
1 A Review of Basic 
Finite Element Procedures 

 
 
1.2 Numerical Techniques For Solving Ordinary Differential Equations (ODE) 
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with the following boundary conditions: 
  )Lx(@y0)0x(@y ====                                                    (1.2) 

 
The above equations (1.1-1.2) represent a simply supported beam, subjected to a 
uniform load applied throughout the beam, as shown in Figure 1.1. 
 
To facilitate the derivation and discussion of the Galerkin method, the ODE given in 
Eq.(1.1) can be re-casted in the following general form 
  Ly=f                                                                                            (1.3) 
 
L and f in Eq.(1.3) represent the “mathematical operator”, and “forcing” function, 
respectively. Within the context of Eq.(1.1), the “mathematical operator” L, in this 
case, can be defined as 
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Figure 1.1 A SimplySupported Beam Under Uniformly Applied Load 
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E=Young Modulus 
I=Moment of Inertia 
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the virtual work can be computed as 
  ∫∫∫∫∫∫ δ≡δ=δ

vv

dvy*)yL(dvy*)f(w                                      (1.6) 

In Eq.(1.6), yδ represents the “virtual” displacement, which is consistent with (or 
satisfied by) the “geometric” boundary conditions (at the supports at joints A and B 
of Figure 1.1, for this example). 
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where ai are the unknown constant(s), and φ i

 

(x) are selected functions such that all 
“geometric boundary conditions” (such as given in Eq.(1.2)) are satisfied.  

Substituting )x(y~  from Eq.(1.7) into Eq.(1.6), one obtains: 
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However, we can adjust the values of ai y~ (for ), such that Eq.(1.8) will be satisfied, 
hence: 
  dvy)y~L(dvy)f(
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Based upon the requirements placed on the virtual displacement yδ , one may take 
the following selection: 
  )x(y iφ=δ                                                                              (1.11) 
 
Thus, Eq.(1.10) becomes the “Galerkin” equations, and is given as 
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Thus, Eq.(1.12) states that the summation of the weighting residual

  

 is set to be zero. 
Substituting Eq.(1.7) into Eq.(1.12), one gets: 
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Eq.(1.13) will provide i=1,2,…,N equations, which can be solved simultaneously for 
obtaining ai
 

 unknowns. 



For the example provided in Figure 1.1, the “exact” solution y(x) can be easily 
obtained as 
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Assuming a 2-term approximated solution for )x(y~ is seeked, then (from Eq.(1.7)): 
  )x(*)xAA(y~ 121 φ+=                                                         (1.15) 
or 
  )x(xA)x(Ay~ 1211 φ+φ=                                                      (1.16) 
 
or 
  )x(A)x(Ay~ 2211 φ+φ=                                                      (1.17) 
where 
  )x(*x)x( 12 φ=φ                                                            (1.18) 
 
Based on the given geometric boundary conditions, given by Eq.(1.2), the function 

)x(1φ  can be chosen as: 
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Substituting Eqs.(1.18-1.19) into Eq.(1.17), one has: 
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Substituting the given differential equation (1.1) into the approximated Galerkin 
Eq.(1.12), one obtains: 
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For i=1, one obtains from Eq.(1.21): 
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For i=2 one obtains from Eq.(1.21): 
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Substituting Eq.(1.20) into Eqs.(1.22-1.23), and performing the integrations using 
MATLAB, one obtains the following 2 equations: 
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or, in the matrix notations: 
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Using MATLAB, the solution of Eq.(1.26) can be given as: 
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Thus, the approximated solution )x(y~ , from Eq.(1.20), becomes: 
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At 
2
Lx = , the exact solution is given by Eq.(1.14): 
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Remarks 

(a) The selected function )x(1φ  can also be easily selected as a polynomial, which 
also satisfies the geometrical boundary conditions (see Eq.(1.2)) 
  )Lx)(0x()x(1 −−=φ  (1.32) 
and, therefore we have: 
  )x(*)xAA()x(y~ 121 φ+=  (1.33) 
or 
  )x(A)x(A)x(y~ 2211 φ+φ=  (1.34) 
where 
  )x(x)x( 12 φ=φ  (1.35) 
 
(b) If the function )x(1φ has to satisfy the following “hypothetical” boundary 
conditions,  
 
  0)0x(@y ==  (1.36) 



  0)0x(@y ==′  (1.37) 
  0)Lx(@y ==  (1.38) 
  0)0x(@y ==′′  (1.39) 
 
then a possible candidate for )x(1φ can be chosen as: 
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The first and second terms of Eq.(1.40) are raised to the power 2 and 3 in order to 
satisfy the “slope” and “curvature” boundary conditions, as indicated in Eq.(1.37), 
and Eq.(1.39), respectively. 
 

  
 
1.3 Identifying the “Geometric” versus “Natural” Boundary Conditions 
 
Let’s consider the following “beam” equation: 
  )x(yEI ω=′′′′  (1.45) 
 
Since the highest order of derivatives involved in the ODE (1.45) is four, one sets: 
  4n2 =  (1.46) 
hence 
  11n =−  (1.47) 
 
Based on Eq.(1.47), one may conclude that the function

y′
 itself (=y), and all of its 

derivatives up to the order “n-1” (=1, in this case, such as ) are the “geometrical” 
boundary conditions. The “natural” boundary conditions (if any) will involve with 
derivatives of the order ),...3(1n),2(n =+=  and higher (such as y,y ′′′′′ ,…). 
 
1.4 The Weak Formulations 
 
Let’s consider the following differential equation 
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Based on the discussions in Section 1.3, one obtains from Eq.(1.48): 
  2n=2 (=the highest order of derivative) (1.52) 



Hence: 
  n-1=0 (1.53) 
 
Thus, Eq.(1.49) and Eq.(1.50) represent the “geometrical” and “natural” boundary 
conditions, respectively. 
 
The non-homogeneous

)x(0φ
 “geometrical” (or “essential”) boundary conditions can be 

satisfied by the function , such as 000 y)x(@ =φ . The functions )x(iφ  are 
required to satisfy the homogeneous

0)x(@ 0i =φ
 form of the same boundary condition 

. 
If all specified “geometrical” boundary conditions are homogeneous (for example, 
y0 )x(0φ=0), then  is taken to be zero, and )x(iφ must still satisfy the same 
boundary conditions (for example, 0)x(@ 0i =φ ). 
The “weak formulation”, if it exists, basically involves the following 3 steps: 
 

 
Step 1: 
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Step 2: 
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Figure 1.2 Normal (=nx
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It should be noted that in the form of Eq.(1.54), the “primary” variable y(x) is 
required to be twice differentiable, but only once
 

 in Eq.(1.57). 

 
Step 3: 

In this last step of the weak formulation, the actual boundary conditions of the 
problem are imposed. Since the weighting function Wi

  

(x) is required to satisfy the 
homogeneous form of the specified geometrical (or essential) boundary conditions, 
hence: 

0)0x(@Wi ==  ;  because y(@x=0)=y0

 
 (1.58) 

Eq.(1.57) will reduce to: 
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or, using the notation introduced in Eq.(1.50), one has: 
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Eq.(1.59) is the weak form equivalent to the differential equation (1.48), and the 
natural boundary condition equation (1.50). 
 
1.5 Flowcharts For Statics Finite Element Analysis 
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The internal virtual work can be equated with the external
 

 virtual work, therefore 
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From Eq.(1.62), one obtains: 
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Since the element local coordinate axis, in general will NOT coincide with the 
system global
(see Figure 1.3): 

 coordinate axis, the following transformation need be done  
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Figure 1.3 Local-Global Coordinate Transformation 
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  }p{}r{*]][k[][ T =λ′λ  (1.79) 
 
  }p{}r{*]k[ =  (1.80) 
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{R} = system unknown displacement vector 
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1.8 One-Dimensional Rod Finite Element Procedures 
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Figure 1.4 Axially Loaded Rod 
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Figure 1.5 An Axially Loaded Rod With 3 Finite Elements 
 
1.8.1 1-D Rod Element Stiffness Matrix 
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Eq.(1.141) has exactly the same form as described earlier by Eq.(1.160), where 
  )x(u)}x(f{ i ≡  (1.142) 
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1.8.2 Distributed Loads and Equivalent Joint Loads 
 
The given traction force per unit volume (see Figure 1.4) 

  
A
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can be converted into the distributed load as 

 (1.156) 

  q = F*A = cx   K/in (1.157) 
 
The work done by the external loads acting on finite element rod #1 can be 
computed as: 
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Similarly, for finite element rod  #2 and  #3, one obtains (see Fig. 1.4)  
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1.8.3 Finite Element Assembly Procedures 
 
Thus, in this case the transformation matrix [λ]  (see Eq.1.75) becomes an identity 
matrix, and therefore from Eq.(1.81), one gets: 
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Similarly, the system nodal load vector can be assembled from its elements’ 
contributions: 
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  1x41x44x4 }P{}D{*]K[ =  (1.175) 
 



1.8.4 Imposing The Boundary Conditions 
 
To make the discussions more general, let’s assume that the boundary condition is 
prescribed at node 1 as” 
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 be defined as the unknown axial “reaction” force at the supported node 
1, then Eq.(1.174), after imposing the boundary condition(s), can be symbolically 
expressed as 
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  }P{}D{*]K[ bcbc =  (1.179) 
 



 
1.8.5 Alternative Derivations of System of Equations from Finite Element 
Equations 
 
From a given ODE, shown in Eq.(1.127), which can be applied for a typical eth

 

 
element (shown in Figure 1.5), as following : 
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: Finite Element Equations 

 Let )x(w e
iφ≡  (1.179f) 

 Let )x(uu e
j

n

1j

e
j φ≡ ∑

=
 (1.179g) 

dx)x(q*

Q*)x(@dx
x

*)u(
x

EA0

B

A

B

A
x

x

e
i

j

n

1j
j

e
i

x

x

e
ie

j

n

1j

e
j

∫

∑∫ ∑

φ−

φ−
∂

φ∂
φ

∂
∂

=
==

(1.179h) 

 e
ij

n

1j
ijjj

n

1j

e
i QQ*Q*)x(@ ≡δ=φ ∑∑

==
                                (1.179i) 

 
x eB n

e e ei
j j i

j 1xA
xB

e
i

xA

0 EA ( u ) * dx Q
x x

*q(x) dx

=

∂φ∂
= φ −

∂ ∂

− φ

∑∫

∫                   (1.179j) 

 

 [ ] e
i

e
i

e
j

n

1j

e
ij Qfu*k0 −−













= ∑

=
 (1.179k) 

 
where i=1, 2, …, n (= number of dof per element) 
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(3) The additional (6, in this example) equations can be obtained from : 

•  System, geometrical boundary condition(s), such as 
 01 =u  

•Displacement compatibility requirements at “common” nodes 
 (between “adjacent” finite elements), such as : 

2
2

1
2 uu =  

3
3

2
3 uu =  

•  Applied “nodal” loads, such as : 
0QQ 2

2
1
2 =+  

0QQ 3
3

2
3 =+  

1
3
4 FQ =  (see Figures 1.4 and 1.5) 

 
 
 
 
 
 
 
 
 



 
1.9 Truss Finite Element Equations 
 

 
 

Figure 1.6 A Typical 2-D Truss Structure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.7 A Typical 2-D Truss Member With Its Nodal Displacements 
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The 4x4 global element stiffness matrix of a 2-D truss element can be computed 
from Eq.(1.81) as: 
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1.10 Beam (or Frame) Finite Element Equations 
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Figure 1.8 A Typical 2-D Beam Element Without Axial dof 
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The transverse displacement field ω(x) within a 4 dof 2-D beam element can be 
given as: 
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  At x = 0,  ω = ω1
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1.11 Weak Formulation for the Beam (or Frame) Finite Element Equations 
 

Applying the Galerkin Weighted Residual Integral (see Eq.1.12) into the given 
beam’s differential equation (1.182), one gets 
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Upon integrating by parts TWICE, Eq.(1.199) becomes: 
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To simplify the notations, let’s define: 
 

  
0x@

2

2
)e(

1 dx
dD

dx
dQ

=





















 ω
≡  (1.201) 

  
0x@

2

2
)e(

2 dx
dDQ

=









 ω
≡  (1.202) 

  
Lx@

2

2
)e(

3 dx
dD

dx
dQ

=





















 ω
−≡  (1.203) 

  
Lx@

2

2
)e(

4 dx
dDQ

=









 ω
−≡  (1.204) 

 

)e(
2

0x@

i)e(
1i

)e(
4

Lx@

i)e(
3i

L

0
i2

2

2
i

2

Q*
dx

dW
Q*)0x(@W

Q*
dx

dW
Q*)Lx(@Wdx)x(fW

dx
d

dx
Wd

D0

=

=








+=−








+=−











−

ω
= ∫

(1.205) 

 

 )e(
i

i
L

0
i

L

0
2

jj
2

2
i

2
Q)1(dx)x(fNdx

dx

)uN(d
*

dx
Nd

D0 −+−













= ∫∫                 (1.206) 

 

)e(
i

i
L

0
ij

L

0
2

j
2

2
i

2
Q)1(dx)x(fN}u{*dx

dx

Nd
*

dx

Nd
D0 −+−














= ∫∫                  (1.207) 

 

 )e(
i

i
L

0
ij

L

0
2

j
2

2
i

24

1j
Q)1(dx)x(fN}u{*dx

dx

Nd
*

dx

Nd
D −−=




























∫∫∑

=

               (1.208) 

  ∑
=

=
4

1j

)e(
i

)e(
j

)e(
ij }R{}u{*]k[  (1.209) 

 



  dx
dx

Nd

dx
Nd

D]k[
L

0
2

j
2

2
i

2
)e(

ij ∫ 












≡  (1.210) 

  





















θ
ω
θ
ω

=

4

3

2

1

)e(
ju  (1.211) 

  ∫ −+=
L

0

)e(
i

i
i

)e(
i Q)1(dx)x(fNR  (1.212) 

  


















−
−−−

−
−

=
=

22

22

3
)e(

ij

L2L3LL3
L36L36

LL3L2L3
L36L36

*
L

)EID(2]k[                    (1.213) 

  

























−

−

+

































−

=

)e(
4

)e(
3

)e(
2

)e(
1

2

2

)e(
i

Q
Q

Q
Q

12
L*f

2
L*f

12
L*f

2
L*f

}R{                                     (1.214) 

In general, the equilibrium of the generalized forces at a node between two adjacent 
elements (e) and (e+1) requires that 
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1.13 Tetrahedral Finite Element Shape Functions 
 
The governing 3-D Poisson equation can be given as 
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with the following geometric boundary condition(s): 
  ω = ω0 on Γ
and the natural boundary condition(s) 
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i=ci(x,y,z) and f=f(x,y,z) are given functions on the boundaries Γ1 and Γ2

 

, 
respectively. 

The weak formulation can be derived by the familiar 3-step procedures: 
 

Setting the weighted residual of the given differential equation to be zero, thus: 
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where dΩ ≡ dxdydz (1.271) 
 

Eq.(1.270) can be integrated by parts once, to give: 
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Let 
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Then, Eq.(1.272) can be re-written as 
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The primary dependent function ω can be assumed as: 
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In Eq.(1.275), n, ω j and Nj

 

 represent the number of dof per element, element nodal 
displacements, and element shape functions, respectively. 

For a 4-node tetrahedral element (see Figure 1.10) n=4, the assumed field can be 
given as 
  )zayaxa(a)z,y,x( 4321 +++=ω  (1.276) 
or 

  





















=ω

4

3

2

1

a
a
a
a

*]z,y,x,1[)z,y,x(  (1.277) 

For an 8-node brick element (see Figure 1.10), n=8, the assumed field can be given 
as: 
 )xyza()zxayzaxya()zayaxa(a)z,y,x( 87654321 +++++++=ω  (1.278) 
 

 
 

 Figure 1.10  Three-Dimensional Solid Elements  
 
The shape functions for the 4-node tetrahedral element can be obtained by the same 
familiar procedures. The geometric boundary conditions associated with an eth 
element are given as 
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Substituting Eq.(1.279) into Eq.(1.277), one obtains: 
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In a more compacted notations, Eq.(1.280) can be expressed as 
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 (1.281) 
 
From Eq.(1.281), one gets: 

  ω= − 1]A[}a{  (1.282) 
 
Substituting Eq.(1.282) into Eq.(1.277), one obtains: 
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where the shape functions can be identified as 
  1

4x1 ]A[*]z,y,x,1[)]z,y,x(N[ −≡  (1.285) 
 
Let W=Ni
 

(x, y, z), for i=1,2,3,4 (tetrahedral) (1.286) 

and substituting Eq.(1.284) into Eq.(1.274), one obtains the following (finite) 
element equations: 

At node 1: x = x1; y = y1; z = z1, then ω = ω1 

  

At node 4: x = x4; y = y4; z = z4, then ω = ω4 
 

                 
 
       (1.279) 
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or 
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The first term on the right side of Eq.(1.290) represents the equivalent joint loads 
due to the distributed “body” force “f”, while the second term represents the 
equivalent joint loads due to the distributed “boundary” force “qn
 

”. 

1.14 Finite Element Weak Formulations For General 2-D Field Equations 
 
The two-dimensional time-dependent field equation can be assumed in the following 
form: 
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(1.291) 



where 121i,ci −=  are constants; )t,y,x(uu =  
 
It should be noted that the terms associated with constants c11 and  c12

 

 are included 
for handling other special applications [1.14]. 

The weighted residual equation can be established by the familiar procedure 
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where w ≡ Weighting functions. 
 
The following relationships can be established through integration by parts: 
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Substituting Eqs.(1.293-1.295) into Eq.(1.292), one gets: 
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Then Eq.(1.296) becomes: 
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The dependent variable field u(x,y,t) is assumed to be in the following form: 
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Eq.(1.300) can also be expressed as: 
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In matrix form, Eq.(1.301) becomes: 
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