; +a,(x=1) (1.132)
uq _ 10 - aq (1133)
us 1 L do l

{u} =[AKa} (1.134)

{U}E{ul} (1.135)

up

10
[A]= L J (1.136)



{a}= {al} (1.137)
a

{a}=[A]" *{u} (1.138)
_ L O
(Al ( ){ 1 J (1.139)
u(x) =L, x]*[A] L *{u} (1.140)
1 0
U(X):[LX]{—l 1]*{u1} (1.141)
Lo W
Eq.(1.141) has exactly the same form as described earlier by Eq.(1.160), where
{f(xi)}=u(x) (1.142)
{ 1 0} X X
IN)I=[Lx]* -1 1|={1-— =} (1.143)
T L L'L
{V}E{ul} (1.144)
us

The shape (or interpolation) functions [N(x)] = [¢5 () = 1—% L 95 (x) = %] ,
shown in Eq.(1.143), have the following properties :
0, ifi#]

¢$(@Xj):6ij:{l iz (1.143a)

do; (x)
Z}¢ i (x)=1, therefore Z ™ =0 (1.143b)

where n =the number of dof per element

B001=-L NG = {Ll i} (1.145)

L
[k = j[B]T (D)[B]dx (1.146)



1

ST 11
k1=[1 - (D){—r,ﬂdx (1147)
=
L
. O[1 -1 Ap[1 -1
ed==7 {—1 1}_ L [—1 1} (1.149)

1.8.2 Distributed Loads and Equivalent Joint Loads
The given traction force per unit volume (see Figure 1.4)
F:% K/in® (1.156)

can be converted into the distributed load as
g=F*A=cx Klin (1.157)

The work done by the external loads acting on finite element rod can be
computed as:

L
Wsz*u*dvz _[FuAdx (1.158)
\Y x=0
L
W = j (cx)* (INJ{r'})dx (1.159)
0
L L
W = J'(cx)*{r’}T[N]de :{r’}TJq*[N]de (1.160)
0 0
L1 X
W:{r}T*j(cx) X'— dx (1.161)
0 X
L
Lo 1%
Let {Fequiv}= j (cx) X'— dx (1.162)
0 X
L
{F -}—CLZ* ! 1.163
equivs =", (1.163)

W ={r}" *{Fequiv} (1.164)



L
{Fequiv}= [ (@*INCOTTdx (1.165)

0
Similarly, for finite element rod and , one obtains (see Fig. 1.4)

L

{Fequiv}= [ o(L +)[N]Tdx (1.166)
0

2 cL? |[4
{Fequw} [TJ{S} (1.167)
2

{Fequiv} = j c(2L +x)[N]"dx = (CZ H;} (1.168)

0

1.8.3 Finite Element Assembly Procedures

Thus, in this case the transformation matrix [A] (see Eq.1.75) becomes an identity
matrix, and therefore from Eq.(1.81), one gets:

[K] = [k1]
NEL=3
[Klaxa = 2. [k®] (1.169)
1 -100] 0o 0o o0 o0]foo 0 o
AEY,||-1 1 00| |0 L -10[ |00 0 O
(Klaxa =| = 0o 0 00|/ lo-11 000 1 -1
0 0 00/ |00 0 0 |00-11
1 -1 0 0
AEY -1 2 -1 0
Klaxa = 1.170
[Klaxa = (L] 0 -1 2 -1 ( )
0 0 -1 1

Similarly, the system nodal load vector can be assembled from its elements’
contributions:
NEL=3

{Praxa = Z 3= Z {FEqu.V (1171)



1] [0
oL 2 2| |4
Prai=| — ¥+
{}4)(1[6] 0 5
0/ |0
1
cL? 6
P = —=|*
{}4x1 (GJ 12
8
1 -1 0 0]

AE)Y-1 2 -1 O
L))o -1 2 -1

0 0 -1 1

[K]4x4 *{D}4xl ={P}4x1

(1.172)

(1.173)

(1.174)

(1.175)



1.8.4 Imposing The Boundary Conditions

To make the discussions more general, let’s assume that the boundary condition is
prescribed at node 1 as”
Ui = oy (where a; = known value) (1.176)

Let Funnownz D€ defined as the unknown axial “reaction” force at the supported node
1, then Eq.(1.174), after imposing the boundary condition(s), can be symbolically
expressed as

Kit Ko Kiz Ky | |up=0y Funknown1

Kot Koo Koz Ko |, | Uz | P,

= 1.177
K1 Kz Kzz Ky us P3 (L177)
Ka Kap Kyz Ky Uy Pa

Eq.(1.177) is equivalent to the following matrix equation

1 O 0 0 ug o

0 Ky Koz Kol Juz| |Pr—Kp*oy

0 K3 Kag Kau| |ug| |P3—Kg*ay (1.178)
0 Ky Kyz Ky Uy Py —Kyp %oy

[Kpe I*{D} ={Ppc } (1.179)



1.8.5 Alternative Derivations of System of Equations from Finite Element

Equations

From a given ODE, shown in Eq.(1.127), which can be applied for a typical e"

element (shown in Figure 1.5), as following :
Step 1: Setting the integral of weighting residual to zero
B o2u
0= j w|R =—EA—2—q(x) dx
OX

XA
Step 2: Integrating by parts once

XB XB
o{w*(_EAa—”)} [ CEAL) W gy
X Iy » ox"  OX
XB
- jw*q(x) dx
XA

Let Q= +EAZ—u ny (for the boundary terms)
X

where n, has already been used/defined in Eq.(1.56)

0=[-w(@xg)*Q(@xg)]-[W(@X,)*Q(@X,)]
Bo_ou ow P
| (BAZ)*— X~ [ wa(x) dx

XA XA

(1.179)

(1.179b)

(1.179c)

(1.179d)



Step 3: Imposing “actual” boundary conditions

xpg
0= | EAZH* T dx—w(xa)*Qa ~W(Xs)* Qs

_ Jpw*q(x) dx (1.179¢)

XA

Step 4: Finite Element Equations

Let w = ¢f (x) (1.179f)
Let u= iu‘; ¢‘]?(x) (1.1799)
=1
O_XBEAa n . e*ad)?d n . .
—I 6_X(Zuj¢j) v X_Zd)i(@xj) Qj
XA =1 j=1
XB
— o5 *a(x) dx (1.179h)
XA
D 05(@x))*Q;=>8;*Q; =Qf (1.179i)
=1 =l

o- feal uton= 3 X ax
A

- j ¢f *q(x) dx (L.179))

_ [i [kg]*uje]_fie o (1.179K)
i1

where i=1, 2, ..., n (= number of dof per element)

092 00S

XB
and [k]= I (EA—'*—') dx = element “stiffness” matrix (2.1790)
" . oX  0OX
A



Xp
{fie} = IQ(X)*(P? dX = “Equivalent” nodal load vector
XA

{Qie} = “Applied” nodal load vector

[keT*{u®}={f°}+{Q°}
Remarks :

#(1) Referring to Figure 1.5, a typical e" finite element will have :
e 2 equations [see Eq.(1.179K), assuming n=2]
e 4 unknowns (say, for the 2™ finite element), which

can be identified as u%,u%,Q% and Q%

(1.179m)

(1.179n)

(1.1790)

#(2) Thus, for the “entire” domain (which contains all 3 finite elements, as shown in

Figure 1.5), one has :

o2 equations

element
e 12 unknowns, which can be identified as

1,1 Al 1 3.3 A3 A3
u1:u2'Q1 and Qz""'US'u4’Q3’Q4

#(3) The additional (6, in this example) equations can be obtained from :
e System, geometrical boundary condition(s), such as
u, =0

*3elements = 6 equations

e Displacement compatibility requirements at “common” nodes

(between “adjacent” finite elements), such as :

u; =Uj

u3 = Uj

e Applied “nodal” loads, such as :
Q3 +Q5=0

Q3 +Q3=0

Q3  =F (seeFigures 1.4 and 1.5)



1.9 Truss Finite Element Equations

YGlobal

Figure 1.6 A Typical 2-D Truss Structure

Ye

13

Uo ‘39

/ i=5
Uy

Figure 1.7 A Typical 2-D Truss Member With Its Nodal Displacements

XG



1 0 -10
AEY O 0 0 0
Kie - 2=
k=] 10 0 (1.180)
0 0 0

The 4x4 global element stiffness matrix of a 2-D truss element can be computed
from Eq.(1.81) as:

1 0 -10
[k(e)]M{[x] [01}T 00 0 o[m [O]}(Ej w180
**7101 1 1-1 0 1 of[0] AL L '

0 0 0 O



1.10 Beam (or Frame) Finite Element Equations

Yo

Uz 0 L

i=1

X

Figure 1.8 A Typical 2-D Beam Element Without Axial dof

2 2
d—2 DO'—CZ0 =f(x), for0<x<L (1.182)
dx dx
[Dly =El (1.183)

The transverse displacement field w(x) within a 4 dof 2-D beam element can be
given as:

ag

a
(,J(X)=al+a2x+a3x2+a4x3 =[1,X,X2,X3] 2 (1.184)
a .

a4



a
o'(x) = 3—m =a, +2a3X + 3a4x2 = [O,l,2x,3x2] 2
X

Atx=0, o =0,

, do
Atx=0, ® =— 262
dX |y_g
Atx=L, o =w;3
, do
Atx=0, o' =— =0y
dx x=L
wl 10,01 aq
02 01,0,0 ao

o3[ 1L, L2, L3 ||a;

04| |012L3L% ||a,
{u}sx1 =[Alaxa{a}axs
{a}=[AI " {u}
o(x) = [1,%, %%, x* x4 [Alaxa{Ulaxs

o(X) =[N(X)]ixa *{U}ax1

-1

10 0 0
01 0 O

N(x =L, x,x2,x3

[IN(X)lixa =[ ]1 L
0 1 2L 32

[N(X)]={

ag

as
ay

L3 -3Lx? +2x3 x(L2—2Lx+x2) —x2(—3L+2x) x2(—L+x)

L3 L? L3

L
{Fequiv}= _[(fo) *[N(X)]T dx
0

(1.185)

(1.186)
(1.187)

(1.188)
(1.189)

(1.190)

(1.191)

(1.192)

(1.193)

(1.194)

(1.195)

(1.196)

(1.197)



fo*L
2
fo * L2

V- 12
{Fequw}— fo*L (1.198)

2
*LZ

—fo
12

1.11 Weak Formulation for the Beam (or Frame) Finite Element Equations

Step 1
Applying the Galerkin Weighted Residual Integral (see EQq.1.12) into the given

beam’s differential equation (1.182), one gets

L
0= w,[ ( d ‘;J f(x)}dx (1.199)
o | dx?



Step 2
Upon integrating by parts TWICE, Eq.(1.199) becomes:

L
2 )
0= f de‘D_ x4 | w3 pdfe | _dWi jd%e (1.200)
Yax| dx? ) dx  dx? .

To simplify the notations, let’s define:

d (. d?
Qi = L—X[D—?ﬂ (1.201)
dx @x0
2
QY = {Dd—z} (1.202)
dx @x=0
d [ d?
Qf) = —L—X[D—?H (1.203)
dx @xL
2
QY = {Dd—z} (1.204)
dx @x-L

L 2
0= J. d_Wd_—Wf(X) X_Wi(@sz)*Qge)+[dWij *Qge)
0 dX J@x-L

o W (1.205)
0=T{DdXN d ;t‘u‘)}d —jN f(x)dx + (-1)'Q® (1.206)
0
0= If _D O:—NZ‘*Z—I\ZIJ}dx *{u j}—T N;f (x)dx +(-)' Q) (1.207)
o| dx dx 0
,-Z: ![ ddXN2 ddx ]dXJ*{uJ} j N;f(x)dx - (-1)'Q{® (1.208)

4
%[ki(f)]*{u =R} (1.209)



k(e)] j[ aN; &N ]dx (1.210)

0 dx?  dx?
o1
,© )92
i o (1.211)
04
L .
R = [N;f (xax+(-1)'Q® (1.212)
6 3L -6 3L
@, 2(D=EN [3L 2L* -3L L?
[l 1= 13 -6 -3L 6 -3L (213
3L L2 -3L 2?
f*L
2
2 | |-
(¢) 12 Q3
Ri7 =1 ¢ [t _Q® (1.214)
2
_f* 2 Qg‘re)
12

In general, the equilibrium of the generalized forces at a node between two adjacent
elements (e) and (e+1) requires that

(—Qge)) + (—Qf”l)) = applied external concentrated force (1.215)

Q&e) +Q(29) = applied external concentrated moment (1.216)



1.13 Tetrahedral Finite Element Shape Functions

The governing 3-D Poisson equation can be given as
_9 cla—w _9 cza—m _9 C3 a—(Dj:f inQ (1.268)
OX oxX ) oy oy ) oz 0z

with the following geometric boundary condition(s):
® = m®p ON Fl
and the natural boundary condition(s)

ow 0w 0w
cla—xnx+025ny+c35nzzqoon I, (1.269)

where c;=c;(x,y,z) and f=f(x,y,z) are given functions on the boundaries I'; and T,
respectively.

The weak formulation can be derived by the familiar 3-step procedures:

Step 1
Setting the weighted residual of the given differential equation to be zero, thus:
0= jw —i(cla—“)—ﬁ(cza—mj—i(cg a—‘”j—f dQ (1.270)
et oX ox ) oy oy ) oz 0z
where dQ = dxdydz (1.271)
Step 2

Eq.(1.270) can be integrated by parts once, to give:

0= IW{—cla—mnx -Cy a—mny—cg,a—mnz}
he OX oy oz

(1.272)
_J. _Cla_maﬂ_cza_maﬂ_c36_m%+Wf Q
. OX OX oy oy 0z oz
Let
0w 160 10
=Ci—Ny+Cy—N, +C3—N 1.273
0n =€ ox x T2 oy y s, N ( )

Then, Eq.(1.272) can be re-written as

———+C)——+C3——-WSf

dQ- ¢Wq , dI
oX 0x Sy oy oz oz § A

[amaw 00 0W 0w oW }
OZJ-C]_
re

Q e
(1.274)



The primary dependent function o can be assumed as:

01
n 2
(D:Z(DjN?(X,y,Z)E[N(X,y, Z)]lxn *L (1_275)
=l :
©nJ nxt

In Eq.(1.275), n, ®; and N; represent the number of dof per element, element nodal
displacements, and element shape functions, respectively.

For a 4-node tetrahedral element (see Figure 1.10) n=4, the assumed field can be
given as

o(X,Y,2) =ay + (asX +agy +a42) (1.276)
or
ag
LY.
o(x,y,2) =[Lx,y,2] (1.277)
as
g

For an 8-node brick element (see Figure 1.10), n=8, the assumed field can be given
as:

o(X,Y,z) =ag + (aX +agy +a42) + (a5Xy + agyz + a;zx) + (agxyz) (1.278)

y y

(a) Tetrahedron Element (b) Brick Element

Figure 1.10 Three-Dimensional Solid Elements

The shape functions for the 4-node tetrahedral element can be obtained by the same
familiar procedures. The geometric boundary conditions associated with an e
element are given as



Atnode 1: X =Xq; Y = Y1, Z =23, then 0 = o,
(1.279)
>
Atnode 4: X = X4, Y = Ys, Z =24, then o = oy )
Substituting Eq.(1.279) into Eq.(1.277), one obtains:
o |1 X2 y1 z1||a
o2 |1 X2 Y2 Z2]]az
o3| |1 X3 y3 Zz3||a3 (1.280)
og4) |1 Xq4 Ya Z4] (24
In a more compacted notations, Eq.(1.280) can be expressed as
® =[Alaxa{a}axt (1.281)
From Eq.(1.281), one gets:
B [
{a}=[A] © (1.282)
Substituting Eq.(1.282) into Eq.(1.277), one obtains:
o1
_ *ra1-1 %) ©2
O)(X, Y, Z) = [11 XY, Z]1X4 [A]4X4 © (1283)
3
g
or
071
%) 92
o(X,y,z) =[N(X,Y,2)]1x4 (1.284)
®3
W4
where the shape functions can be identified as
[N, Y, 2)hxa =[L %, Y, 2] *[AT (1.285)
Let W=N;(x, y, 2), for i=1,2,3,4 (tetrahedral) (1.286)

and substituting Eq.(1.284) into Eq.(1.274), one obtains the following (finite)
element equations:



O(N;o; . O(N;oj; . O(Njo; .
OZJ.{Cl (N; 1)8N|+C2 (N J)6N|+C3 (N J)aN'}dQ

o8 OX OX oy oy 0z 0z

~ [NifdQ - §Njgndr

Q° re
(1.287)
or
ON . ON ; . ON; .
'[ . ] aN| +CZ J aNI +C3 J al\ll dQ*{(DJ}
OX OX oy oy 0z 0z
(1.288)
= [NifdQ+ §Nig,dr
Q° re
or
[ki(jE)]4x4 *{"’Ee)}4x1 = {Fi(e)} (1.289)
where:
ON;: AN. ON; 6N: ON; AN
[ki(je)]E J‘{Cl i Ny +C) i Ny +c3— N e
e OX OX oy oy 0z o0z
F = jNifdQ+ §Niqndl“ (1.290)

ok ré

The first term on the right side of Eq.(1.290) represents the equivalent joint loads
due to the distributed “body” force “f”, while the second term represents the
equivalent joint loads due to the distributed “boundary” force “q,”.

1.14 Finite Element Weak Formulations For General 2-D Field Equations

The two-dimensional time-dependent field equation can be assumed in the following
form:

c 82u+c 82u+c o’u rea MM ycu?reouxc
1 2 3 45> +tC5——+Cq 7U+Cg
ox? oy’ oxoy OX oy
ou ou o%u ou
+Cqq0tg(u)— + CypCtg(X) — =Cg——+C1g—
11¢tg( )ax 126t9( )ax 92 Tl

(1.291)



where c;,i =1-12 are constants; u = u(x,y,t)

It should be noted that the terms associated with constants c,; and ¢4, are included
for handling other special applications [1.14].

The weighted residual equation can be established by the familiar procedure

”w(c 82u+c azu+c o%u +C a—u+c a—u+c uc+csu+c
) 16x2 28y2 3axay 4 % 56y 6 7 8
Q , (1.292)
ocu aou aou aou
—Cg————Cqg — + C1¢Ctg(u) — + cqoctg(X) —)dxdy = 0
97 0t g(u) =+ Crz0tg(x) —)dxdy

where w = Weighting functions.

The following relationships can be established through integration by parts:

—d d
cy g{ j W xdy
=y j j w—(—)dxd
:clije'[a_x(wg_i)_gﬂg_u]d xdy (1.293)

=Cq iwg—)u(nxds -C jj;gw—x%dxdy,

Co Hw—dxdy
Qe
= ¢, ”w—(—)d xdy
5 ow o :
AR FP

=Cyp § w—n yds—cp ”@@d dy



52
C3 I J; Wﬁdxdy

-5 H i(a—u)dxd ] jj W%(z—i)dxdy

0 oW 0 0 ow 0
=%f£[a—x(w—“J———“]d S [i}aipd

¢ ow au OW ou
=3 §W—n ds+ 38 fw ” U——dxd
(1.295)
Substituting Egs.(1.293-1.295) into Eq.(1.292), one gets:
ow ou aw du C3dwdu Cz ow du ou ou
e o2 oy oy S oy 3y xSy
X ox 6yay 2 oxoy 2 ayax OX oy

2

u
+C6WU2 +C7WU + CgW — CgW —C1gW —
ot2 ot

+ cqqwetg(u) g—i + Cpwetg(X) a—u)dxdy

+{>W[nx(cla—u C—36—uj ny(cza—u+c—38—uj]ds:0

X 2 dy dy 2 ox
(1.296)
Let
Y P L P P = 1.297
X\ Max 20y) Y%y 20x) M (1297

Then Eq.(1.296) becomes:



”(Cawau oW AU C3 OW U  C3 W du au

e OX OX ayay 2 OXxX oy 2 oy ox OX
—C wﬁ—u+c WU? + C7WU + CgW — C Wazu —-C u
5 oy 6 7 8 9 > 10W )
+ cllwctg(u)— + c12wctg(x)—)dxdy + §quds =0
Fe
(1.298)

The dependent variable field u(x,y,t) is assumed to be in the following form:

n
u(x,y,t) = Z u(ja(t)\v(ja (X,y), where n= the dof per element (1.299)
1

i hti ; e
Let the weighting function w =y (X,y) ,(see Eq.1.292) , then Eq.(1.298) becomes

0 0
_Cl Ad (z j ) CZ WI (z i A
=L J—l y
G 8\11. 5‘4’1 03 8w.
u__ —_—
2 ox (,le J ay (,le I ox

—CaVi (ZU ) CsWi (ZU ayj)+C6W| (ZUJ\V u
Jl

JI o dxdy
Q| +Coy; (Z Ujw;) + Coy; +an.ct9(U)(Zu )
i1 H
TC2 Vi ctg(x)(Zu —) CoVi (Z < it? \If )
10\I/|(JZ:1: m \VJ)
+ Djquds =0
1—~e
(1.300)

EQ.(1.300) can also be expressed as:



Oy Vi . Oyi Wi c3 oy OV

oV ; oy
L Q8 | 4 ey + CqqWiCLOU ——2- + 1o\ CHOX — 1)U &
ViV +CuViclgu—=+Ciaviclg 6x) i

dZUj dUJ
CoViVj 7 1oV e

(—¢1 2
oX X oy oy 2 ox oy
C3 Oy OV oy | oy |
-2y ——C5W; —+CgUyy i
2 oy ox 4Vi ox 5Vi oy UiV j

dxdy

+ ”cgwidxdy+ f_quds =0

Qe

In matrix form, Eq.(1.301) becomes:

[KE U+ [CoHu I+ M Hu"}={f °}+{Q"}

where

%—c Oyi OWj c3 Oy OV c3 dy; OVj

e _ [ ri_c, Vi
K ii[(clax ox 2oy oy 2 x oy 2 dy ox

OW';

1—~e

(1.301)

(1.302)

c ] CeUy Wi + Coyiy; + Cpqctg(u) % C1oCtg(X) -%]dxd
—CsVj 6X+6\V|\V1+ 7ViVj+ CraClglu)v; 8X+129 Vi ox y

Cij= —” CrowiV jdxdy

Qe
M = —Hcg\lfi\lfjdXdy
Qe
f* = - [ cquidxdy
Qe
Qf =~ j;‘lfiqndS

1—~e

(1.303)

(1.304)

(1.305)

(1.306)

(1.307)
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