Chapter 11: Fourier Series, Discrete Fourier Transform and Fast
Fourier Transform

In general, curve fitting through a set of data points can be done by a linear combination
of polynomial functions, with based functions 1, x, X,....... ,X". In this chapter, however,

trigonometric functions such as
1,cos(x),cos(2x),......cos(nx),sin(x),sin(2x),......,sin(nx) will be used as based functions.

In the former, the unknown coefficients of based functions can be found by solving the
associated linear simultaneous equations (where the number of unknown coefficients will
be matched with the same number of equations, provided by a set of given data points).
In the later, however, the unknown coefficients can be efficiently solved (by exploiting
special properties of trigonometric functions) without requiring to solve the expensive
simultaneous linear equations.

11.1 Background

The following relationships can be readily established, and will be used in subsequent
sections for derivation of useful formulas for the unknown Fourier coefficients, in both
time and frequency domains.

T T

j sin(kw,t)dt = j COSKW,E)TE = 0..vvvvooeeee e (11.2)

0 0

T T T

[sin® (kw,t)dt = [cos® (kwt)dt = DT (11.2)

0 0

;

[COS(KWGE) SIN(GWG)AL = O (11.3)

0

.

j SIN(KWE) SIN(GWENOE = 0o (11.4)

0

.

Icos(kwot) COS(GW,E) O = 0. (11.5)

0

In Egs (11.1 — 11.5), one has

Wy = 272w (11.6)
1

f o ettt ettt 11.7
= (11.7)

where f and T represents the frequency (in cycles/time) and period (in seconds)
respectively.

A periodic function f(t) with a period T should satisfy the following equation
f(t+T)=1(1)

Proof of Eq.(11.1)

. 1 T
Let A = |sin(kw,t)dt = —| —— ||cos(kw.t
Jsin(eay) (kwoj[(o,)]

1 1
A= {kwo J[cos(kon) —cos(0)]= (kw

0

j[cos(k 27) -1]=

Proof of Eqg. (11.2)

-
Let B = j sin2 (kw,t)dt
0

Since cos(2a) = cos(a + a) = cos’ (ar) —sin® () =1-2sin* (ax)

Hence sin’(a) :M
1 T
Thus: B = j[——gcos(ka t) {]sin(kaot)}
Wo 0
T 1 T 1 T
B=|—- sin(2kw,T =—— sin(2k *2rx) =
{2 4kw, In(2ky)}] 2 (4kWOJ n(7)=

Proof of Eqg. (11.3)

]
Let C = [Sin(gWot) COSWEEYTE ..o

Recalled:0
sin(a +) =sin(a) cos(f) + sin(S) cos(x)

Hence:

C=]'[sin[(g + k)w,t]— sin(kw,t) cos(gw,t) |dt

=1 o

C= J'sin[(g + h)w,t]dt - j[sin(kwot) cos(gw,t)dt

o

.
C=0 (seeEq.ll.l)—Isin(kwot)cos(gwot)dt

0
Adding Egs.(11.8,11.9), side by side one obtains

(11.9)

2C =]‘[sin(gwot) cos(kw,t) — sin(kw,t) cos(gw,t) [dt

T T
2C = jsin[(gwot)— (kw,t)]dt = jsin[(g —K)w,t]dt
0 0
2C =0, since the right side of the above equation is zero (see Eg.11.1). Thus,

;
C= j sin(gw,t) cos(kw,t)dt = 0

Proof of Eq.(11.4)

Let D:]'sin(kwot)sin(gwot)dt
Since cos(a + f8) = cos(a) cos(/) —sin(a)sin(5)

or sin(a)sin(f) = cos(a) cos(p) —cos(a + f5)

Thus,

:
D= j{cos(kwot) cos(gw,t) — cos(kw,t + gw,t) dt
0

;
D = [cos(kw,t) cos(gw,t)dt — I cos|(k + g)w,t]dt
0

O Ly, —

.
D= jcos(kwot) cos(gw,t)dt —0 (see EQ.(11.1))..covvvniieniii e

0
Adding Eqgs. (11.10, 11.11) side by side, one obtains:

2D = | {cos(kw,t) cos(gw,t) + sin(kw,t) sin(gw,t) jdt

O Ly, —

T T
2D = jcos[kwot — gw,t]dt = Icos[(k — g)w,t]dt
0 0

oeo(11.10)

........ (11.11)

2D =0, since the right side of the above equation is zero (see Eg.11.1). Thus,

;
D = [sin(kwt)sin(gw,t)dt =0
0

Proof of Eq.(11.5)

Eq(11.5) can be proved in a same fashion as the proof for Eq(11.4)

11.2 Fourier Series, and Discrete Fourier Transforms (DFT).

For a function with period T, a continuous Fourier series can be expressed as

f(t)=a, + Zak COS(Kwyt) + B, SIN(KWGE) ..o e, (11.12)
k=1

The unknown Fourier coefficients a,,a, and b, can be computed as

a, = (Tlﬁ FLEIE + vt ettt (11.13)

Thus, a,can be interpreted as the “average” function value between the period interval
[0,T].

a, = [%Ji (1) COS(KWE)OAL = 8 v (11.14)
b, = (gﬁ f (t) sin(kw,t)dt = —b (11.15)
= 0 b ST RT TP TSP PP PR PR .

(A) Derivation of formulas for a; a, and b,

Integrating both sides of Eq.(11.12) with respect to time, one gets

T T T » T »
[f()dt = [a,dt+ [a, cos(kwyt)dt + [> b, SiIn(KWt)dt ... (11.16)
0 0

0 k=t 0 k=1
The second and third terms on the right hand side of the above equations are both zeros,
due to earlier results stated in Eqg.(11.1)

Thus:

] f(t)dt =[a,t] =a,T

0
Hence:

;
a, = Gj ROt (11.13, repeated)
0

Now, if both sides of Eq.(11.12) are multiplied by sin(mw,t) and then integrated with
respect to time, one obtains:

T T T »
J f (t) *sin(mw,t)dt = _[ao sin(mw,t)dt + jZak cos(kw,t) sin(mw,t)dt
0 0

0 k=1

T »
+ j > by SINCKWE) SINMWEEL s (11.17)
0

k=1

Due to Egs. (11.1, 11.3), the first and second terms on the right hand side (RHS) of
Eq(11.17) are zero.

Due to Eq. (11.4), the third RHS term of Eq.(11.17) is also zero, with the exception when
k=m, which will become (by referring to Eq.11.2):

T T
[f(®)sinkwgt)dt = 0+ 0+ [, sin® (kw,t)dt =, *TE
0 0

Thus:
2 T
b, :[?jjf(t)sin(kwot)dt e e (11.15, repeated)
0

Similar derivation can be used to obtain a,, as shown in Eq.(11.14)

(B) A Fortran Program for finding Fourier Coefficients a,,a,,b,

Based upon the derived formulas for a,,a,,and b, (shown in Egs. 11.13-11.15,

respectively). A FORTRAN computer program has been developed (refer to Table 11.1
for a complete source code listing) and tested for several class examinations in the past
several years. Major descriptions of the Fourier program can be summarized as

(a) Input Descriptions (See Example 11.2)

The following input information are required in the input data file:

. Period = 2*3.1416 (assumed); nterms=8 (assumed, for a, and b,)

. nsegments = 3 (to determine the given periodic function)

. integration limits for all segments = — ﬂ%%ﬂ'
. descriptions of given periodic function in each segment, defined in subroutine_f

function = —* ; for the 1% segment.
function=-t ; for the 2™ segment.
function = % ; for the 3™ segment.

(b) Output Descriptions: (See Example 11.2)

The numerical values of the unknown Fourier Coefficients a,,a,,a,,.....,a,,b;,b,....,b,
will be printed.

(c) Users’ Internet Access for computer simulations of Fourier Coefficients

can be found at the following website
www.lions.odu.edu/~amoha006/numerical_methods.

Table 11.1 FORTRAN Listings of Fourier Coefficient Program

program ce305 I Updated Version = August 7, 2008
implicit real*8(a-h,0-z)
dimension alimit_int(10), ff(10), ak(10), bk(10) ! for Fourier series

WritE(G,*) === === == == !

write(6,*) 'Name: Duc T. NGUYEN; TODAY Date: 08/07/2008'

write(6,*) 'Course: Numerical Methods'

Write(6,*) === === == ==
C......Fourier series, with N (max N = 3) segments for integration

pai=3.14159

period=2.0*pai

angfreq=2.0*pai/period

ntrapezoid=1234

nterms_ak=8 I maximum =10

nterms=nterms_ak

C......test (Fall'2008 semester)
c......user's input to define: # segments, and integration limits
nsegments=3
alimit_int(1)=-pai
alimit_int(2)=-pai/2.d0
alimit_int(3)= pai/2.d0
alimit_int(nsegments+1)=+pai

C __
C
write(6,*) 'nsegments,period,angfreq,nterms for FOURIER coeff. ='
write(6,*) nsegments,period,angfreq,nterms
write(6,*) '(alimit_int(i),i=1,nsegments+1)'
write(6,*) (alimit_int(i),i=1,nsegments+1)
C
iaoakbk=0 I for computing a0
call area_under_curve(nsegments, pai, period, angfreq,
$ ntrapezoid,
$ nterms_ak, alimit_int, ff, a0, ak, bk,
$ area,iaoakbk)
C
iaoakbk=1 I for computing ak
call area_under_curve(nsegments, pai, period, angfreq,
$ ntrapezoid,
$ nterms_ak, alimit_int, ff, a0, ak, bk,
$ area,iaoakbk)
C

1aoakbk=2 I for computing bk
call area_under_curve(nsegments, pai, period, angfreq,

$ ntrapezoid,

$ nterms_ak, alimit_int, ff, a0, ak, bk,
$ area,iaoakbk)
c
999 stop
end

c%%9%6%%% %% %% %% %% %% %% %% % %% %% %% %% %% %% % %% %% %% %%

subroutine area_under_curve(nsegments, pai, period, angfreq,

$ ntrapezoid,

$ nterms_ak, alimit_int, ff, a0, ak, bk,

$ area,iaoakbk)
implicit real*8(a-h,0-2)
dimension ff(10)
dimension alimit_int(10), ak(10), bk(10) ! for Fourier series

C
nfourier_series=nterms_ak
if (iaoakbk .eq. 0) nfourier_series=1
C
do 1 k=1, nfourier_series
C
area=0.d0 I'initialized value
C
do 2 i=1,nsegments
a=alimit_int(i)
b=alimit_int(i+1)
deltat=(b-a)/ntrapezoid
t=a-deltat
(oI
do 3 m=1, ntrapezoid
t=t+deltat I Thus, t will start at value = "a"
t1=t

t2=t1+deltat
call periodic_f(i, t1, function,alimit_int,k,nsegments)
ff(i)=function
call periodic_f(i, t2, function,alimit_int,k,nsegments)
ff(i+1)=function
C...... compute ak
if (laoakbk .eq. 1) then
ff(i)=Fff(i)*cos(k*angfreq*t1)
ff(i+1)=ff(i+1)*cos(k*angfreq*t2)
C...... compute bk
elseif (iaoakbk .eq. 2) then
ff(i)=Fff(i)*sin(k*angfreq*tl)
ff(i+1)=ff(i+1)*sin(k*angfreq*t2)
endif

area = area + (ff(i)+ff(i+1)) * deltat/2.d0
3 continue
C
2 continue
C
c write(6,*) 'iaoakbk, k, area = ';iaoakbk, k, area
C
if (laoakbk .eq. 0) then
aa0=area/period
write(6,*) 'a0 =, aa0
write(6,*) '----------mmmmmmmeem '
elseif (iaoakbk .eq. 1) then
aak=area*2.d0/period
write(6,*) 'ak(’,k,") =", aak
write(6,*) '----------mmmmmmmeen '
elseif (iaoakbk .eq. 2) then
bbk=area*2.d0/period
write(6,*) 'bk(',k,") =", bbk
endif
C
1 continue
C
return
end
c%%%%% %% %% %% %% %%%%% %% %% % % %% %% %% %% %% %% % % %% %%
subroutine periodic_f(isegment, t, function,alimit_int,
$ kthfourier,nsegments)
implicit real*8(a-h,0-z)
dimension alimit_int(10)
c......user has to define the periodic function for each & every segment
C......within a period T
pai=3.14159
i=isegment

if (isegment .eq. 1 .and. t .eq. alimit_int(1) .and.
$ kthfourier .eq. 1) then

C......test (Fall'2008 semester)
write(6,*) 'segments integration limits ="
$ (alimit_int(m),m=1,nsegments+1)
write(6,*) 'segment #1'
write(6,*) ‘function = -pai/2 "
write(6,*) 'segment #2 '
write(6,*) ‘function = -t
write(6,*) 'segment #3 '
write(6,*) ‘function = -pai/2 "

goto (11,12,13),i ! assume integral is splited into max. 3 segments
C...... compute Fourier series coefficient a0 (by default)
C......user's input to define: the function in EACH segment

C......test (Fall'2008 semester)

11 function=-pai/2.d0 ! user defined function for 1-st segment
go to 444

12 function=-t I user defined function for 2-nd segment
go to 444

13 function=-pai/2.d0 ! user defined function for 3-rd segment
go to 444

444 continue
return
end
€%%%%% %% %% % %% %% %% %% % %% %% %% % %% %% %% %% % %% %% %% %

10

Example 11.1

Using the continuous Fourier series to approximate the following periodic rectangular
wave function:

-1 for—1<t<I
2 4

_ T T
f) =g Lfor—<t< (11.17A)

-1 for1<t<I
4 2

The above periodic function f(f) can be plotted, as shown in Fig.11.1

(0
F.
1
e pe==========n
-T r :
2 2 i
P 1 >¢ >
0 ; g
— k] L R

Fig.11.1 A Periodic Rectangular Wave Function.

From Egs. (11.13-11.15), one obtains :

a, = (leif (t)dt = (%j i (-D)dt + j(l)dt +:[(—1)dt ~0=a,

The above numerical value for a, is expected, since it can be observed from Fig.11.1 that
the “average” amplitude of the given periodic function f(t) is zero, for the period interval

=7

11

T T
4

b, = (Q fT f (t) sin(kw,t)dt = (%j jT (—D)sin(kwt)dt +_j4;(1)sin(kwot)dt "

2 2 4

(1) sin(kw,t)dt

B He—r |

(2 | et ~leostonsl, < eosonol

T) kw, Z "

. 2
or, since w, =T therefore :

cos(k*z—”*i—cos 2w =T

T 4 T 2

b, = = —cos(k*z—”*IJrcos 2T T
kz T 4 T 4
+cos(k*2—”*1—cos k*z—”*I

T 2 T 4

Since cosine is an even function, hence cos(«) = cos(—«); the above equation becomes:

b, = (ij{cos(k—”j —cos(kz) — cos(k—”j + cos(k—ﬂj + cos(kz) — cos(k—”]}
kz 2 2 2 2

b, =0; for all k.

12

f (t) cos(kw,t)dt

o |

e

o

T

(- l)cos(kwot)dt+i(l)cos(kw0t)dt+ (—1) cos(kw,t)dt

B A —ro |

QD
=
I
N\
|
N—
m\l—c'—ob‘—c

4

a, :(9(!]{[—sin(kwot]_T + [sin(kw, t)] + [sin(kw, t)]T}

kw, 2 s s

i 2
since w, :?,hence:

—sin(k *zl*ij +sin[k *2—”*1 sm[k % 270 Ij
T 4 T 2 T 4

1
()
kﬂ —sin(k *ZT—”*%] —sin(k *ZT—E*TEJ +sin[k 27 *Ij

T 4

Since sine is an “odd” function, hence sin(a) = —sin(—«), the above equation becomes:

a, :[é){sin(k:j sm(k;r)+sm(k2 j+sm(k27[j Sin(k”)“i”(%j}

or

a, = (é){mm(%) - 25in(k;r)} ... (11.17B)

For k = even integer = 2,4,6..., one gets

A 246, = 0

Fork=1=a_ =[%j{4—0}:%:iﬁ

For k=5= a, :(ij{4—o}=—
S
Thus

a, = ; for k=1,5,9,.
(k)ﬂ'

Fork=3=a,, = (%}{4%(3*%} - 23in(3*7r)}
T

1 -4
or ak:3 = (g]{— 4— O} = W

13

Fork=7=a,_, = (ij 4sin(7*£j —2sin(7*)
r 2

or a,_, :(%]{—4—0} —4

“or

Hence| a, =%; for k=3,7,11,...
T

In conclusion, the periodic rectangular wave function f(t) (shown in Eq.11.17.A) can be
expressed as:

f)= > a costkwyt)+ > a, cos(kw,t)
k=1,5,9,... k=3,7,11,...

or f(t)=a, cos(lw,t)+ a, cos(3w,t) + a5 cos(5w,t).......

4 4 4
f (t) = —cos(1w,t) — —cos(3w,t) + —cos(bw,t).......
()1”(0)3”(0)5”(0)

14

Notes:

(a) 1-Term Fourier Approximation of a Rectangular Wave Function
4
ft)= f,(t)= Ecos(lwot)

(b) 2-Term Fourier Approximation of Rectangular Wave Function
f(t)= f,(t) = f.(t) —Bicos(3w0t)
JT

15

Example 11.2

The periodic triangular wave function f(t) is defined as

“Zfor—z<t<—Z
2 2

f(t) = —t;for—%<t<£

2

—1; for£<t<7r
2 2

Find the Fourier coefficients a,,a,,a,,b,,b, ???

X
(STl |

¥
NN

X

Solutions:

From the developed computer program (see Table 11.1), one gets

16

a, =-0.785
a, =1.00;
a, = 0.00;
a; =-0.333;
a, = 0.00;
a. =0.20;
a, = 0.00;
a, =-0.143;
ag =0.00;

b, =—0.64
b, =—0.50
b, =0.071
b, =0.25
b, = —0.025
b, = —0.167
b, =0.013
b, =0.125

17

(C) Complex Form of the Fourier Series:
Using Euler’s identity, the sine and cosine can be expressed in the exponential form as:

sin(x) = % ="odd" function, since Sin(X) = -SIN(-X)cceveeriiiiiiiienennnns (11.18)
i

iX —ix

cos(x) = % ="even" function, sSince COS(X) = COS(-X) +.vvvvennernneennieninnns (11.19)

Thus, the Fourier series (expressed in Eq.11.12) can be casted in the following form:
0 eikwot n e—ikwot eikwot _ e—ikwot
e = e
k=1 |

or
f(t)=a,+ 36" * a_k+b_k*1j+e-ikw°t *(i_b_k*ij

] 2 2 i 2 2 i
or, since i* = —1, one obtains:
2 —ib - ib
f()=a, + Y e™e * %J T gt *(Lz'kj (11.21)
k=1
Define the following constants:
G S By ettt ettt e e e e e (11.22)
C, =2 _Z'bk .. (11.23)
Hence
c, = % .. (11.24)

Using the even, odd properties shown in Egs. (11.14, 11.15), respectively,

Eq. (11.24) becomes:
c, =% ;'bk ... (11.25)
Substituting Egs. (11.22,11.23,11.25) into Eq. (11.21), one gets:

f(t) = C~0 i zékeikwot i Z'C'_kefikwot
k=1 k=1

f (t) _ Zékeikwot n Zé‘keikwot
k=0 k=-1

O~ . -1 ~ .

f (t) — zckelkwot + zckelkwot
k=0 k=—o0

or

) = D Cle™™ s (11.26)
k=—o0

18

The coefficient 5k can be computed, by substituting Eqs.(11.14,11.25) into Eq.(11.23) to
obtain:

C = 6}@){! f (t) cos(kw,t)dt — il' f (t)sin(kwot)dt} (11.27)

or

C, = GJ{] f (t) *[cos(kw,t) - isin(kwot)]dt}

Substituting Egs. (11.18,11.19) into the above equation, one gets:

- T ikwgt —ikwgt ikwot 4 —ikwgt
¢, :(lj{jf(t)v{e A TR }dt}
T 2 2i

C, = (%M f(t) *e“kWOtdt} .. (11.28)

Thus, Egs. (11.26,11.28) are the equivalent complex version of Egs.(11.12-11.15).

19

(D) Fourier Transform Pair

As up to this point, Fourier approximation has been expressed in the time domain. The
amplitude (vertical axis) of a periodic function can be plotted versus time (horizontal
axis), but it can also be plotted versus frequency (horizontal axis).

The periodic rectangular wave function expressed in the time domain (see Fig.11.1), can
also be plotted in the frequency domain as shown in Fig.11.2.

e Ci
A A
A/(x) [emeemggemesemeeemennecnaenanaand 2/(x)
a)3x) - 2/(37)
AGEx) { -------------- 2/(5x)
LV 025 i B S G A 2/(7x)
L M Sh T
(@) Amplitude

Figure 11.2 Periodic Rectangular Wave

20

IR

£ 3 S T4
(b)Phase

Function in Frequency Domain.

Explanation of Fiqures 11.2(a) and 11.2(b)
f (t) — zekeikwot
k=—

where

C, = (Tim f(t) *e“kWOtdt}

For the periodic function shown in Example 11.1 (or Figure 11.1), one has:
T T T

- 4 _ 4 _ 2 _
C, :(lj [*e™dt+ [@)*e ™™ dt+ [(-1)*e " dt
T i T
2 4 4

or

~

C, :(TEJ{A+ B+C}

. 2 .
where, making use of w, = ?7[; one obtains:

(@]

L[ke e
k :(—) 22 _2p 2 4kt _gikr
ik2z

Recalled:

e'’ =cos(0) +isin(6)
e’ = cos(—0) +isin(-6) = cos(#) —isin(6)
Then, the above equation for Ek can be expressed as:

21

+{cos(+ kx)—isin(+ kxz)} - {cos(kz) +isin(+ kr)}

4isin(k7”j— 2isin(k7r)}

Ek = ij{4sin(k—”j—Zsin(kzr)}: real number.
2

) el) ()
J{

2k
Since C, = s _Zibk =a?k because C, = real number
Hence
a, = 25k
Fork=1= 61 = (i)[ﬂ - % —a, = % _ (%}ei(m

Hence the amplitude and phase angle are iand (0) radian, respectively.
T

Forkzz:sézz(iJ[o]:o:az:o

Ar
For k:3:63: i[_4]:__2:>a3:__4: iei(n)
67 3r 3r \3rx

Hence the amplitude and phase angle are 3i and (7z) radian, respectively.
7T

For k=4:>64=[8ij[0]=0:>a4=o
T

For k=5=C, = L [4]:i=i:>a5:i= A e
107z 10z b5x Y4 57

Hence the amplitude and phase angle are Si and (0) radian, respectively.
T

For k:6:>66=(iJ[0]=o:>a6=0

127
For k=7:>(-f7 = 1 [_4]:__23 a, =__4:(i)ei(zz)
14 1T 17 1z

Hence the amplitude and phase angle are 7i and (72') radian, respectively.
T

Remarks:

For k =0; then

22

e

1

J

L— |

2

f(t)dt =0 (See Example 11.1)

23

(E) Non-Periodic Function

Recalled that a periodic function can be expressed in terms of the exponential form,
accordingly to Egs. (11.26,11.28) as :

f(t) = Zék B (11.26, repeated)
k=—w0
~ 1)\ % :
C, = (?j{ J' f (t)*e"k%tdt} .. (11.28, repeated)
0
Define the following function:
T
2
X(ikwo) = [F ()8 At oo (11.29)
T
2

Then, Eqg. (11.28) can be written as:

And Eq.(11.26) becomes

00

fity=>. (le*x(ikwo)eik%t .. (11.31)

k=—o0

A non-periodic function f can be considered as a periodic function, with the period

T —> o0, Or Af = Ti — 0 (See Fig 11.3)
From Egs. (11.6-11.7), one gets:

W, = 27f = T 270(AF) e, (11.32)

24

F@kafN)=F@Jr€

a.----‘ -------
;"-’\\ ;"‘ o
P S ,.
L’ h T
® ® ® & & > f=frequency
Af 2 3 kA
it e 2 (i
Af A A Af
Fig. 11.3 : Frequency are Discretized.
From Eq.(11.31), one obtains:
— h — I N H ikw,t
fo,()= T%TO f(t)= AIfITO k:Z_%‘(Af) X(KW,)e ™ (11.33)
or,
fop (1) = lim k;O(Af)*x(iKZﬂAf)e‘kz”A“ .. (11.34)
o (1) = jdf *x(i27f)e' ¥
oo (1) = j X272)E 2 AE oo (11.35)
_ 1 : i 2t
fo (1) = [Zj j x(i27f)e’™d (24f)
fop () = (zij I x(iw,)e""'d (w,) ; inverse Fourier transform........................... (11.36)
73 —00
Using the definition stated in Eqg.(11.29), one has
x(iw,) = Ifnp (t)e ™" d(t) ; Fourier transform.............c.ocovveeeeeeiieeeeieennn, (11.37)

—0

25

Thus, Egs. (11.37,11.36) will transform a non-periodic function from time domain to
frequency domain, and from frequency domain to time domain, respectively.

26

(F) Discrete Fourier Transform (DFT)

Recalled the exponential form of Fourier series (see Egs.11.26,11.28), one gets:

f(t) = Zéke”‘%‘ .. (11.26, repeated)
k=—00

C, = (TEH j f (t)*e'kWO‘dt} .. (11.28, repeated)
0

If time “t” is discretized at t, = At,t, = 2At,t; = 3At,.......,t, = nAt,
Then Eq.(11.26) becomes:

N-1
f(t,) =D Cre™™ ™ e (11.38)
k=0

To simplify the notation, define:
L o PP (11.39)
Then, Egs.(11.38) can be written as:

N-1 __
F(N) =D Ce™ 0 (11.40)
k=0

Multiplying both sides of eq.(11.40) by ™", and performing the summation on “n”,
one obtains (note:l = integer number)

N-1N-1
Zf(n)* e Mo — ZZC @M K TN e (11.40)
n=0 k=0
or
N-1] N-1N-1 _
D f(n)*e™" = Z L . (10.42)
n=0 n=0 k=0
N-IN-D k- I)—n
= C.e O OPPUPRRY ¢ I <)
n=0 k=0

Nj‘jf(n)*e'"mn - N_lékN_lei(k_')(zNﬂJ” e (10.44)

A= Nfe'(k_”[”)" .. (11.45)
n=0

There are 2 possibilities for (k-1) to consider in Eq. (11.45)

27

Case(1): (k-I) is a multiple integer of N, such as:
(k-D=mN; or k=1+mN where m = 0,+1,+2,......

Thus, Eq.(11.45) becomes:

N-1 N-1

A= =3"c0s(MN27) +ISIN(MN27T) ..o, (11.46)
n=0 n=0

Hence

AN e (11.47)

Case(2): (k-1) is NOT a multiple integer of N

In this case, from Eq.(11.45) one has:

ANZl{ei(k”[NﬂJ} e e e (11.48)

n=0

Define:

aze N :cos{(k—l)%)}+isin{(k—l)%)} e (11.49)

a = 1; because (k-1) is “NOT” a multiple integer of N.........cooviiiiiiiii i, (11.50)

Then, Eq. (11.48) can be expressed as:

A=i{a}” OO OPPURPRUPRPRPRPPRPRRN ¢ D=1

From mathematical handbooks, the right side of Eq. (11.51) represents the “geometric
series”, and can be expressed as:

N-1
A=>al" = Njifa=1.....coiiiiiiiiiiii e (1152)
n=0

= 11_ SE @ L (11.53)

Because of Eq. (11.50), hence Eq. (11.53) should be used to compute A. Thus:

1_ a.N B 1_ ei(k7|)27r

A=
l1-a l1-a

(S8 EQ. (11.49)) «.veveeee oo, (11.54)

Since (k-1) is still a multiple of 27, hence

28

e' %7 = cos{(k =12z} +isin{(k =127} =1 ..o, (11.55)

Substituting Eq. (11.55) into Eq. (11.54), one gets:

Thus, combining the results of case (1) and case (2), one gets (see Eqgs.11.47 and
Eq.11.56):

ASNFOZN .. oot (115T)

Substituting Eq.(11.57) into Eq.(11.45), and then referring to Eq(11.44), one gets:

N-1) N-1

DA™ =D C N (11.57A)
n=0 k=0

Recalled k=I+mN (where I,m are integer numbers), and since k must be in the range
0 — N -1, therefore m=0. Thus:

k=I+mN becomes k=l

Eq(11.57A) can, therefore, be simplified to:

N-1 . ~

DEMEe™" =Ci*N o0 (1157B)

n=0

Thus:

~ 1 N-1 . 1 N-1

C, =(sz f (n)e ™" = (WJZ f (n){cos(lw,n) —isin(wyn)}..........cceernnn.n.(11.58)

n=0 n=0

where n=t,

and
N1l o~ N-1 -

f(n)=>.C,e™" =>"C, {cos(kw,n) +isin(kWoN)}ovenreriiiiiannne, (11.38, repeated)
k=0 k=0

FORTRAN code for computing the DFT, shown in Eq. (11.58) [or similarly shown in
Eq.11.38] is listed in Table 11.2.

Remarks:
(a) Consider the exponential term in the above equation [Eq. (11.38, repeated)]. Let

L 27
E = e(ikwon) = e(lk*W*n) ;

where 7 =3.14159

29

If one replaces “n” by “-(N-n)” (or “n-N") into the above equation, then one obtains:

ik*2x(n-N) (ik*2% *n)
N —g N

*[e(—ik*Zﬂ) _ 1] =

Thus, Eq. (11.38, repeated) indicates that the force corresponding to frequencies of order
“n” and “-(N-n) = n-N” have the same values. Hence:

- N
w, =nw forn<—
2

=—(N —n)w for n>%

and the frequency corresponding to nzgis the highest frequency that can be

considered in the discrete Fourier series (w,, is called the Nyquist frequency). If there are
2
harmonic (force) components above w, in the original function, then these higher
2
components will introduce distortions in the lower harmonic components (known as
ALIASING phenomenon). Because of the ALIASING phenomenon, the number of (N)
data points should be “at least twice” the highest harmonic component presents in the
(forcing) function, for sufficient computational accuracy. As an example, if the forcing
function is given as:

16
F(t) = > 100*cos(2mt)
n=1

then, the minimum value of N (= Number of sample data points) should be N, =32.

Y

Figure 11.25: Discretize With Large step Size Will Introduce Large Error.

30

(b) The factor (%j shown in the DFT EQq.(11.58), is merely a scale factor. It can also be

placed in the inverse Fourier Transform Eq.(11.38), but not both !

Thus, Egs. (11.58 & 11.38) can be re-written as:

C = N_lf(k)e_ik[w"Nﬂjn e (101.59)
f(k)=&jN§éneik(w"_@n .. (11.60)

To avoid computation with “complex numbers”, Eq.(11.59) can be expressed as:

- - N-1
cr+ic! :Z{fR(k)H f'(k)}*{cos(e)—isin(e)}...............................(11.59A)
k=0
where
9=k(w0 =2W”jn(11598)
- - N-1
CR+iC! =Y {f R (k) *cos(8) + f ' (K)sin(@)}+i{F' (k)cos(6) - f " (k)isin(6)}
k=0
The above “complex number” equation is equivalent to the following 2 “real number”
equations:
- N-1
CR =3 {FR(K)c0S() + £ (K)SIN(B)]...ovvecvereeeceiieec e (11.59C)
k=0
- N-1
ok :z{f'(k)cos(e)—fR(k)isin(e)} .. (11.59D)
k=0

31

Table 11.2 FORTRAN Coding For DFT (See Egs. 11.59C, 11.59D)

C
implicit real*8(a-h,0-z)
dimension freal(1000000), flmag(1000000)
write(6,*) '
Wr|te(6 *) "=z == == == —===='
write(6,*) ' Prof. Nguyen Version Date 08 08-2008'
Wr|te(6 *) Bt et oo e
write(6,*) ' '
read(5,*) iautodata, n, igama, method
write(6,*) 'iautodata,n,igama, method = 1 (FFT); 2(DFT)'
write(6,*) iautodata,n,igama, method
if (lautodata .eq. 1) then
doli=1,n
freal(i)=dfloat(i)
fimag(i)=0.d0
1 continue
elseif (iautodata .eq. 0) then
read(5,*) (freal(i),i=1,n)
read(5,*) (fimag(i),i=1,n)

endif
C
write(6,*) 'input data for FFT: i,freal,fimag ='
do 22 i=1,n
write(6,*) i, freal(i), fimag(i)
22 continue
C

if (method .eq. 1) then
c call fft(freal,fimag,n,igama)

write(6,*) 'output for FFT: i,freal,fimag ='
do 23i=1,n
write(6,*) i, freal(i), fimag(i)
23 continue
C
elseif (method .eq. 2) then
call dft(freal,fimag,n,igama)
endif
999 stop
end
C%%%%% %% %% %% %% %% %% %% % %% %% %% %% %% %% % %% % % %% %%
subroutine dft(freal,fimag,nn,igama)
implicit real*8(a-h,0-z)
dimension freal(*), fimag(*)

32

pai=3.14159d0
w0=2.d0*pai/dfloat(nn)
sumreal=0.d0
sumimag=0.d0
write(6,*) 'dft results: n,freal,fimag ="
do 1 n=1,nn
cnreal=0.d0
cnimag=0.d0
do 2 k=1,nn
angle=(k-1)*w0*(n-1)
c=cos(angle)
s=sin(angle)
cnreal=cnreal+freal(k)*c+fimag(k)*s
cnimag=cnimag+fimag(k)*c-freal(k)*s
2 continue
write(6,*) n, cnreal, cnimag
sumreal=sumreal+dabs(cnreal)
sumimag=sumimag+dabs(cnimag)
1 continue
write(6,*) 'DFT: sumreal,sumimag = ',sumreal,sumimag
return
end
C%%%%% %% %% %% %% %% %% %% % %% %% % % %% %% %% %% %% %% % % %%

33

11.3 Intuitive Development of Fast Fourier Transform (FFT)

Recalled the DFT pairs of Egs. (11.59,11.60) and swapping the indexes n,k one obtains:

~ N-1 —in(wozz—”Jk
Co= Y FK)E N e (1181)
k=0
N-1 ~ inWO:Z—”k

f(k):(ichne[3 e (11.62)
N n=0

Where N, K =0,1,2,3, ... 0N=L o e s (11.63)
_i2® i

Let W =€ N (hence WY =7 =1) . i e e e, (11.64)

Then Eq. (11.61) becomes:

_ _ N-1

Co=C(M) =) W™ e (11.65)

k=0

Assuming N =4 =2 then

5(0) W @O\ @M\ @@\ O3 (£ (Q)

< W) OO e @0 || f1

chi_w’ o Wew W o S (11.66)

C) |weo weo wee weo || f(2)

CE)| [woo wen wee weo || f(3)

C)] [w® w° w°® w°l[f(0)

c@| (we owr w2 ow? ||

coi_jwowowe wo B CE YY)

C |we w2 w* we|f@)

C@)) |w® w® we we|[f(3)

For N=4, n=2 and k=3, then:

-2z

W™ =W e :M(n:4)}N2 =(NJNWZ =[e—izzz}Nz —\W?2

The term inside the square bracket is equal to 1, since

[e7%"] = cos(—27) +isin(-27)

= cos(2x) —isin(2rx)

=1-i(0)=1
. For N=4, n=3 and k=3, then
Wnk =w9 =[V\/8Ml =w1

. Thus, in general (for nk > N)
W™ =W P where p=mod(NK,N)couumiitiiiiiet e eee e eee e eee (11.68)
. nk
or p = remainder of (Wj
Remarks:

(a) Matrix times vector, shown in Eq. (11.67), will require 16 (or N?)complex

multiplications and 12 (or N*{N-1}) complex additions.
(b) Usage of Eqg. (11.68) will help to reduce the number of operation counts, as
explained in the next section.

Factorized Matrix and Further Operation Count:

Eq. (11.67) can be factorized as:
co] [1 w® 0o o1 0 w® o]l[f(0)

~ 2 0 f(1

c@_|L W= 0073010 W pd S (11.69)
COl [0 0 1 w1 0 w2 0 |[|f(®

C@3)| |0 0o 1 w¥fo 1 0 W2[f@)

Remarks:

(a) The theoretical behind the 2 matrices on the right hand side (RHS) of Eq.(11.69)
will be clearly explained soon !.

(b) The order of the left-hand-side (LHS) vector has been changed, such as rows 2
and 3 have been swapped !.

(c) Let the row-interchanged LHS vector be defined as:

(0
<. . |C@
C*(n)= &

C©3)

... (11.70)

Now performing the inner-product (matrix times vector) on the RHS of Eq. (11.69), one
obtains:

35

0 W° o0 |[f(0)
1 0 W[fQ@
0 wE o [|f()f
1 0 W?2[[f(3)

(11.71)

or

£00) = FO)+W T (2) eiireriiiiiiiieee e e e (LLTLA)
FL) = F) AW () ittt e e e (11.72B)
f.(2) = f(0)+W?*f(2)

= F(0) =W T (2) o2 (11.72C)

f.(3)=fQ+W?>f(3)
e L A) P (11.72D)

Egs.(11.72A through 11.72D) for the *“inner” matrix times vector requires 2 complex
multiplications and 4 complex additions.

(d) In Egs.(11.72A through 11.72D), W °is intentionally not reduced to the numerical
value of 1.0 in order to facilitate the discussions of more general cases.

Finally, performing the “outer” product (matrix times vector) on the RHS of Eq.(11.69),
one obtains:

c©] [f,0) [1 w° o o0](f(0)
C(Z) O _J1 Wo 0 0 (11.73)
0(1) L, o 0o 1 w'|f©2
c@| [L,®] [0 0o 1 w3 fQ
or
f,(0) = f,(0) +W°f,(1) .. e (10.74A)
f, ()= f,(0)+W? f(l)_f(O) —W° f(1) e (11.74B)
f,(2) = f,(2) +W'f,(3).. e (10.74C)
f,(3) = f,(2) +W? f(3)_f(2)+W2W f(3)

= F(2) =W (3) e oo (11.74D)

36

Again, Eqgs (11.74A-11.74D) requires 2 complex multiplications and 4 complex
additions. Thus, the complete RHS of Eq.(11.69) can be computed by only 4 complex

multiplications (or N£:4§)and 8 complex additions (or Nr = 4*2). Since

computational time is mainly controlled by the number of multiplications, hence
implementing EQq.(11.69) will significantly reduce the number of multiplication, as
compared to direct matrix times vector operations (as shown in Eq.11.67).

For large value of data points (=N), one obtains:

Ratio = N® :(mj ... (11.75)
SR
2

For N = 2048 = 2"V Eq. (11.75) gives:

2(2048)

Ratio = =372.36

Graphical flow of Eq.(11.69), forcase N =2" =22 =4

Eq. (11.69) can also be presented in the graphical form, as shown in Figurell.4

Conmutatiiﬂ Vectors

Tnitial data Vector 1 (=1) Vector 2 (1=2=1)
Vector £(k) Si(k) £,

f(0) e f(® > £,(0)

W'
OR £ = 10
fQ) a0 >e £(2)
wl
1) vo 103 o £i03)
W: w’

Figure 11.4 Graphical form of FFT (Eq.11.69). For the case N =2" =2% =4

37

Remarks

(a) Computed vector 1 does correspond to Eq.(11.71).

(b) Computed vector 2 does correspond to Eq.(11.74)

(c) Since r = 2 in this example, one needs to compute 2 vectors {= f, (k)andf, (k)}

(d) Each node in the graph is computed from 2(=r) nodes in the “previous” vector.

(e) Factor W* (such as W° W*W? W?) appears near the arrow head of the

transmission path. Absence of W implies that W* =W °=1,
For example: f,(2) = f,(2)+ f,(3)W*, which is the same as Eq.(11.74C)

Graphical Flow of Eq.(11.69), forcase N =2" =2* =16

In order to see a more detailed computational patterns of FFT, a slightly larger data size
(N =2" =2* =16) is shown in the graphical form, as indicated in Figure 11.5.

38

L=1 L=2 L=3 L=4
Amay f (k) f, (k) f,(k) f,(k) f, (k)

f,0 e WA e 1,0

f,0 “f,

it A\ VV ‘%\A’) 2 s g)

f(3) % m A.‘EX‘ f
7 IS

NP O "10
OV OS2 AN fﬁ%

f(6) 7(O ~(0) o> 4(6)
0(7) ‘6‘:" an '1\’) V\? > > V\}Z I3(l) V\}4 f4(7)
h® LUK : : <f8 e 10

“© S T
T/ TN O m S
RS Srt i
£,(13 / VRN O i) (13 o L3
/N fA s

(
(D5 kA i A3

fo14 W W“ A
e Ty 19

Figure 11.5 Graphical Form of FFT (Eq.11.69) For the case N =2" =2* =16.

39

Dual Node Observation:

Careful observation of Figure 11.5 has revealed that each computed 1" -vector (where
I=1,2,....r; and N =2"=2*=16), we can always find two (dual) nodes which came
from the same pair of nodes in the previous vector. For example, f,(0)and f,(8) are
computed in terms of f(0)and f(8). Similarly, the dual nodes f,(8)and f,(12) are
computed from the same pair of nodes f,(8)and f,(12), etc..

Furthermore, the computation of dual nodes are independent of other nodes (within the
|™ -vector). Therefore, the computed f,(0)and f,(8) will override the original space of
f(0)and f(8). Similarly, the computed f,(8)and f,(12)will over ride the space
occupied by f,(8)and f,(12), which in turns, will occupy the original space of
f(8)and f (12). Hence, only one complex vector (or 2 real vectors) of length N are
needed for the entire FFT process !.

Dual Node Spacing.

Observing Fig 11.5, the following statements can be made:
(@) in the first vector (I=1), the dual nodes f (0)and f,(8)is separated by k=8 (or
N
2
(b) In the second vector (I=2), the dual nodes f,(8)and f,(12)is separated by k=4
N 16 16

or —=—="—"), etc..
(2! 22 4)

= 12—? = 8) spaces.

Dual Node Computation:

The operation counts in any dual nodes (of the 1" =2 vector), such as f,(8)and
f,(12) can be explained as (see Fig.11.5):

F,(8) = FL(8) + FLL2) MW 1o oo oot el (11.76)
f,(12) = f,(8) + f,(12)*W ¥
= 1,(8) + f,(12) *W W *

.27 8
= 1,(8)+ fl(lz)le <N-16>} &

= f,8)+ f,12)e " v*
f,(12) = £,8) = F,(12) W * ..ot (1177)

40

Thus, the dual nodes f,(8)and f,(12) computation will require 1 complex multiplication
and 2 complex additions (See Eqs.(11.76 and 11.77). The weighting factors for the dual

N
nodes [f,(8)and f,(12)]are W *(orw ") and W**(orw i), respectively.
Thus, in general:

£, (k) = f, (k) +WP f,_ (k +g) .. (11.78)

f (k +g) L () -WP L (K +2N—,) .. (11.79)

Skipping certain nodes’ computation:

Because the pair of dual nodes “k” and "k +£L" are separated by the “distance” (= ﬁL) :
2 2

N . N .
hence, at the L™ level, after every o node computation, then the next o nodes will be

skipped ! (see Fig 11.5)

Determination of W °

The values of “P” can de determined by the following steps:

Step 1: Express the index k(=0,1,2,...,N-1) in binary form, using r bits. For k=8, and r =4;
one obtains

k=8=10,00=(1)2"* + (0)22 + (0)2" + (0)2°

Step2: Sliding this binary number “r-L = 4-2 =2” positions to the right, and fill in zeros,
the results are:

10,00 » X,X,1,0— 0,010
It is important to realize that the results of Step 2 (0,0,1,0) is equivalent to express an
integer M = K = 8 = 2 in the binary formats. In other words: M=2=(0,0,1,0).

2r—L 2472 -

Step3: Reverse the order of the bits, then:

0,0,1,0 becomes 0,1,0,0 =P

Thus, P =(0)2° + (1)2° + (0)2' + (0)2° = 4

It is “NOT” really necessary to perform Step 3, since the results of Step 2 can be used to
compute “P” as following:

P = (0)2° + (0)2" + (1)2% + (0)2° = 4

41

In conclusion, for N =2" =2* =16;L = 2;k =8 and P=4; the computation of dual nodes
from general formulas (See Eqgs.11.78, 11.79) gives:

f,(8) = f,(8) +W*f,(12)
f,(12) = 1,(8)-W*f,(12)

The above 2 equations are identical to Egs.(11.76,11.77)!

Computer Implementation to Find Value of “P” (in w*)

Based on the previous discussions (with the 3-step procedures), to find the value of “P”,

one only needs a procedure to express an integer M = in binary formats, with “r”

2r—L

bits.
Assuming M (a base 10 number) can be expressed as (assuming r=4bits):

M = 8,858,8, = J5 ettt (11.80)
Divide M by 2 (say, J, =%), multiply the truncated result by 2 (say, JJ, =J, *2),and

compute the difference between the original number (=M=1J,) & &JJ, :

IDIFF = J, —JJZ{: M —(Mj *2} .. (11.81)
Truncated

If IDIFF =0, thenthe bit a, =0

If IDIFF =0, then the bit a, =1

Once the bit a, been determined, the value of J, is setto J, (or value of J, is reduced
by a factor of 2; since previous J,=M =a,a,a,a,.
J; =(a,)2° +(a,)2" +(a;)2° +(a,)2° and similar process can be used to determine the
value of bit a,, etc...

Example 1: For k=8; N =16 =2";r =4bits and L = 2. Find the value of “P” ??
k 8
EEE T
Determine the bit a, : (Index 1=1)

Initialize P=0
b2
2 2

IDIFF =J,-(3J,=J,%2)=2-(1)(2) =0

42

Thus
a,=0

P=P*2+IDIFF =0*2+0=0 or [P=P+(a,)2"" =0+(0)2° =0]

Determine the bit a, [Index | =2]

J,=J,=1
‘JZ zizlzo
2 2

IDIFF =J,-(3J,=J,*2)=1-(0*2) =1
Thus a, =1

P=P*2+IDIFF =0*2+1=10r [P=P+(a,)2"" =0+ (1)2% = 4]

Determine the bit a, [Index | =3]
J,=J,=0
'JZ :izgzo

2 2
IDIFF =J,-(3J,=J,*2)=0-(0*2)=0
Thus a, =0

P=P*2+IDIFF =1*2+0=2 or [P =P +(a,)2"" =4+ (0)2! =4]

Determine the bit a, [Index | =4=r]
J,=J,=0
J, 0

J :—:—:O
22 2

IDIFF =J,-(J3J,=J,*2)=0-(0)*2=0
Thus a, =0

P=P*2+IDIFF =2*2+0=4 or [P=P+(a,)2"" =4+(0)2° = 4]
Remarks:

Although the “intermediate” results might be different, at the end of the do-loop process
(computing a,), both formulas for “P”, such as

P = PH 24 IDIFF;0F oottt ettt (11.82)

P=P+(a,)2 " Where 1=1,2,3.... oo e (11.83)
will eventually give the same final answers for “P”.

43

Example 2: For k=12; N =16=2""; and L =3. Compute the corresponding value of

L‘P” ??
One has:
K 12
BT
Determine the bit a, : (Index 1=1)
Initialize P=0
_h 6
22 2
IDIFF =J,-(3J,=J,*2)=6-(3)(2) =0
Thus
a,=0

P=P*2+IDIFF =0*2+0=0 or [P =P +(a,)2"" =0+(0)2° = 0]

Determine the bit a, [Index | =2]
J,=J,=3
J, 3

J :—:—:1
22 2

IDIFF =J, - (JJ, =J,*2)=3-()*2=1
Thus a, =1
P=P*2+IDIFF =0*2+1=1or [P=P+(a,)2"? =0+ (1)2° = 4]

Determine the bit a, [Index | =3]
J,=J,=1
J, 1
AFErE
IDIFF=J,-(JJ,=J,*2)=1-(0)*2=1
Thus a, =1

P=P*2+IDIFF =1*2+1=3 or [P =P +(a,)2"° = 4+ (1)2" = 6]

Determine the bit a, [Index | =4]
J;=J,=0
J 0

J,="L-—-0
22 2

IDIFF =J, - (JJ, =J,*2)=0-(0)*2=0
Thus a, =0
P=P*2+IDIFF =3*2+0=6 or [P=P+(a,)2"* =6+ (0)2° = 6]

44

Remarks:

Although both formulas for “P”, shown in Eqs(11.82,11.83), will yield the same “final”
value of “P”. Implementation of Eq.(11.82) will be more computationally efficient !.

UnSrambling the FFT.

For the case N =16 = 2" (see Figure 11.5), the final ‘bit-reversing’ operation for FFT is
shown in Fig. 11.6.

fu(k) c(n)

0 £,(0000) @=—====rrrrmmmmrrrremm s »® C(0000)
1 f,(0001) @ ® C(0001)
2 f,(0010) C(0010)
3 f,(0011) @ C(0011)
4 f,(0100) / ® C(0100)
5 f,(0101)e / »® C(0101)
6 f,(01l0)e > < /:0 C(0110)
7 f,(0111) g » C(0111)
8 f,(1000) C(1000)
9 f,(1001) ® C(1001)
10 f,(1010) C(1010)
11 f,(l1011) ® C(1012)
12 f,(1100) ® C(1100)
13 f,(1101) C(1101)
14 f,(110)8 C(1110)
15 f,(1111) @ >® C(1111)

= skip the operation

Figure 11.6: Final “Bit-Reversing” for FFT (with N =2" = 2* =16)

45

For do-loop index k=0=(0,0,0,0)=i=(0,0,0,0)=0
If (I.GT k)Then

T =1,(k)

f (k) = 1,()

f4 (') =T

Endif

Hence, f,(0)= f,(0); no swapping.

For k=1=(0,0,0,1)= i=(1,0,0,0)=bit-reversion=8

If (I.GT k)Then

T= f4(1)

f,(@) = 1,(8)

f,8)=T

Endif

Hence, f,(1)=f,(8); are swapped.

. For k=2=(0,0,1,0)= i=(0,1,0,0)=4
Hence, f,(2)=f,(4); are swapped.

. For k=3=(0,0,1,1)= i=(1,1,0,0)=12
Hence, f,(3)=f,(12); are swapped.

. For k=4=(0,1,0,0)= i=(0,0,1,0)=2

In this case, since “i” is not greater than “k”.
Hence, no swapping, since f,(k =2) and f,(i =4); had already been swapped earlier !.

. efc...

Computer Implementation of FFT (for case N =2").

The pair of dual nodes computation are given by Eqgs.(11.78,11.79). To avoid “complex
number” operations, Eq.(11.78) can be computed based on “real number” operations, as
following:

U5 () +if (0= {15 () +ifL (0
W PR iw P }*{ff_l(k +2'\'—L)+ifL'_1(k +2N—L)} (11.84)

In Eq. (11.84), the superscripts R and | denote Real and Imaginary components,
respectively.

46

Multiplying the last 2 complex numbers, one obtains:
U8+ (0= {1000 + i (0
+ {W PR*ER (K +2N—L) /AR N (+2N—L)}

+i{W PRx ! (K +2N—L)+w PlxfR (k +2N—L)} (11.85)

Equating the Real (and then, Imaginary) components on the Left-Hand-Side (LHS), and
the Right-Hand-Side (RHS) of Eq.(11.85), one obtains:

{17)

20+ {w PR FR (K +2ﬁL) SWP R (k +;'—L)} (11.86A)

(£ (0= {1, (0}+ +{w PR £ (K +2ﬁL) WP R R (K +;'—L)} (11.86B)

Recalled Eq. (11.64):

2
W=e N

Hence:

g \T o e

sz[e NJ =e N =e7 =c0S(B)—iSIN(@) ..covviiiiiii e, (11.87)
where:

0= 2 OB (11.88)

N N

Thus:

LT o 1 (2 IR (1 X< 1°)-})
WP = —SIN(0) e oo (11.89B)

Substituting Egs.(11.89A,11.89B) into Eqs.(11.86A,11.86B), one gets:

{200} = {1500)+ {cos(@)* fR(k +2ﬁL) +sin(@)* £, (k +2N—L)} oo (11.90A)

()} {f;_l(k)}+{cos(9)* £l (k +2N—L) _sin(0)* 17, (k +;'—L)} (11.90B)

Similarly, the single (complex number) Eq.11.79 can be expressed as 2 equivalent (real
number) Eqgs. Like Egs. (11.90A,11.90B) !

47

c%%%%% %% %% %% %% %%%%% %% %% % % %% %% %% %% %% %% % % %% %%
subroutine fft(freal,fimag,n,igama)
implicit real*8(a-h,0-z)
dimension freal(*),fimag(*)
C......purpose: fft algorithms (for general base 2)
C......programmed by: Prof. Duc T. Nguyen (DNguyen@odu.edu)
C......original date: 07-10-2008
c.....freal(n) = real number of N complex data points
c.....fimag(n) = imaginary number of N complex data points
C......N = number of complex data points = 2**igama
C.....example n =2**4 =16; hence igama = 4
C......remarks: Both DFT & FFT did give IDENTICAL results !

C
c write(6,*) 'inside routine fft: echo input freal,fimag ="
do 24 i=1,n
c write(6,*) i, freal(i), fimag(i)
24 continue
k=0
c write(6,*) 'n, igama = ',n,igama
do 1l L=1,igama
n2=n/2**L
igaminusL=igama-L
123 do2i=1,n2

m=Kk/2**igaminusL
call bitreverse(m,igama,ip)
c write(6,*)'L, i, m,ip="L,im,ip
theta=6.283185*ip/n
c=cos(theta)
s=sin(theta)
c write(6,*) 'theta,c,s = ',theta,c,s
kl=k+1
nodedual=k1+n2
c write(6,*) 'dual nodes = k1, nodedual =',k1,nodedual
C......applying Duc's Eqs.(11.90A, 11.90B)
partreal=c*freal(nodedual)+s*fimag(nodedual)
partimag=c*fimag(nodedual)-s*freal(nodedual)
freal(nodedual)=freal(k1)-partreal
fimag(nodedual)=fimag(k1)-partimag
freal(k1)=freal(k1)+partreal
fimag(k1)=fimag(k1)+partimag

k=k+1
c write(6,*) 'partreal, partimag = ',partreal,partimag
2 continue
c write(6,*) '‘computed array at level L ="',

do 26 kk=1,n

c write(6,*) 'freal(kk),fimag(kk) = ', freal(kk),fimag(kk)

48

mailto:DNguyen@odu.edu

26

1
C
c

c

C....

continue
k=k+n2
if (k .It. n) go to 123
k=0
continue

write(6,*) 'before unscramble FFT: i,freal,fimag ='
do 22 i=1,n
write(6,*) i, freal(i), fimag(i)
continue
..unscramble results of FFT
call unscramble(freal,fimag,n,igama)

C......output FFT solution
c write(6,*) 'after unscramble FFT: i,freal,fimag ='
sumreal=0.d0
sumimag=0.d0
do42i=1,n
c write(6,*) i, freal(i), fimag(i)
sumreal=sumreal+dabs(freal(i))
sumimag=sumimag+dabs(fimag(i))
42 continue
write(6,*) 'FFT: sumreal,sumimag = ',sumreal,sumimag
999 return

end

€%%%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %%

2
C

subroutine bitreverse(m,igam,ip)
ip=0
j1=m

do 2 i=1,igam
j2=j1/2
idiff=j1-j2*2
ip=ip*2 + idiff
11=j2
continue
write(6,*) 'p, or ii = ',ip
return
end

c%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% % % %%

subroutine unscramble(freal,fimag,n,igama)
implicit real*8(a-h,0-z)
dimension freal(*),fimag(*)

do 2 k=1,n

m=Kk-1
call bitreverse(m,igama,ii)

49

i=ii+1

if (i.le.K)goto2

temporeal=freal(k)

tempoimag=fimag(k)

freal(k)=freal(i)

fimag(k)=fimag(i)

freal(i)=temporeal

fimag(i)=tempoimag
2 continue

return

end
€%%%%%% %% %% % %% % %% %% % %% %% %% %% %% %% % %% %%

50

11.8 Brief Review About “MPIl-parallel” FORTRAN-90 Programming.

OO0 OO0

(@]

Message Passing Interface (MPI) parallel application codes can be
implemented in either FORTRAN, or C++ language, under UNIX, LINUX,

or WINDOWS environments. The syntax for "parallel” MPI/FORTRAN-90 are
essentially identical to the ones used in "serial” FORTRAN-90, with

few exceptions for "specific parallel computational purposes”.

Regardless the computer language adopted by the users (such as C, or

C++,

C
C
C

or FORTRAN-77, or FORTRAN-90, or BASIC etc...), one only needs to be
familiar with the syntax for "IF" statements, "DO" loop, "DIMENSION"
statements (for handling 1-D, and/or 2-D, and/or 3-D integer/real

arrays),

c

c

input/output, and usage of "subroutines".

The following listed MPI/FORTRAN-90 demonstrated code can be

conveniently

c

used to understand the "syntax" for writing any general application

codes.

c== == == = == == —============ == == ===1000
€2345678901234567890123456789012345678901234567890123456789012345678!001

C
c
C
C
C

Purposes: Reviewing some basic FORTRAN_90 syntax, and MPI_FORTRAN 1002
Author(s): Prof. Duc Thai NGUYEN (757-683-3761; DNguyen@odu.edu) 1003
Date: June 10, 2008 1004
Stored At: cd ~/cee/*odu*class*/teach_fortran90_mpi.f 1005
1006
implicit real*8(a-h,0-2) 1007
include 'mpif.h’ 1008
character*80 title 1009
parameter (num=10) 1010
parameter (master=0) 1011
parameter (from_master=1) 1012
parameter (from_worker=2) 1013
dimension a(hum),b(num) 1014
allocatable:: ia(:),al1(:,:),a22(:,:) 1015
--- 1016
call MPI_INIT(ierr) 1017
call MPI_COMM_RANK(MPI_COMM_WORLD, me, ierr) 1018
call MPI_COMM_SIZE(MPI_COMM_WORLD, np, ierr) 1019
if (me .eq. 0) then 1019.1

67

mailto:DNguyen@odu.edu

write(6,%) ' ! 1019.2

write(6,*) '==== S==================== =' 1019.3
write(6,*) Prof Duc T. Nguyen June 17 2008 1019.4
write(6,*) '==== S==================== =' 1019.5
write(6,*) ' ' 1019.6
endif 1019.7
G m e e 1020
c call MPI_BARRIER(MPI_COMM_WORLD, ierr) 1021

¢ call MPI_SEND(num,1,MPI_INTEGER,i_destination,1,MP_COMM_WORLD,!
022

c $ierr) 1023
¢ call MPI_RECV(num,1,MPI_INTEGER,master,mtype,MPI_COMM_WORLD, 1024
c $status,ierr) 1025
Cmmm 1026
idum=0 1027
sum=0.d0 1028
do 1i=1,num,1 1029
a(i)=drand(idum) 1030
sum=sum-+a(i) 1031

if (i .le. 10) then 1032
write(6,*) 'i,a(i) = ",i,a(i) 1033
elseif (i .gt. 10) then 1034
write(6,*) 'skip printing too many random numbers ' 1035
endif 1036

1 continue 1037
C 1038
open (unit=7, file="K.INFQ', status="old', form="formatted") 1039

c open (unit=6, file="outl', status="old’, form="formatted") 1040
read(7,115) title 1041
115 format(a60) 1042
write(6,115) title 1043

c 1044
memory_need=2*num 1045
allocate (ia(memory_need), al1(memory_need,memory_need), 1046

$ a22(num,num)) 1047
do 2 i=1,memory_need,1 1048
ia(i)=i 1049

2 continue 1050
deallocate(all,a22) 1051
call dummy1(num,memory_need,a,sum_real) 1052
write(6,*) ' sum_real=", sum_real 1053

Cmmmm e e e 1054
num_workers=np-1 1055
bigest_local=0.d0 1056
C......each processor (master and workers) will: 1057
C......generate its own portions of random (real) numbers 1058

68

http://k.info/

c......then, it will find its own local maximum number
do 11 i=me+1, num, np
b(i)=drand(idum)
if (b(i) .gt. bigest_local) bigest_local=b(i)
write(6,*) 'processor id# ',me, 'i,b(i) =",i,b(i)
write(6,*) ‘processor id# ',me, 'bigest_local =", bigest_local
11 continue

C...... each worker will send its own local maximum to the master
if (me .gt. 0) then
mtype=from_worker
call MPI_SEND(bigest_local,1,MPI_DOUBLE_PRECISION,master,mtype
$,MPI_COMM_WORLD,ierr)
write(6,*) 'sent by worker # ',me, ' bigest_local=",bigest_local
C...... the master processor will receive local maximum
C...... (from each worker)
C...... and then, comparing amongst all local max to find/print
C...... global max
elseif (me .eq. 0) then
bigest_global=bigest_local
mtype=from_worker
write(6,*) 'processor id # ',me, ' bigest_local=",bigest_local
do 60 i=1,num_workers,1
isource=i
call MPI_RECV(bigest_local,1,MPI_DOUBLE_PRECISION,isource,mtype,
$MPI_COMM_WORLD,status,ierr)
if (bigest_local .gt. bigest_global) bigest_global=bigest_local
60 continue
write(6,*) 'amongst local max, the global max is ',bigest_global
endif

write(6,*) 'processor id# ',me, 'out of ',np, " is alive'
call MPI_FINALIZE(ierr)

stop
end

1059
1060
1061
1062
1062.1
1062.2
1063
1064
1065
1066
1067
1068
1069
1069.1
1070
1071
1072
1073
1074
1075
1076
1076.1
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090

€%%%%%%%%%%%%%%%%% %% %% %% %% %% %% %% %% % %% %% %% %%

%%%%%%% %% %% %% % %% %% %% %% % %% % %%
subroutine dummy1(num,memory_need,a,sum_real)
implicit real*8(a-h,0-2)
dimension a(*)
sum_real=0.d0
do 1i=1,num,1
sum_real=sum_real+a(i)

1 continue
return

69

1091
1092
1093
1094
1095
1096
1097
1098
1099

end 1100

€%%%%%%%%%%%%%%%%%%%%% %% %% %% %% %% %% % %% %% %% %%
%9%%%%%%%%%%%%%%%%%%% %% %% %% %% 1101

OO0 OO0 0O0O0O0O 0O 0o

O OO0

(@]

[N @]

OO o000

c
C
c

Lines #001-006:
In FORTRAN, if a character ""c" is typed in columnl, then the line will be
treated like a "comment" statement.

Line #007:

In FORTRAN, all "executable™ statements should be typed between column
numbers 7 through 72. Any "real" array should be named with the first
characteras a, b, c, ..., h,and o, p, q, ..., Z. Any "integer" array

should be named with the first character as i,j,k,I,m,n.

This statement implies that each real number will need 8 bytes to store

(in double precision). Similarly, a statement:

implicit real*4(a-h,0-z) implies that each real number will need 4 bytes

to store (in single precision).

Line #008:
This include statement "MUST" always be followed the implicit statement
for any MPI/FORTRAN application code

Line #009 (also see lines # 041-043):
This statement is necessary only if the user want to read (or write)
a title heading, with upto 80 characters (also see lines # 041-043)

Lines # 010-013:
Numerical values of certain variables can be defined/given/assigned by
the parameter statements.

Line # 014:

Maximum dimension (or size) for certain arrays are defined by the
"dimension” statement. Note that the value of "num™ must already be
earlier defined (through the parameter statements)

Line # 015 (also see lines # 045-047):
This is one of the "very useful” features in FORTRAN-90, for which
the users can declare some arrays for "dynamic storage allocation"

purposes.

c

The actual, exact "dimension" for these arrays do NOT have to be

declared

C
C
C
C

in the begining (such as arrays defined on line # 014). These "exact"
"dimension" needed can be declared "later on", whenever the user knows
exactly how much memory storage one needs for these arrays (also see
lines # 045-047)

70

¢ Lines# 017-019:

¢ These 3 "special” MPI/FORTRAN statements "MUST" be defined in any MPI
¢ application codes (and should be inserted right after dimension
statements).

¢ The variable "np" on line # 019 represents (Number of Processors". Thus,
c if 3 processors are used, then np will be assigned the value 3 by the
system.

¢ The variable "me" on line # 018 will have the values (assined by the
computer

c system) 0,1,2, ..., np-1. This variable "me" will play a CRUCIAL role in
¢ any MPI application codes.

C

¢ It should be emphasized here that all processor ID #=0,1,2, ..., np

¢ will execute the same application code. However, depending on the
algorithms,

c the user will have direct control of deciding "WHICH processor ID" will
c execute on "WHAT portions of the code" etc..., through the usage of
variable

¢ "me" (also refer to lines # 060-063)

¢ Lines# 019.1-019.7:

¢ Only the "master" processor (me=0) will execute this block of
statements,

¢ which basically print out some output message [any desired output
message

¢ can be placed inside (open/close) single quotes].

Lines # 020-026:

There are about 10-20 "special, parallel” MPI constructs that are very

commonly used in any application codes. Amongst these MPI statements,

however, BARRIER, SEND and RECV are probably the most important ones to

be used. Basically, BARRIER statement will make sure that all processors

have to arrive at this statement, before they can proceed to execute

subsequent statements of the application code. SEND statement will send

a message (such as an integer/real variable, or integer/real arrays)

om

one processor to another (specified) processor. Important argument lists

are explained as following:

1-st Argument = name of a variable (or array)

2-nd Argument = the "dimension" associated with this variable (or array)

3-rd Argument = the variable (or array) must be defined as INTEGER, or
REAL (or DOUBLE PRECISION)

4-th Argument = send to WHICH processor ??

5-th Argument = message type #

6-th Argument = user does NOT need to know !

7-th Argument = user does NOT need to know !

SO OO0 00000

OO0 0OO0O0O0O 0O 0o

71

RECYV statement can be used for RECEIVING a message. Important argument

lists are explained as following:

1-st Argument = name of a variable (or array)

2-nd Argument = the "dimension™ associated with this variable (or array)

3-rd Argument = the variable (or array) must be defined as INTEGER, or
REAL (or DOUBLE PRECISION)

4-th Argument = receive from WHICH processor ??

5-th Argument = message type #

6-th Argument = user does NOT need to know !

7-th Argument = user does NOT need to know !

8-th Argument = user does NOT need to know !

The user does NOT need to know about the 2 argument lists of the MPI
BARRIER statement.

OO OO0 0O0O0O0O0O0OO0OOo

c Lines # 027-037:

¢ The purpose of this block of FORTRAN statements are:

¢ to show the "syntax™ of "do" loop (see line # 029), the integer index
llill

¢ will have the values from 1 through num (=10), with the increment of 1.
¢ Lines# 027, and # 030 show how to use "built-in" library function to
¢ generate a real random number (between 0.00 and 1.00).

¢ to show the "syntax™ of "IF" statement (see lines # 032, # 034, and #
036)

¢ to show the "syntax™ of writing/printing some intermediate output
variables.

c Lines # 038-044:

¢ Input (read), and output (write) data files can be used through the
llopenll

c statements on line # 039 and line # 040, respectively.

¢ Lines # 045-050:

¢ At this moment, the user knows "exactly” how much memory space that
he/she

c needs to allocate (or assign) to INTEGER array ia(-), REAL arrays
all(-,-),

¢ and a22(-,-). Thus, request to allocate memory space was done on line #
046-

c #047.

c Line # 051:

¢ Assuming that at this stage the user does NOT need the arrays all(-,-),

and

¢ a22(-,-) any more, hence he/she can request to DELETE all memory spaces

72

c allocated to these 2 arrays, through the DEALLOCATE statement.

Lines # 052-054:

A subroutine dummyl is called by the main program, in order to perform a
certain task. In this example, the first 3 argument lists are "INPUT"

to this subroutine, and the 4-th argument list (= sum_real) provide the

O OO0

¢ "OUTPUT" from this subroutine.

c Line # 055:

¢ Since in this example np = Number of Processors = 3, hence processor
ID#0

¢ will be the "master" processor, and processor ID# 1, #2 are considered
c as "worker" processors.

c Lines # 056-063:

¢ Each processor will generate its own random numbers, and also
compute/print

¢ its own (local) maximum number (amongst its own random numbers). The
most

¢ important statement for this block is shown on line # 060 (please pay

C attention to variable "me").

¢ For the "master"” processor (such as me=0), it will generate random
numbers

¢ coresponding to the do-loop integer index i =1, 4, 7, and 10 (the
increment

¢ forindexiisnp =3).

¢ For the "worker" processor (such as me=1), it will generate random
numbers

¢ coresponding to the do-loop integer index i =2, 5 and 8.

¢ For the "worker" processor (such as me=2), it will generate random
numbers

¢ coresponding to the do-loop integer index i = 3, 6 and 9.

¢ Also, all 3 processors (such as the "master" processor me=0, and "slave"
processors me=1, 2) will compute its own local maximum value (stored in
variable name bigest_local)

Lines 064-069.1:

Upon completion its task, each "slave" worker will send its own local
maximum

c to the "master" processor.

C

¢ Lines 070-085

¢ The "master” will receive all "slaves
will

¢ compare all these local maximum (including the "master's” own local

C
C
C
c
C

local maximum values, and it

73

maximum),

c in order to identify , and print the global maximum (stored in variable
name

c bigest_global).

C

c Line 086

¢ All (master and slave) processors will print out a message before
exiting.

Lines 087-091
This MPI_FINALIZE(ierr) "must™ be placed before the program stops

Lines 092-101
This subroutine just computes some dummy works, such as calculating

C
C
C
C
C
C
¢ the summation of a given 1-D real array

74

11.9 Parallel MPI/FORTRAN FFT Base-2 Algorithms.

Observing Figure 11.5 (FFT algorithms with N =2" = 2* =16) and also referring to the

2" (or inner) do-loop index | (=1= N,;where initial value for N, =8), presented in

the serial FFT code, the following major changes are necessary for converting the earlier
serial code into parallel code (assuming NP=2 processors, with processor ME=0 and
ME=1 are available). The entire parallel MPI/FFT code is listed in Table 11.10.

(a) Computation of “dual node” pair of an array, such as
f,(1 =1, f,(1+N,=9)
f,(1=2), f,(1 +N, =10)

f,(I =N, =8),f,(I1 + N, =16)

are completely independent from each other. Since FORTRAN does “not enjoy” with
zero subscript, the above f (1 — 16)are correspondent to f,(0 — 15), respectively. The
computation of the dual pair f (0)and f,(8)in Figure 11.5 will only require the terms
f(0) and f(8) from previous array. Similarly, computation of the dual pair f,(7)and
f, (15) will only require the terms f(7) & f(15) from previous array.

(b) Based on the above observation, the inner serial do-loop:
Do 2 i=1, N, .1 should be replaced by the following parallel do-loop:

Do2i=ME+1, N,=8NP=2
Thus, processor ME=0 will be assigned to compute
f,)&f,9),f3)&f 11, f,(5) & f,(13)and f,(7) & f,(15)

while at the same time, processor ME=1 will try to compute
f,(2) & f,(10), f,(4) & f,(12), f,(6) & f,(14) and f,(8) & f,(16)

(c) The “local” variable ICOUNT and “local” array index(icount), see MPI source code
listing, are used to record which terms of the computed array f, (1 — 16) were computed
by which processors. These local arrays are required, since we do want to minimize
processors’ communication time by packing more data for each MPI_SEND (or
MPI_BROADCAST) statement.

(d) The “Local” variable increase (initiated to zero) will help the parallel FFT algorithm
to implement the patterns of computing N, terms, then skipping next N, terms, etc..

(e) Subroutine unscramble can also be parallelized, as indicated in the parallel MPI
source code listing. However, due to unsignificant computational efforts occurred in a
single (not nested) do-loop, serial coding for this subroutine is recommended.

75

(F) If the incore memory is limited, and is a concern for the user, then the entire do 28
loop (including the 2 real arrays tempolreal(-) and tempolimag(-)) can be eliminated.
Also, the 2 call MPI_BROADCAST statements should be placed right before the “2
continue” statement (or inside the loop do 2 i=me+1, N,,NP). The trade-off in this case,

ofcourse, will be a substantial increase in processors’ communication cost!

(9) The suggested parallel FFT strategies are mainly designed for “educational” purpose,
and might not be practical for the following reasons:

1. Due to the nature of FFT algorithms, parallel processing can only be done at the
innermost (or 2™) do-loop, rather than at the preferable outermost (or1*) do-loop!

2. Even for fairly large data points (say N is large), there are not-much computational
efforts inside the “inner” do-loop.

(h) In the DFT (see Eq.11.65, or 11.67), matrix times vector operations are needed, which
also requires two nested do-loops (see Table 11.2). It is a well-known fact that for
“matrix*vector” operations, efficient parallel processing can be done at the “outermost”
do loop while “unrolling strategies” can be exploited at the “innermost” do-loop [Refs. 5
— 6]. Despite of the above favorable features, DFT is not matched for FFT algorithms
(recalled Eq.11.75, and for even small-medium size N =2" = 2" = 2048, FFT offers

372.36 times less # operations as compared to DFT formula!)

76

Table 11.10: MPI/FORTRAN "FET" Source Code
c

implicit real*8(a-h,0-z)
include 'mpif.h'’
C......purpose: mpi/parallel fft algorithms & software
dimension freal(1000000), fimag(1000000)
dimension tempolreal(1000000),tempolimag(1000000)
$, index(1000000)
open(unit=5,file="fft.dat',status="old',form="formatted)
call MPI_INIT((ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD,me,ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD,np,ierr)
write(6,*) '‘processor ME =" me, "is alive I'
if (me .eq. 0) then
read(5,*) iautodata, n, igama, method
write(6,*) 'iautodata,n,igama, method ="
write(6,*) iautodata,n,igama, method
if (lautodata .eq. 1) then
doli=1,n
freal(i)=dfloat(i)
fimag(i)=0.d0
1 continue
elseif (iautodata .eq. 0) then
read(5,*) (freal(i),i=1,n)
read(5,*) (fimag(i),i=1,n)
endif
endif

write(6,*) 'input data for FFT: i,freal ,fimag ='
do 22 i=1,n

write(6,*) 1, freal(i), fimag(i)

c22 continue

C

c
C
c
C

call MPI_BCAST (iautodata,1,MPIl_INTEGER,O,
$ MPI_COMM_WORLD,ierr)

call MPI_BCAST(n,1,MPI_INTEGER,Q0,
$ MPI_COMM_WORLD,ierr)

call MPI_BCAST(igama,1,MPI_INTEGER,0,
$ MPI_COMM_WORLD,ierr)

call MPI_BCAST(method,1,MPI_INTEGER,0,
$ MPI_COMM_WORLD,ierr)

call MPI_BCAST (freal,n,MPI_DOUBLE_PRECISION,0,
$ MPI_COMM_WORLD,ierr)

call MPI_BCAST (fimag,n,MPI_DOUBLE_PRECISION,O0,
$ MPI_COMM_WORLD,ierr)

if (method .eq. 1) then

77

call fft(freal ,fimag,n,igama,me,np,
$ tempolreal,tempolimag,index)

elseif (method .eq. 2) then

call dft(freal,fimag,n,igama)

endif

C
c write(6,*) 'output for FFT: i,freal,fimag ='
c do23i=1,n
c write(6,*) i, freal(i), fimag(i)
€23 continue
C
999 call MPI_FINALIZE(ierr)
stop
end

c%%%%% %% %% %% %% %%%%% %% %% % % %% %% %% %% %% %% % % %% %%
subroutine dft(freal,fimag,nn,igama)
implicit real*8(a-h,0-2)
dimension freal(*), fimag(*)

pai=3.14159d0
w0=2.d0*pai/dfloat(nn)
sumreal=0.d0
sumimag=0.d0
do 1 n=1,nn
cnreal=0.d0
cnimag=0.d0
do 2 k=1,nn
angle=(k-1)*w0*(n-1)
c=cos(angle)
s=sin(angle)
cnreal=cnreal+freal(k)*c+fimag(k)*s
cnimag=cnimag+fimag(k)*c-freal(k)*s
2 continue
write(6,*) 'dft results: n,freal,fimag ="
write(6,*) n, cnreal, cnimag
sumreal=sumreal+dabs(cnreal)
sumimag=sumimag+dabs(cnimag)
1 continue
write(6,*) 'DFT: sumreal,sumimag = ',sumreal,sumimag
return
end
c%%%%% %% %% %% %% %%%%% %% %% % % %% %% %% %% %% %% % % %% %%
subroutine fft(freal,fimag,n,igama,me,np,
$ tempolreal,tempolimag,index)
implicit real*8(a-h,0-z)
include 'mpif.h’

78

dimension freal(*),fimag(*)

$,tempolreal(*),tempolimag(*),index(*)
C......purpose: fft algorithms (for general base 2)
C......programmed by: Prof. Duc T. Nguyen (DNguyen@odu.edu)
C......original date: 07-10-2008
c.....freal(n) = real number of N complex data points
c.....fimag(n) = imaginary number of N complex data points
C.....N = number of complex data points = 2**igama
C.....example n =2**4 =16; hence igama =4
C......remarks: Both DFT & FFT did give IDENTICAL results !

ntoddcount=0 !temp added by Todd
if (me .eq. 0) then
write(6,*) ' '
Wr|te(6 *) —== = == = == == '
write(6,*) ' Prof Nguyen VerS|on Date 07 29- 2008'
write(6,*) '============ =============='
write(6,*) ' '
write(6,*) 'inside routine fft: echo input freal,fimag ="
do 24 i=1,n
write(6,*) i, freal(i), fimag(i)
24 continue
endif
C call MPI_BARRIER(MPI_COMM_WORLD,ierr)

c write(6,*) 'n, igama = ',n,igama
igamatodd = 5 I by Todd
do 1 L=1,igamatodd

! If (me . eq . O) Wr I te(6 , *) Ihkkkkhkhkkkhhkkkhkhkkhkhkhkkhkiikkhiikkiik!

! if (me.eq.0) write(6,*) 'L=",L

! If (me . eq . O) Wr I te(6 , *) Ihkkkkikkkhkkkhkhkkhkhkkhkikhkkhkiikkikik

write(6,*) me,'L=",L

n2=n/2**L
igaminusL=igama-L
icount=0 I parallel fft
increase=0 I parallel fft

tempolreal(1:n)=0.d0
tempolimag(1:n)=0.d0
! do 456 kk=1,n
! tempolreal(kk)=0.d0
I 456 tempolimag(kk)=0.d0
c1l23 do2i=1,n2
c write(6,*) me,me+1,n2,np

79

mailto:DNguyen@odu.edu

123 do 2 i=ME+1,n2,NP

c

write(6,*) ‘processor ME =",me, "is alive I'
k=i-1 + increase ! parallel fft
write(6,*) me,'By Todd' k
m=k/2**igaminusL
call bitreverse(m,igama,ip)
write(6,*) 'L, i, m, ip =",L,i,m,ip
theta=6.283185*ip/n
c=cos(theta)
s=sin(theta)
write(6,*) 'theta,c,s = 'theta,c,s
k1=k+1
icount=icount+1 ! parallel fft
index(icount)=k1 ! parallel fft
nodedual=k1+n2
write(6,*) 'dual nodes = k1, nodedual =",k1,nodedual
icount=icount+1 ! parallel fft
index(icount)=nodedual ! parallel fft

....applying Duc's Egs.(11.90A, 11.90B)

partreal=c*freal(nodedual)+s*fimag(nodedual)
partimag=c*fimag(nodedual)-s*freal(nodedual)
freal(nodedual)=freal(k1)-partreal
fimag(nodedual)=fimag(k1)-partimag
freal(k1)=freal(k1)+partreal
fimag(k1)=fimag(k1)+partimag
k=k+1
write(6,*) 'partreal, partimag = ',partreal,partimag
continue

....broadcast and update the computed array to all other processors

do 28 jj=1,icount
kk=index(jj)
tempolreal(kk)=freal(kk)
tempolimag(kk)=fimag(kk)

28 continue

OO0 0O o0 —

call MPI_BARRIER(MPI_COMM_WORLD,jierr)

call MPI_REDUCE(tempolreal,freal,n,MPI_DOUBLE_PRECISION,
$ MPI_SUM,0,MPI_COMM_WORLD,jierr)

call MPI_BCAST (freal,n,MPI_DOUBLE_PRECISION,0,
$ MPI_COMM_WORLD,ierr)

call MPI_REDUCE(tempolimag,fimag,n,MPI_DOUBLE_PRECISION,
$ MPI_SUM,0,MPI_COMM_WORLD,jierr)

call MPI_BCAST(fimag,n,MPI_DOUBLE_PRECISION,0,
$ MPI_COMM_WORLD,ierr)

write(6,*) me,'before mpi_allreduce’,L

call MPI_ALLREDUCE(tempoZlreal,freal,n,MPI_DOUBLE_PRECISION,

80

$ MPI_SUM,MPI_COMM_WORLD,ierr)
c $ MPI_SUM,COMM,ierr)
call MPI_ALLREDUCE(tempolimag,fimag,n,MPI_DOUBLE_PRECISION,
$ MPI_SUM,MPI_COMM_WORLD,ierr)

c $ MPI_SUM,COMM,ierr)
c k=k+n2 I parallel fft
c if(k.lt. n) goto 123 ! parallel fft

ntoddcount = ntoddcount+1 I added by todd
c if (L.eq.igamatodd) write(6,*) 'me,k,n,ncount’,me,k,n,ntoddcount
if (k .le. n) then
increase=increase+n2
if (L.eq.igamatodd)write(6,*) me," Todd',ntoddcount,k,increase
goto 123
endif
k=0
1 continue
goto 999 ! by Todd

write(6,*) 'before unscramble FFT: i,freal,fimag ='
do 22 i=1,n

write(6,*) i, freal(i), fimag(i)

c22 continue

C......unscramble results of FFT

C __

if (me .eq. 0) then

call unscramble(freal,fimag,n,igama)
c call MPI_BCAST(freal,n,MP1_DOUBLE_PRECISION,0,
c $ MPI_COMM_WORLD,ierr)
¢ call MPI_BCAST(fimag,n,MPI_DOUBLE_PRECISION,0,
c $ MPI_COMM_WORLD,ierr)

C......output FFT solution
write(6,*) 'after unscramble FFT: i,freal,fimag ='
sumreal=0.d0
sumimag=0.d0
do42i=1,n
write(6,*) i, freal(i), fimag(i)
sumreal=sumreal+dabs(freal(i))
sumimag=sumimag-+dabs(fimag(i))

42 continue
write(6,*) 'FFT: sumreal,sumimag = ',sumreal,sumimag
endif

999 return
end

c%%%0%%% %% %% %% %% %% %% %% % %% %% %% %% %% %% % %%
subroutine bitreverse(m,igam,ip)

81

2
C

do 2 i=1,igam
j2=j1/2
idiff=j1-j2*2
ip=ip*2 + idiff
11=j2
continue
write(6,*) 'p, or ii =",ip
return
end

€%%%%%%%%%%%%%%%%%% %% %% %% %% %% %% %% %% %%

2

subroutine unscramble(freal,fimag,n,igama)
implicit real*8(a-h,0-2)

...purpose: parallel unscramble algorithms

dimension freal(*),fimag(*)

do 2 k=1,n
do 2 k=ME+1, n, NP
m=k-1
call bitreverse(m,igama,ii)
i=ii+1
if (i.le.k)goto2
temporeal=freal(k)
tempoimag=fimag(k)
freal(k)=freal(i)
fimag(k)=fimag(i)
freal(i)=temporeal
fimag(i)=tempoimag
continue

...each processor has independently swap certain
...terms of the arrays freal(n), and fimag(n).
...now, we need to use appropriated mpi command
...to "merge" all these partial results, and

...make the entire updated array available to

...all processors.

call MPI_merge & broadcast (freal, ...) ??
call MPI_merge & broadcast (fimag, ...) ??
return
end

€%%%0%%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %%

82

References:

11.1 E.Oran Brigham, The Fast Fourier Transform, Prentice-Hall, Inc. (1974).

11.2 S.C. Chapra, and R.P. Canale, Numerical Methods for Engineers, 4™ Edition, Mc-
Graw Hill (2002).

11.3 W.H . Press, B.P. Flannery, S.A. Tenkolsky, and W.T. Vetterling, Numerical
Recipies, Cambridge University Press (1989), Chapter 12.

11.4 M.T. Heath, Scientific Computing, Mc-Graw Hill (1997).

11.5 D.T. Nguyen, Parallel-Vector Equation Solvers For Finite Element Engineering
Applications, Kluwer Academic/Plenum Publishers (2002).

11.6 D.T. Nguyen, Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions,
Springer Publisher (2006).

11.7 Mario Paz, Structural Dynamics: Theory and Computation, ond Edition, Van
Nostrand Inc. (1985).

11.8 R.W. Clough, and J. Penzien, Dynamics of Structures, Mc-Graw Hill (1975).

83

