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Chapter 11: Fourier Series, Discrete Fourier Transform and Fast 

Fourier Transform 
 
In general, curve fitting through a set of data points can be done by a linear combination 
of polynomial functions, with based functions 1, .,.......,, 2 mxxx  In this chapter, however, 
trigonometric functions such as 

)sin(),......,2sin(),sin(),cos(),......2cos(),cos(,1 nxxxnxxx will be used as based functions. 
In the former, the unknown coefficients of based functions can be found by solving the 
associated linear simultaneous equations (where the number of unknown coefficients will 
be matched with the same number of equations, provided by a set of given data points). 
In the later, however, the unknown coefficients can be efficiently solved (by exploiting 
special properties of trigonometric functions) without requiring to solve the expensive 
simultaneous linear equations. 
 
11.1 Background 
 
The following relationships can be readily established, and will be used in subsequent 
sections for derivation of useful formulas for the unknown Fourier coefficients, in both 
time and frequency domains. 

∫

∫

∫

∫ ∫

∫ ∫

=

=

=

==

==

T

T

T

T T

T T

dttgwtkw

dttgwtkw

dttgwtkw

Tdttkwdttkw

dttkwdttkw

0
00

0
00

0
00

0 0
0

2
0

2

0 0
00

)5.11.........(................................................................................0)cos()cos(

)4.11.(..........................................................................................0)sin()sin(

)3.11(..........................................................................................0)sin()cos(

)2.11.....(......................................................................
2

)(cos)(sin

)1.11.(................................................................................0)cos()sin(

 

In Eqs (11.1 – 11.5), one has  
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where f and T represents the frequency (in cycles/time) and period (in seconds) 
respectively. 
 
A periodic function f(t) with a period T should satisfy the following equation 
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Proof of Eq.(11.1) 

Let [ ]T
T

tkw
kw

dttkwA 00
0 0

0 )cos(1)sin(∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==  

[ ] [ ] 01)2cos(1)0cos()cos(1

0
0

0

=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
= πk

kw
Tkw

kw
A  

 
Proof of Eq. (11.2) 
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Proof of Eq. (11.3) 
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Adding Eqs.(11.8,11.9), side by side one obtains 
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2C = 0, since the right side of the above equation is zero (see Eq.11.1). Thus, 
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Proof of Eq.(11.4) 
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Adding Eqs. (11.10, 11.11) side by side, one obtains: 
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2D = 0, since the right side of the above equation is zero (see Eq.11.1). Thus, 

∫ =≡
T

dttgwtkwD
0

00 0)sin()sin(  

 
Proof of Eq.(11.5) 
 
Eq(11.5) can be proved in a same fashion as the proof for Eq(11.4) 
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11.2 Fourier Series,  and Discrete Fourier Transforms (DFT). 
 
For a function with period T, a continuous Fourier series can be expressed as 
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The unknown Fourier coefficients kaa ,0  and kb  can be computed as 
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Thus, 0a can be interpreted as the “average” function value between the period interval 
[0,T]. 
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(A) Derivation of formulas for kaa ,0  and kb  
 
Integrating both sides of Eq.(11.12) with respect to time, one gets 
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The second and third terms on the right hand side of the above equations are both zeros, 
due to earlier results stated in Eq.(11.1) 
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Now, if both sides of Eq.(11.12) are multiplied by )sin( 0tmw and then integrated with 
respect to time, one obtains: 
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Due to Eqs. (11.1, 11.3), the first and second terms on the right hand side (RHS) of 
Eq(11.17) are zero. 
 
Due to Eq. (11.4), the third RHS term of Eq.(11.17) is also zero, with the exception when 
k=m, which will become (by referring to Eq.11.2): 
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Similar derivation can be used to obtain ka , as shown in Eq.(11.14) 
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(B) A Fortran Program for finding Fourier Coefficients kk baa ,,0            
 
Based upon the derived formulas for ,,0 kaa and kb  (shown in Eqs. 11.13-11.15, 
respectively). A FORTRAN computer program has been developed (refer to Table 11.1 
for a complete source code listing) and tested for several class examinations in the past 
several years. Major descriptions of the Fourier program can be summarized as 
 
(a) Input Descriptions (See Example 11.2) 
 
The following input information are required in the input data file: 
 
. Period = 2*3.1416 (assumed); nterms=8 (assumed, for ka and kb ) 
. nsegments = 3 (to determine the given periodic function) 

. integration limits for all segments = ππππ ,
2

,
2

, −−  

. descriptions of given periodic function in each segment, defined in subroutine_f 

function = 
2
π−  ; for the st1 segment. 

function = -t      ; for the nd2 segment. 

function = 
2
π−  ; for the rd3 segment. 

(b) Output Descriptions: (See Example 11.2) 
 
The numerical values of the unknown Fourier Coefficients kk bbbaaaa ....,,,,.....,,, 21210  
will be printed. 
 
(c) Users’ Internet Access for computer simulations of Fourier Coefficients 
 
 can be found at the following website  
www.lions.odu.edu/~amoha006/numerical_methods. 
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Table 11.1 FORTRAN Listings of Fourier Coefficient Program  
 
program ce305            ! Updated Version = August 7, 2008 
      implicit real*8(a-h,o-z) 
      dimension alimit_int(10), ff(10), ak(10), bk(10) ! for Fourier series 
c 
      write(6,*) '====================================' 
      write(6,*) 'Name: Duc T. NGUYEN; TODAY Date: 08/07/2008' 
      write(6,*) 'Course: Numerical Methods' 
      write(6,*) '====================================' 
c......Fourier series, with N (max N = 3) segments for integration 
      pai=3.14159 
      period=2.0*pai 
      angfreq=2.0*pai/period 
      ntrapezoid=1234 
      nterms_ak=8                 ! maximum = 10 
      nterms=nterms_ak 
c---------------------------------------------------------------------------------------------------------- 
c......test (Fall'2008 semester) 
c......user's input to define: # segments, and integration limits 
      nsegments=3 
      alimit_int(1)=-pai 
      alimit_int(2)=-pai/2.d0 
      alimit_int(3)= pai/2.d0 
      alimit_int(nsegments+1)=+pai 
c---------------------------------------------------------------------------------------------------------- 
c 
      write(6,*) 'nsegments,period,angfreq,nterms for FOURIER coeff. =' 
      write(6,*)  nsegments,period,angfreq,nterms 
      write(6,*) '(alimit_int(i),i=1,nsegments+1)' 
      write(6,*)  (alimit_int(i),i=1,nsegments+1) 
c 
      iaoakbk=0           ! for computing a0 
      call area_under_curve(nsegments, pai, period, angfreq, 
    $                             ntrapezoid, 
    $                             nterms_ak, alimit_int, ff, a0, ak, bk, 
    $                             area,iaoakbk) 
c 
      iaoakbk=1           ! for computing ak 
      call area_under_curve(nsegments, pai, period, angfreq, 
    $                             ntrapezoid, 
    $                             nterms_ak, alimit_int, ff, a0, ak, bk, 
    $                             area,iaoakbk) 
c 
      iaoakbk=2           ! for computing bk 
      call area_under_curve(nsegments, pai, period, angfreq, 



 8

    $                             ntrapezoid, 
    $                             nterms_ak, alimit_int, ff, a0, ak, bk, 
    $                             area,iaoakbk) 
c 
 999   stop 
      end 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
      subroutine area_under_curve(nsegments, pai, period, angfreq, 
    $                             ntrapezoid, 
    $                             nterms_ak, alimit_int, ff, a0, ak, bk, 
    $                             area,iaoakbk) 
      implicit real*8(a-h,o-z) 
      dimension ff(10) 
      dimension alimit_int(10), ak(10), bk(10) ! for Fourier series 
c 
      nfourier_series=nterms_ak 
      if (iaoakbk .eq. 0) nfourier_series=1 
c 
      do 1 k=1, nfourier_series 
c 
      area=0.d0                 ! initialized value 
c 
        do 2 i=1,nsegments 
       a=alimit_int(i) 
       b=alimit_int(i+1) 
        deltat=(b-a)/ntrapezoid 
        t=a-deltat 
c...... 
           do 3 m=1, ntrapezoid 
           t=t+deltat             ! Thus, t will start at value = "a" 
           t1=t 
           t2=t1+deltat 
      call periodic_f(i, t1, function,alimit_int,k,nsegments) 
      ff(i)=function 
      call periodic_f(i, t2, function,alimit_int,k,nsegments) 
      ff(i+1)=function 
c...... compute ak 
        if (iaoakbk .eq. 1) then 
        ff(i)=ff(i)*cos(k*angfreq*t1) 
        ff(i+1)=ff(i+1)*cos(k*angfreq*t2) 
c...... compute bk 
        elseif (iaoakbk .eq. 2) then 
        ff(i)=ff(i)*sin(k*angfreq*t1) 
        ff(i+1)=ff(i+1)*sin(k*angfreq*t2) 
        endif 
c 
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        area = area + ( ff(i)+ff(i+1) ) * deltat/2.d0 
 3          continue 
c 
 2       continue 
c 
c      write(6,*) 'iaoakbk, k, area = ',iaoakbk, k, area 
c 
      if (iaoakbk .eq. 0) then 
      aa0=area/period 
      write(6,*) 'a0 = ', aa0 
      write(6,*) '---------------------' 
      elseif (iaoakbk .eq. 1) then 
      aak=area*2.d0/period 
      write(6,*) 'ak(',k,') = ', aak 
      write(6,*) '---------------------' 
      elseif (iaoakbk .eq. 2) then 
      bbk=area*2.d0/period 
      write(6,*) 'bk(',k,') = ', bbk 
      endif 
c 
 1     continue 
c 
      return 
      end 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
      subroutine periodic_f(isegment, t, function,alimit_int, 
    $                       kthfourier,nsegments) 
      implicit real*8(a-h,o-z) 
      dimension alimit_int(10) 
c......user has to define the periodic function for each & every segment 
c......within a period T 
       pai=3.14159 
       i=isegment 
c=============================================================== 
        if (isegment .eq. 1  .and.  t .eq. alimit_int(1)  .and. 
    $       kthfourier .eq. 1) then 
c---------------------------------------------------------------------------------------------------------- 
c......test (Fall'2008 semester) 
       write(6,*) 'segments integration limits = ' 
    $   ,(alimit_int(m),m=1,nsegments+1) 
       write(6,*) 'segment #1 ' 
       write(6,*) 'function = -pai/2 ' 
       write(6,*) 'segment #2 ' 
       write(6,*) 'function = -t ' 
       write(6,*) 'segment #3 ' 
       write(6,*) 'function = -pai/2 ' 
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c---------------------------------------------------------------------------------------------------------- 
        endif 
c=============================================================== 
       go to (11,12,13),i ! assume integral is splited into max. 3 segments 
c...... compute Fourier series coefficient a0 (by default) 
c......user's input to define: the function in EACH segment 
c---------------------------------------------------------------------------------------------------------- 
c......test (Fall'2008 semester) 
 11     function=-pai/2.d0      ! user defined function for 1-st segment 
       go to 444 
 12     function=-t             ! user defined function for 2-nd segment 
       go to 444 
 13     function=-pai/2.d0      ! user defined function for 3-rd segment 
       go to 444 
c---------------------------------------------------------------------------------------------------------- 
c 
 444    continue 
      return 
      end 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Example 11.1 
 
Using the continuous Fourier series to approximate the following periodic rectangular 
wave function: 

    
 
 
……………………………………………...…….(11.17A) 

 
                                  

The above periodic function f(f) can be plotted, as shown in Fig.11.1 
 

 
Fig.11.1 A Periodic Rectangular Wave Function. 
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The above numerical value for 0a is expected, since it can be observed from Fig.11.1 that 
the “average” amplitude of the given periodic function f(t) is zero, for the period interval 
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⎨
⎧

−⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=⇒= = )*3sin(2

2
*3sin4

3
13 3 ππ
πkak  

or { }
ππ )(
404

3
1

3 k
ak

−
=−−⎟

⎠
⎞

⎜
⎝
⎛==  
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For 
⎭
⎬
⎫

⎩
⎨
⎧

−⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=⇒= = )*7sin(2

2
*7sin4

7
17 7 ππ
πkak  

or { }
ππ )(
404

7
1

7 k
ak

−
=−−⎟

⎠
⎞

⎜
⎝
⎛==  

 

Hence for
k

ak ;
)(
4
π

−
=  k = 3,7,11,… 

 
In conclusion, the periodic rectangular wave function f(t) (shown in Eq.11.17.A) can be 
expressed as: 
 

∑ ∑
= =

+=
,...9,5,1 ,...11,7,3

00 )cos()cos()(
k k

kk tkwatkwatf  

 
or ).......5cos()3cos()1cos()( 050301 twatwatwatf ++=  
 

).......5cos(
5
4)3cos(

3
4)1cos(

1
4)( 000 twtwtwtf

πππ
+−=  
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Notes: 
 
(a) 1-Term Fourier Approximation of a Rectangular Wave Function 

)1cos(
1
4)()( 01 twtftf
π

=≈  

 
(b) 2-Term Fourier Approximation of Rectangular Wave Function  

)3cos(
3
4)()()( 012 twtftftf
π

−=≈  
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Example 11.2 
 
The periodic triangular wave function f(t) is defined as 
 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

<<−

<<
−

−−

−
<<−−

=

πππ

ππ

πππ

tfor

tfort

tfor

tf

2
;

2

22
;

2
;

2
)(  

 
Find the Fourier coefficients ???,,,, 21210 bbaaa  
 

 
 
 
Solutions: 
 
From the developed computer program (see Table 11.1), one gets 
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;00.0
;143.0

;00.0
;20.0
;00.0

;333.0
;00.0
;00.1
785.0

8

7

6

5

4

3

2

1

0

=
−=

=
=
=
−=

=
=
−=

a
a
a
a
a
a
a
a
a

        

125.0
013.0

167.0
025.0

25.0
071.0

50.0
64.0

8

7

6

5

4

3

2

1

=
=
−=
−=

=
=
−=
−=

b
b
b
b
b
b
b
b
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(C) Complex Form of the Fourier Series: 
 
Using Euler’s identity, the sine and cosine can be expressed in the exponential form as: 
 

,""
2

)sin( functionodd
i
eex

ixix

=
−

=
−

 since sin(x) = -sin(-x) ………….…………….(11.18) 

,""
2

)cos( functioneveneex
ixix

=
+

=
−

 since cos(x) = cos(-x) …………………...….(11.19) 

Thus, the Fourier series (expressed in Eq.11.12) can be casted in the following form: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
+=

−∞

=

−

∑ i
eebeeaatf

tikwtikw

k
k

tikwtikw

k 2
*

2
*)(

0000

1
0 ………………………….(11.20) 

or 

⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ ++= −

∞

=
∑ i

i
i

ba
e

i
i

i
ba

eatf kktikw

k

kktikw *
22

**
22

*)( 00

1
0  

or, since ,12 −=i  one obtains: 

⎟
⎠
⎞

⎜
⎝
⎛ +

+⎟
⎠
⎞

⎜
⎝
⎛ −

+= −
∞

=
∑ 2

*
2

*)( 00

1
0

kktikw

k

kktikw iba
e

iba
eatf ………………………...……(11.21) 

 
Define the following constants: 

00
~ aC ≡ ………………………………………………………………………...…....(11.22) 

2

~
kk

k
iba

C
−

≡ ……………………………………………………………………….(11.23) 

Hence: 

2
~ kk

k
iba

C −−
−

−
≡ …………..…….…………………………………………………(11.24) 

Using the even, odd properties shown in Eqs. (11.14, 11.15), respectively, 
 
Eq. (11.24) becomes: 

2
~ kk

k
iba

C
+

≡− ……………………………………………………………………...(11.25) 

Substituting Eqs. (11.22,11.23,11.25) into Eq. (11.21), one gets: 

∑∑
∞

=

−
−

∞

=

++=
11

0
00

~~~)(
k

tikw
k

k

tikw
k eCeCCtf  

∑∑
−∞

−=

∞

=

+=
10

00
~~)(

k

tikw
k

k

tikw
k eCeCtf  

∑∑
−

−∞=

∞

=

+=
1

0

00
~~)(

k

tikw
k

k

tikw
k eCeCtf  

or 

∑
∞

−∞=

=
k

tikw
k eCtf 0

~)( ………………………………………………………………….(11.26) 
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The coefficient kC~  can be computed, by substituting Eqs.(11.14,11.25) into Eq.(11.23) to 
obtain: 

 

⎭
⎬
⎫

⎩
⎨
⎧

−⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛= ∫∫

TT

k dttkwtfidttkwtf
T

C
0

0
0

0 )sin()()cos()(2
2
1~ ……………………………(11.27) 

 
or  

[ ]
⎭
⎬
⎫

⎩
⎨
⎧

−⎟
⎠
⎞

⎜
⎝
⎛= ∫

T

k dttkwitkwtf
T

C
0

00 )sin()cos(*)(1~  

 
Substituting Eqs. (11.18,11.19) into the above equation, one gets: 
 

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ −
−

+
⎟
⎠
⎞

⎜
⎝
⎛= ∫

−−T tikwtikwtikwtikw

k dt
i
eeieetf

T
C

0 2
*

2
*)(1~ 0000

 

 

⎭
⎬
⎫

⎩
⎨
⎧
⎟
⎠
⎞

⎜
⎝
⎛= ∫ −

T
tikw

k dtetf
T

C
0

0*)(1~ ………………………………………………………...(11.28) 

 
Thus, Eqs. (11.26,11.28) are the equivalent complex version of Eqs.(11.12-11.15). 



 20

(D) Fourier Transform Pair 
 
As up to this point, Fourier approximation has been expressed in the time domain. The 
amplitude (vertical axis) of a periodic function can be plotted versus time (horizontal 
axis), but it can also be plotted versus frequency (horizontal axis). 
 
The periodic rectangular wave function expressed in the time domain (see Fig.11.1), can 
also be plotted in the frequency domain as shown in Fig.11.2. 
 

 
 
Figure 11.2 Periodic Rectangular Wave Function in Frequency Domain.
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Explanation of Figures 11.2(a) and 11.2(b) 

∑
∞

−∞=

=
k

tikw
k eCtf 0

~)(  

where 

⎭
⎬
⎫

⎩
⎨
⎧
⎟
⎠
⎞

⎜
⎝
⎛= ∫ −

T
tikw

k dtetf
T

C
0

0*)(1~  

For the periodic function shown in Example 11.1 (or Figure 11.1), one has: 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
−++−⎟

⎠
⎞

⎜
⎝
⎛= ∫∫∫ −

−

−

−

−

−
2

4

4

4

4

2

000 *)1(*)1(*)1(1~
T

T

tikw

T

T

tikw

T

T

tikw
k dtedtedte

T
C  

or 

{ }CBA
T

Ck ++⎟
⎠
⎞

⎜
⎝
⎛=

1~  

where, making use of 
T

w π2
0 = ; one obtains: 

 

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛=−≡ ∫

−

−

− π
π

ik
ik

ikw

T

T

tikw eedteA 2
4

2

0

0
1

 

⎥
⎦

⎤
⎢
⎣

⎡
+−⎟

⎠
⎞

⎜
⎝
⎛=≡

−

−

−∫ 22
4

4

0

0
1 ππ ikik

ikw

T

T

tikw eedteB  

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛=−≡

−
−−∫ 2

2

4

0

0
1 π

π
ik

ik
ikw

T

T

tikw eedteC  

Hence: 

⎭
⎬
⎫

⎩
⎨
⎧

−+−⎟
⎠
⎞

⎜
⎝
⎛= −

−
ππ

ππ

π
ikik

ikik

k eeee
ik

C 22 22
2
1~  

 
Recalled: 
 

)sin()cos( θθθ iei +=  
)sin()cos()sin()cos( θθθθθ iie i −=−+−=−  

Then, the above equation for kC~ can be expressed as: 
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( ) ( ){ } ( ) ( ){ } ⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

++−+−++
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ +−⎟

⎠
⎞

⎜
⎝
⎛ +−

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

ππππ

ππππ

π
kikkik

kikkik

ik
Ck

sincossincos
2

sin
2

cos2
2

sin
2

cos2
2
1~  

⎭
⎬
⎫

⎩
⎨
⎧

−⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛= )sin(2

2
sin4

2
1~ ππ
π

kiki
ik

Ck  

⎭
⎬
⎫

⎩
⎨
⎧

−⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛= )sin(2

2
sin4

2
1~ ππ
π

kk
k

Ck = real number. 

Since 
22

~ kkk
k

aiba
C =

−
=  ; because kC~ = real number 

Hence 
 

kk Ca ~2=  

For [ ] )0(
11

4424
2
1~1 ieaCk ⎟

⎠
⎞

⎜
⎝
⎛==⇒=⎟

⎠
⎞

⎜
⎝
⎛=⇒=

ππππ
 

Hence the amplitude and phase angle are 
π
4 and (0) radian, respectively. 

For [ ] 000
4
1~2 22 =⇒=⎟
⎠
⎞

⎜
⎝
⎛=⇒= aCk
π

 

For [ ] )(
33 3

4
3

4
3

24
6
1~3 π

ππππ
ieaCk ⎟

⎠
⎞

⎜
⎝
⎛=

−
=⇒

−
=−⎟

⎠
⎞

⎜
⎝
⎛=⇒=  

Hence the amplitude and phase angle are 
π3
4 and ( )π  radian, respectively. 

For [ ] 000
8
1~4 44 =⇒=⎟
⎠
⎞

⎜
⎝
⎛=⇒= aCk
π

 

For [ ] )0(
55 5

4
5
4

5
2

10
44

10
1~5 ieaCk ⎟

⎠
⎞

⎜
⎝
⎛==⇒==⎟

⎠
⎞

⎜
⎝
⎛=⇒=

πππππ
 

Hence the amplitude and phase angle are 
π5
4 and (0) radian, respectively. 

For [ ] 000
12

1~6 66 =⇒=⎟
⎠
⎞

⎜
⎝
⎛=⇒= aCk

π
 

For [ ] )(
77 7

4
7

4
7

24
14

1~7 π

ππππ
ieaCk ⎟

⎠
⎞

⎜
⎝
⎛=

−
=⇒

−
=−⎟

⎠
⎞

⎜
⎝
⎛=⇒=  

Hence the amplitude and phase angle are 
π7
4 and ( )π  radian, respectively. 

Remarks: 
 
For k =0; then  
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∫
−

=⎟
⎠
⎞

⎜
⎝
⎛=

2

2

0 0)(1
T

T

dttf
T

a  (See Example 11.1) 
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(E) Non-Periodic Function 
 
Recalled that a periodic function can be expressed in terms of the exponential form, 
accordingly to Eqs. (11.26,11.28) as : 

∑
∞

−∞=

=
k

tikw
k eCtf 0

~
)( ………………………………………………………..(11.26, repeated) 

⎭
⎬
⎫

⎩
⎨
⎧
⎟
⎠
⎞

⎜
⎝
⎛= ∫ −

T
tikw

k dtetf
T

C
0

0*)(1~ ……………………………………………...(11.28, repeated) 

Define the following function: 

∫
−

−=
2

2

0
0)()(

T

T

tikw dtetfikwx …………………………………………………………….(11.29) 

Then, Eq. (11.28) can be written as: 
 

)(*1~
0ikwx

T
Ck ⎟

⎠
⎞

⎜
⎝
⎛= …………………………………………………………………(11.30) 

 
And Eq.(11.26) becomes 
 

∑
∞

−∞=
⎟
⎠
⎞

⎜
⎝
⎛=

k

tikweikwx
T

tf 0)(*1)( 0 ……………………………………………………....(11.31) 

 
A non-periodic function npf can be considered as a periodic function, with the period  
 

,∞→T  or 01
→≡Δ

T
f  (See Fig 11.3) 

 
From Eqs. (11.6-11.7), one gets: 
 

( )f
T

fw Δ=== πππ 2220 …………………………………………………………...(11.32) 
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Fig. 11.3 : Frequency are Discretized. 
 
 
 
From Eq.(11.31), one obtains: 
 

∑
∞

−∞=
→Δ

→Δ
∞→

Δ==
k

tikw

f
for

Tnp eikwxftftf 0)(*)(lim)(lim)( 00
0

…………………………………..(11.33) 

or, 

∑
∞

−∞=

Δ

→Δ
ΔΔ=

k

ftik

fnp efikxftf ππ 2

0
)2(*)(lim)( …………………………………………....(11.34) 

 

∫= fti
np efixdftf ππ 2)2(*)(  

 
dfefixtf fti

np ∫= ππ 2)2()( ……………………………………………………………(11.35) 

∫⎟⎠
⎞

⎜
⎝
⎛= )2()2(

2
1)( 2 fdefixtf fti

np ππ
π

π  

∫
∞

∞−

⎟
⎠
⎞

⎜
⎝
⎛= )()(

2
1)( 00

0 wdeiwxtf tiw
np π

; inverse Fourier transform…………...………….(11.36) 

Using the definition stated in Eq.(11.29), one has 

∫
∞

∞−

−= )()()( 0
0 tdetfiwx tiw

np ; Fourier transform……………………………………...(11.37) 



 26

Thus, Eqs. (11.37,11.36) will transform a non-periodic function from time domain to 
frequency domain, and from frequency domain to time domain, respectively. 
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(F) Discrete Fourier Transform (DFT) 
 
Recalled the exponential form of Fourier series (see Eqs.11.26,11.28), one gets: 

∑
∞

−∞=

=
k

tikw
k eCtf 0

~)( ………………………….……………………………..(11.26, repeated) 

⎭
⎬
⎫

⎩
⎨
⎧
⎟
⎠
⎞

⎜
⎝
⎛= ∫ −

T
tikw

k dtetf
T

C
0

0*)(1~ ……………………………………………...(11.28, repeated) 

If time “t” is discretized at ,,.......,3,2, 321 tnttttttt n Δ=Δ=Δ=Δ=  
Then Eq.(11.26) becomes: 

∑
−

=

=
1

0

0
~)(

N

k

tikw
kn

neCtf ……………………………………………………………...…(11.38) 

To simplify the notation, define: 
ntn = ……………………………………………………………………………….(11.39) 

Then, Eqs.(11.38) can be written as: 

∑
−

=

=
1

0

0
~)(

N

k

nikw
k eCnf …………………………………………………………………..(11.40) 

Multiplying both sides of eq.(11.40) by nilwe 0− , and performing the summation on “n”, 
one obtains (note:l = integer number) 

nilw
N

n

N

k

nikw
k

N

n

nilw eeCenf 000

1

0

1

0

1

0
*~*)( −

−

=

−

=

−

=

− ∑∑∑ = …………………………………………..…(11.41) 

 
or 
 

∑∑∑
−

=

−

=

−
−

=

− =
1

0

1

0

)(
1

0

00
~*)(

N

n

N

k

nwlki
k

N

n

nilw eCenf …………………………………………………(11.42) 

                          ∑∑
−

=

−

=

−
=

1

0

1

0

2)(~N

n

N

k

n
N

lki

k eC
π

…………………………………………….….(11.43) 

 
Switching the order of summations on the right-hand-side of Eq.(11.43), one obtains: 
 

∑ ∑∑
−

=

−

=

⎟
⎠
⎞

⎜
⎝
⎛−−

=

⎟
⎠
⎞

⎜
⎝
⎛−

=
1

0

1

0

2)(1

0

2 ~*)(
N

k

N

n

n
N

lki

k

N

n

n
N

il
eCenf

ππ

…………………………………………....(11.44) 

 
Define: 
 

∑
−

=

⎟
⎠
⎞

⎜
⎝
⎛−

=
1

0

2)(N

n

n
N

lki
eA

π

………………………………………………………………..….(11.45) 

There are 2 possibilities for (k-l) to consider in Eq. (11.45) 
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Case(1): (k-l) is a multiple integer of N, such as: 
 
    (k-l)=mN; or k=l+mN where ,......2,1,0 ±±=m   
 
Thus, Eq.(11.45) becomes: 
 

∑∑
−

=

−

=

+==
1

0

1

0

2 )2sin()2cos(
N

n

N

n

nim mnimneA πππ ……………………………………….(11.46) 

 
Hence: 
 
A=N…………………………………………..……………………………………..(11.47) 
 
Case(2): (k-l) is NOT a multiple integer of N 
 
In this case, from Eq.(11.45) one has: 

∑
−

=

⎟
⎠
⎞

⎜
⎝
⎛−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
1

0

2)(N

n

n

N
lki

eA
π

………………………………………………………………..(11.48) 

Define: 

⎭
⎬
⎫

⎩
⎨
⎧ −+

⎭
⎬
⎫

⎩
⎨
⎧ −==

−
)2)(sin)2)(cos

2)(

N
lki

N
lkea N

lki πππ

………………………………..(11.49) 

 
;1≠a because (k-l) is “NOT” a multiple integer of N…………………………..….(11.50) 

 
Then, Eq. (11.48) can be expressed as: 
 

{ }∑
−

=

=
1

0

N

n

naA ………………………………………………………………………....(11.51) 

From mathematical handbooks, the right side of Eq. (11.51) represents the “geometric 
series”, and can be expressed as: 

{ } ;
1

0
NaA

N

n

n == ∑
−

=

 if 1=a …………………………………………………………..(11.52) 

                    ;
1

1
a

a N

−
−

=  if 1≠a ……………………………………………..………(11.53) 

 
Because of Eq. (11.50), hence Eq. (11.53) should be used to compute A. Thus: 
 

a
e

a
aA

lkiN

−
−

=
−
−

=
−

1
1

1
1 2)( π

(See Eq. (11.49)) ……………………………………….(11.54) 

 
Since (k-l) is still a multiple of π2 , hence 
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{ } { } 12)(sin2)(cos2)( =−+−≡− πππ lkilke lki ……………………………………....(11.55) 
 
Substituting Eq. (11.55) into Eq. (11.54), one gets: 
 
A=0………………………………………………………...………………………..(11.56) 
 
Thus, combining the results of case (1) and case (2), one gets (see Eqs.11.47 and 
Eq.11.56): 
 
A=N+0=N……………………………………………………………………….….(11.57) 
 
Substituting Eq.(11.57) into Eq.(11.45), and then referring to Eq(11.44), one gets: 

∑∑
−

=

−

=

− =
1

0

1

0
*~)( 0

N

k
k

N

n

nilw NCenf ………………………………………………………..(11.57A) 

 
Recalled k=l+mN (where l,m are integer numbers), and since k must be in the range 

10 −→ N , therefore m=0. Thus: 
 
k=l+mN becomes k=l 
 
Eq(11.57A) can, therefore, be simplified to: 
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Thus: 
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where ntn ≡  
 
and 
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FORTRAN code for computing the DFT, shown in Eq. (11.58) [or similarly shown in 
Eq.11.38] is listed in Table 11.2. 
 
Remarks: 
 
(a) Consider the exponential term in the above equation [Eq. (11.38, repeated)]. Let  

;
)2()( 0

n
N

iknikw eeE
∗∗

==
π

 
where 14159.3=π  
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If one replaces “n” by “-(N-n)” (or “n-N”) into the above equation, then one obtains: 

[ ] Eeee ikn
N

ikNn
N

ik
=== −−

1* )2*()*2*()*(2* π
ππ

 
 
Thus, Eq. (11.38, repeated) indicates that the force corresponding to frequencies of order 
“n” and “-(N-n) = n-N” have the same values. Hence: 

 

wnwn =   for 
2
Nn ≤  

      wnN )( −−=  for 
2
Nn >  

and the frequency corresponding to 
2
Nn = is the highest frequency that can be 

considered in the discrete Fourier series (
2
Nw  is called the Nyquist frequency). If there are 

harmonic (force) components above 
2
Nw  in the original function, then these higher 

components will introduce distortions in the lower harmonic components (known as 
ALIASING phenomenon). Because of the ALIASING phenomenon, the number of (N) 
data points should be “at least twice” the highest harmonic component presents in the 
(forcing) function, for sufficient computational accuracy. As an example, if the forcing 
function is given as: 

 

∑
=

=
16

1
)2cos(*100)(

n
nttF π  

then, the minimum value of N ( = Number of sample data points ) should be .32min =N  
 

 
 
Figure 11.25: Discretize With Large step Size Will Introduce Large Error. 
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(b) The factor ,1
⎟
⎠
⎞

⎜
⎝
⎛

N
 shown in the DFT Eq.(11.58), is merely a scale factor. It can also be 

placed in the inverse Fourier Transform Eq.(11.38), but not both ! 
 
Thus, Eqs. (11.58 & 11.38) can be re-written as: 
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To avoid computation with “complex numbers”, Eq.(11.59) can be expressed as: 
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The above “complex number” equation is equivalent to the following 2 “real number” 
equations: 
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Table 11.2 FORTRAN Coding For DFT (See Eqs. 11.59C, 11.59D) 
 
c 
      implicit real*8(a-h,o-z) 
      dimension freal(1000000), fimag(1000000) 
      write(6,*) '                               ' 
      write(6,*) '===============================' 
      write(6,*) ' Prof. Nguyen Version Date: 08-08-2008' 
      write(6,*) '===============================' 
      write(6,*) '                               ' 
      read(5,*) iautodata, n, igama, method 
      write(6,*) 'iautodata,n,igama, method = 1 (FFT); 2(DFT)' 
      write(6,*)  iautodata,n,igama, method 
      if (iautodata .eq. 1) then 
       do 1 i=1,n 
       freal(i)=dfloat(i) 
       fimag(i)=0.d0 
 1      continue 
      elseif (iautodata .eq. 0) then 
       read(5,*) ( freal(i),i=1,n ) 
       read(5,*) ( fimag(i),i=1,n ) 
      endif 
c 
       write(6,*) 'input data for FFT: i,freal,fimag =' 
       do 22 i=1,n 
       write(6,*) i, freal(i), fimag(i) 
 22     continue 
c 
       if (method .eq. 1) then 
c      call fft(freal,fimag,n,igama) 
c 
       write(6,*) 'output for FFT: i,freal,fimag =' 
       do 23 i=1,n 
       write(6,*) i, freal(i), fimag(i) 
 23     continue 
c 
       elseif (method .eq. 2) then 
      call dft(freal,fimag,n,igama) 
       endif 
 999   stop 
      end 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
      subroutine dft(freal,fimag,nn,igama) 
      implicit real*8(a-h,o-z) 
      dimension freal(*), fimag(*) 
c 



 33

      pai=3.14159d0 
      w0=2.d0*pai/dfloat(nn) 
      sumreal=0.d0 
      sumimag=0.d0 
      write(6,*) 'dft results: n,freal,fimag = ' 
       do 1 n=1,nn 
       cnreal=0.d0 
       cnimag=0.d0 
         do 2 k=1,nn 
         angle=(k-1)*w0*(n-1) 
         c=cos(angle) 
         s=sin(angle) 
         cnreal=cnreal+freal(k)*c+fimag(k)*s 
         cnimag=cnimag+fimag(k)*c-freal(k)*s 
 2        continue 
      write(6,*) n, cnreal, cnimag 
      sumreal=sumreal+dabs(cnreal) 
      sumimag=sumimag+dabs(cnimag) 
 1     continue 
      write(6,*) 'DFT: sumreal,sumimag = ',sumreal,sumimag 
      return 
      end 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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11.3 Intuitive Development of Fast Fourier Transform (FFT) 
 
Recalled the DFT pairs of Eqs. (11.59,11.60) and swapping the indexes n,k one obtains: 
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Where n, k = 0,1,2,3,….N-1 ………………………….…………………………….(11.63) 
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Then Eq. (11.61) becomes: 
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For N=4, n=2 and k=3, then: 
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             = 1 - i(0) = 1 
 
. For N=4, n=3 and k=3, then 
 

1189 ][ WWWWW nk ===  
 
. Thus, in general (for )Nnk ≥  

pnk WW =  where p = mod(nk,N) ………………………………………………….(11.68) 

                      or p = remainder of ⎟
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Remarks: 
 

(a) Matrix times vector, shown in Eq. (11.67), will require 16 (or )2N complex 
multiplications and 12 (or N*{N-1}) complex additions. 

(b) Usage of Eq. (11.68) will help to reduce the number of operation counts, as 
explained in the next section. 

 
Factorized Matrix and Further Operation Count: 
 
Eq. (11.67) can be factorized as: 
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Remarks: 
 

(a) The theoretical behind the 2 matrices on the right hand side (RHS) of Eq.(11.69) 
will be clearly explained soon !. 

(b) The order of the left-hand-side (LHS) vector has been changed, such as rows 2 
and 3 have been swapped !. 

(c) Let the row-interchanged LHS vector be defined as: 
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Now performing the inner-product (matrix times vector) on the RHS of Eq. (11.69), one 
obtains: 
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or 
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Eqs.(11.72A through 11.72D) for the “inner” matrix times vector requires 2 complex 
multiplications and 4 complex additions. 
 

(d) In Eqs.(11.72A through 11.72D), 0W is intentionally not reduced to the numerical 
value of 1.0 in order to facilitate the discussions of more general cases. 

 
Finally, performing the “outer” product (matrix times vector) on the RHS of Eq.(11.69), 
one obtains: 
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or 
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Again, Eqs (11.74A-11.74D) requires 2 complex multiplications and 4 complex 
additions. Thus, the complete RHS of Eq.(11.69) can be computed by only 4 complex 

multiplications (or )
2
24

2
=

rN and 8 complex additions (or Nr = 4*2). Since 

computational time is mainly controlled by the number of multiplications, hence 
implementing Eq.(11.69) will significantly reduce the number of multiplication, as 
compared to direct matrix times vector operations (as shown in Eq.11.67). 
 
For large value of data points (=N), one obtains: 
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For ,22048 )11( === rN  Eq. (11.75) gives: 
 

36.372
11

)2048(2
==Ratio  

 
Graphical flow of Eq.(11.69), for case 422 2 === rN  
 
Eq. (11.69) can also be presented in the graphical form, as shown in Figure11.4 

 
Figure 11.4 Graphical form of FFT (Eq.11.69). For the case 422 2 === rN  
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Remarks 
 

(a) Computed vector 1 does correspond to Eq.(11.71). 
(b) Computed vector 2 does correspond to Eq.(11.74) 
(c) Since r = 2 in this example, one needs to compute 2 vectors { })()( 21 kandfkf=  
(d) Each node in the graph is computed from 2(=r) nodes in the “previous” vector. 
(e) Factor PW  (such as ),,, 3210 WWWW  appears near the arrow head of the 

transmission path. Absence of PW implies that PW = 0W =1. 
For example: 1

112 )3()2()2( Wfff += , which is the same as Eq.(11.74C) 
 
Graphical Flow of Eq.(11.69), for case 1622 4 === rN  
 
In order to see a more detailed computational patterns of FFT, a slightly larger data size 
( 1622 4 === rN ) is shown in the graphical form, as indicated in Figure 11.5. 
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Figure 11.5 Graphical Form of FFT (Eq.11.69) For the case 1622 4 === rN . 
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Dual Node Observation: 
 
Careful observation of Figure 11.5 has revealed that each computed thl -vector (where 
l=1,2,….r; and 1622 4 === rN ), we can always find two (dual) nodes which came 
from the same pair of nodes in the previous vector. For example, )0(1f and )8(1f  are 
computed in terms of )0(f and )8(f . Similarly, the dual nodes )8(2f and )12(2f  are 
computed from the same pair of nodes )8(1f and )12(1f , etc..  
Furthermore, the computation of dual nodes are independent of other nodes (within the 

thl -vector). Therefore, the computed )0(1f and )8(1f will override the original space of  
)0(f and )8(f . Similarly, the computed )8(2f and )12(2f will over ride the space 

occupied by )8(1f and )12(1f , which in turns, will occupy the original space of 
)8(f and )12(f . Hence, only one complex vector (or 2 real vectors) of length N are 

needed for the entire FFT process !. 
 
Dual Node Spacing. 
 
Observing Fig 11.5, the following statements can be made: 

(a) in the first vector (l=1), the dual nodes )0(1f and )8(1f is separated by k=8 (or 

)8
2
16

2 1 ==l

N spaces. 

(b) In the second vector (l=2), the dual nodes )8(2f and )12(2f is separated by k=4 

(or )
4

16
2
16

2 2 ==l

N , etc.. 

 
Dual  Node Computation: 
 
The operation counts in any dual nodes (of the ndthl 2=  vector), such as )8(2f and 

)12(2f can be explained as (see Fig.11.5): 
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Thus, the dual nodes )8(2f and )12(2f computation will require 1 complex multiplication 
and 2 complex additions (See Eqs.(11.76 and 11.77). The weighting factors for the dual 

nodes [ )8(2f and )12(2f ] are )(4 PorWW  and )( 212
NP

orWW
+

, respectively. 
Thus, in general: 

)
2

()()( 11 ll
P

ll
NkfWkfkf ++= −− …………………………………………………...(11.78) 

)
2

()()
2

( 11 ll
P

lll
NkfWkfNkf +−=+ −− ……………………………………………...(11.79) 

 
Skipping certain nodes’ computation: 
 
Because the pair of dual nodes “k” and "

2
" L

Nk +  are separated by the “distance” ( )
2L

N
= , 

hence, at the thL  level, after every L

N
2

 node computation, then the next L

N
2

nodes will be 

skipped ! (see Fig 11.5) 
 
Determination of PW  
 
The values of “P” can de determined by the following steps: 
 
Step 1: Express the index k(=0,1,2,…,N-1) in binary form, using r bits. For k=8, and r =4; 
one obtains 
 

01231 2)0(2)0(2)0(2)1(0,0,0,18 +++=== =−rk  
 
Step2: Sliding this binary number “r-L = 4-2 =2” positions to the right, and fill in zeros, 
the results are: 
 

0,1,0,00,1,,0,0,0,1 →→ XX  
It is important to realize that the results of Step 2 (0,0,1,0) is equivalent to express an 

integer 2
2

8
2 24 === −−Lr

kM  in the binary formats. In other words: M=2=(0,0,1,0). 

 
Step3: Reverse the order of the bits, then: 
 
0,0,1,0 becomes 0,1,0,0 = P 
Thus, 42)0(2)0(2)1(2)0( 0123 =+++=P  
It is “NOT” really necessary to perform Step 3, since the results of Step 2 can be used to 
compute “P” as following: 
 

42)0(2)1(2)0(2)0( 3210 =+++=P  
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In conclusion, for 8;2;1622 4 ===== kLN r  and P=4; the computation of dual nodes 
from general formulas (See Eqs.11.78, 11.79) gives: 
 

)12()8()8( 1
4

12 fWff +=  
)12()8()12( 1

4
12 fWff −=  

 
The above 2 equations are identical to Eqs.(11.76,11.77)! 
 
Computer Implementation to Find Value of “P” (in )PW  
 
Based on the previous discussions (with the 3-step procedures), to find the value of “P”, 

one only needs a procedure to express an integer Lr

kM −=
2

 in binary formats, with “r” 

bits. 
Assuming M (a base 10 number) can be expressed as (assuming r=4bits): 
 

11234 JaaaaM == ………………………………………………………………….(11.80) 

Divide M by 2 (say, )
2

1
2

J
J = , multiply the truncated result by 2 (say, ),2*22 JJJ = and 

compute the difference between the original number (=M= :&&) 21 JJJ  

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛−=−= 2*

221
Truncated

MMJJJIDIFF ………………………………………...(11.81) 

If ,0=IDIFF  then the bit 01 =a  
If ,0≠IDIFF  then the bit 11 =a  
Once the bit 1a  been determined, the value of 1J  is set to 2J  (or value of 1J  is reduced 
by a factor of 2; since previous 1J = 1234 aaaaM = . 

3
4

2
3

1
2

0
11 2)(2)(2)(2)( aaaaJ +++=  and similar process can be used to determine the 

value of bit ,2a  etc… 
 
Example 1: For k=8; 4;216 === rN r bits and .2=L  Find the value of “P” ?? 

Lr

kM −=
2

= 124 2
2

8 J=== −  

Determine the bit :1a (Index I=1) 
 
Initialize P=0 

1
2
2

2
1

2 ===
J

J  

0)2)(1(2)2*( 221 =−==−= JJJJIDIFF  
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Thus  
01 =a  

002*02* =+=+= IDIFFPP  or ]02)0(02)([ 3
1 =+=+= −IraPP  

 
Determine the bit 2a [Index I =2] 

121 == JJ  

0
2
1

2
1

2 ===
J

J  

1)2*0(1)2*( 221 =−==−= JJJJIDIFF  
 
Thus 12 =a  
 

112*02* =+=+= IDIFFPP  or ]42)1(02)([ 2
2 =+=+= −IraPP  

 
Determine the bit 3a [Index I =3] 

021 == JJ  

0
2
0

2
1

2 ===
J

J  

0)2*0(0)2*( 221 =−==−= JJJJIDIFF  
Thus 03 =a  

202*12* =+=+= IDIFFPP  or ]42)0(42)([ 1
3 =+=+= −IraPP  

 
Determine the bit 4a [Index I =4=r] 

021 == JJ  

0
2
0

2
1

2 ===
J

J  

02*)0(0)2*( 221 =−==−= JJJJIDIFF  
Thus 04 =a  

402*22* =+=+= IDIFFPP  or ]42)0(42)([ 0
4 =+=+= −IraPP  

 
Remarks: 
 
Although the “intermediate” results might be different, at the end of the do-loop process 
(computing 4a ), both formulas for “P”, such as  
 

orIDIFFPP ;2* += ………………………………………………………………(11.82) 
 

;2)( Ir
IaPP −+=  where I=1,2,3…,r ………………………………………………(11.83) 

will eventually give the same final answers for “P”. 
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Example 2: For k=12; ;216 4=== rN  and .3=L  Compute the corresponding value of 
“P” ?? 
One has: 

Lr

kM −=
2

= 134 6
2
12 J=== −  

Determine the bit :1a (Index I=1) 
Initialize P=0 

3
2
6

2
1

2 ===
J

J  

0)2)(3(6)2*( 221 =−==−= JJJJIDIFF  
Thus  

01 =a  
002*02* =+=+= IDIFFPP  or ]02)0(02)([ 31

1 =+=+= −raPP  
 
Determine the bit 2a [Index I =2] 

 

1
2
3

2
1

2 ===
J

J  

12*)1(3)2*( 221 =−==−= JJJJIDIFF  
Thus 12 =a  

112*02* =+=+= IDIFFPP  or ]42)1(02)([ 22
2 =+=+= −raPP  

 
Determine the bit 3a [Index I =3] 

121 == JJ  

0
2
1

2
1

2 ===
J

J  

12*)0(1)2*( 221 =−==−= JJJJIDIFF  
Thus 13 =a  

312*12* =+=+= IDIFFPP  or ]62)1(42)([ 13
3 =+=+= −raPP  

 
Determine the bit 4a [Index I =4] 

021 == JJ  

0
2
0

2
1

2 ===
J

J  

02*)0(0)2*( 221 =−==−= JJJJIDIFF  
Thus 04 =a  

602*32* =+=+= IDIFFPP  or ]62)0(62)([ 04
4 =+=+= −raPP  

 
 

321 == JJ
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Remarks: 
 
Although both formulas for “P”, shown in Eqs(11.82,11.83), will yield the same “final” 
value of “P”. Implementation of Eq.(11.82) will be more computationally efficient !. 
 
UnSrambling the FFT. 
 
For the case 4216 === rN (see Figure 11.5), the final ‘bit-reversing’ operation for FFT is 
shown in Fig. 11.6. 
 
 

)0000(4f

)0001(4f

)0010(4f

)0100(4f

)0101(4f

)0110(4f

)0111(4f

)1000(4f

)1001(4f

)1010(4f

)1011(4f

)1100(4f

)1101(4f

)1110(4f

)1111(4f

)0011(4f

)0000(
~
C
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~
C
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~
C

)0100(
~
C
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~
C

)0110(
~
C
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~
C

)1000(
~
C

)1001(
~
C

)1010(
~
C

)1011(
~
C

)1100(
~
C

)1101(
~
C

)1110(
~
C

)1111(
~
C

)0011(
~
C
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1

2

4

5

6

7

8

9
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11

12

13

14

15

3

= skip the operation

)(4 kf )(
~

nC

Figure 11.6: Final “Bit-Reversing” for FFT (with )1622 4 === rN  
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For do-loop index k=0=(0,0,0,0)⇒ i=(0,0,0,0)=0 

Endif
Tif

ifkf
kfT

ThenkGTiIf

=
=

=

)(
)()(

)(
)..(

4

44

4

 

Hence, )0(4f = )0(4f ; no swapping. 
 
For  k=1=(0,0,0,1)⇒  i=(1,0,0,0)=bit-reversion=8 
 

Endif
Tf
ff

fT
ThenkGTiIf

=
=

=

)8(
)8()1(

)1(
)..(

4

44

4

 

Hence, )1(4f = )8(4f ; are swapped. 
 
. For  k=2=(0,0,1,0)⇒  i=(0,1,0,0)=4 
Hence, )2(4f = )4(4f ; are swapped. 
 
 . For  k=3=(0,0,1,1)⇒  i=(1,1,0,0)=12 
Hence, )3(4f = )12(4f ; are swapped. 
 
. For  k=4=(0,1,0,0)⇒  i=(0,0,1,0)=2 
In this case, since “i” is not greater than “k”. 
Hence, no swapping, since )2(4 =kf  and )4(4 =if ; had already been swapped earlier !. 
. 
. 
. etc… 
 
Computer Implementation of FFT (for case ).2 rN =  
 
The pair of dual nodes computation are given by Eqs.(11.78,11.79). To avoid “complex 
number” operations, Eq.(11.78) can be computed based on “real number” operations, as 
following: 
 
{ } { })()()()( 11 kifkfkifkf I

L
R

L
I

L
R

L −− +=+  

                               { }
⎭
⎬
⎫

⎩
⎨
⎧ +++++ −− )

2
()

2
(* 11

,,
L

I
LL

R
L

IPRP NkifNkfiWW ……….…….(11.84) 

In Eq. (11.84), the superscripts R and I denote Real and Imaginary components, 
respectively. 
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Multiplying the last 2 complex numbers, one obtains: 
 
{ } { })()()()( 11 kifkfkifkf I

L
R

L
I

L
R

L −− +=+  

                              
⎭
⎬
⎫

⎩
⎨
⎧ +−++ −− )

2
(*)

2
(* 1

,
1

,
L

I
L

IP
L

R
L

RP NkfWNkfW  

                              
⎭
⎬
⎫

⎩
⎨
⎧ ++++ −− )

2
(*)

2
(* 1

,
1

,
L

R
L

IP
L

I
L

RP NkfWNkfWi ……………..…(11.85) 

Equating the Real (and then, Imaginary) components on the Left-Hand-Side (LHS), and 
the Right-Hand-Side (RHS) of Eq.(11.85), one obtains: 
 

{ } { }
⎭
⎬
⎫

⎩
⎨
⎧ +−++= −−− )

2
(*)

2
(*)()( 1

,
1

,
1 L

I
L

IP
L

R
L

RPR
L

R
L

NkfWNkfWkfkf ……………...(11.86A) 

{ } { }
⎭
⎬
⎫

⎩
⎨
⎧ +++++= −−− )

2
(*)

2
(*)()( 1

,
1

,
1 L

R
L

IP
L

I
L

RPI
L

I
L

NkfWNkfWkfkf ……………..(11.86B) 

 
Recalled Eq. (11.64): 
 

N
i

eW
π2

−
=  

 
Hence: 

)sin()cos(
22

θθθ
ππ

ieeeW iN
Pi

P

N
iP −===⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= −−−

…………………………….……(11.87) 

where: 
 

N
P

N
P 28.62
==

πθ …………………………………………………………………...(11.88) 

Thus: 
)cos(, θ=RPW …………………………………………………………………….(11.89A) 
)sin(, θ−=IPW ……………………………………………………………………(11.89B) 

 
Substituting Eqs.(11.89A,11.89B) into Eqs.(11.86A,11.86B), one gets: 
 

{ } { }
⎭
⎬
⎫

⎩
⎨
⎧ ++++= −−− )

2
(*)sin()

2
(*)cos()()( 111 L

I
LL

R
L

R
L

R
L

NkfNkfkfkf θθ ……………(11.90A) 

{ } { }
⎭
⎬
⎫

⎩
⎨
⎧ +−++= −−− )

2
(*)sin()

2
(*)cos()()( 111 L

R
LL

I
L

I
L

I
L

NkfNkfkfkf θθ …………….(11.90B) 

 
Similarly, the single (complex number) Eq.11.79 can be expressed as 2 equivalent (real 
number) Eqs. Like Eqs. (11.90A,11.90B) ! 
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c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
      subroutine fft(freal,fimag,n,igama) 
      implicit real*8(a-h,o-z) 
      dimension freal(*),fimag(*) 
c......purpose: fft algorithms (for general base 2) 
c......programmed by: Prof. Duc T. Nguyen (DNguyen@odu.edu) 
c......original date: 07-10-2008 
c......freal(n)     = real number of N complex data points 
c......fimag(n)     = imaginary number of N complex data points 
c......n            = number of complex data points = 2**igama 
c......example  n   = 2**4 = 16; hence igama = 4 
c......remarks:       Both DFT & FFT did give IDENTICAL results ! 
c 
c       write(6,*) 'inside routine fft: echo input freal,fimag = ' 
       do 24 i=1,n 
c       write(6,*) i, freal(i), fimag(i) 
 24     continue 
      k=0 
c       write(6,*) 'n, igama = ',n,igama 
      do 1 L=1,igama 
      n2=n/2**L 
      igaminusL=igama-L 
 123   do 2 i=1,n2 
      m=k/2**igaminusL 
      call bitreverse(m,igama,ip) 
c       write(6,*) 'L, i, m, ip = ',L,i,m,ip 
      theta=6.283185*ip/n 
      c=cos(theta) 
      s=sin(theta) 
c       write(6,*) 'theta,c,s = ',theta,c,s 
      k1=k+1 
      nodedual=k1+n2 
c       write(6,*) 'dual nodes = k1, nodedual = ',k1,nodedual 
c......applying Duc's Eqs.(11.90A, 11.90B) 
      partreal=c*freal(nodedual)+s*fimag(nodedual) 
      partimag=c*fimag(nodedual)-s*freal(nodedual) 
      freal(nodedual)=freal(k1)-partreal 
      fimag(nodedual)=fimag(k1)-partimag 
      freal(k1)=freal(k1)+partreal 
      fimag(k1)=fimag(k1)+partimag 
      k=k+1 
c       write(6,*) 'partreal, partimag = ',partreal,partimag 
 2     continue 
c       write(6,*) 'computed array at level L = ',L 
       do 26 kk=1,n 
c       write(6,*) 'freal(kk),fimag(kk) = ',freal(kk),fimag(kk) 

mailto:DNguyen@odu.edu


 49

 26     continue 
      k=k+n2 
      if (k .lt. n) go to 123 
      k=0 
 1     continue 
c 
c       write(6,*) 'before unscramble FFT: i,freal,fimag =' 
       do 22 i=1,n 
c       write(6,*) i, freal(i), fimag(i) 
 22     continue 
c......unscramble results of FFT 
      call unscramble(freal,fimag,n,igama) 
c......output FFT solution 
c       write(6,*) 'after unscramble FFT: i,freal,fimag =' 
       sumreal=0.d0 
       sumimag=0.d0 
       do 42 i=1,n 
c       write(6,*) i, freal(i), fimag(i) 
       sumreal=sumreal+dabs( freal(i) ) 
       sumimag=sumimag+dabs( fimag(i) ) 
 42     continue 
      write(6,*) 'FFT: sumreal,sumimag = ',sumreal,sumimag 
 999   return 
      end 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
      subroutine bitreverse(m,igam,ip) 
      ip=0 
      j1=m 
c 
      do 2 i=1,igam 
      j2=j1/2 
      idiff=j1-j2*2 
      ip=ip*2 + idiff 
      j1=j2 
 2     continue 
c      write(6,*) 'p, or ii = ',ip 
      return 
      end 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
      subroutine unscramble(freal,fimag,n,igama) 
      implicit real*8(a-h,o-z) 
      dimension freal(*),fimag(*) 
c 
      do 2 k=1,n 
      m=k-1 
      call bitreverse(m,igama,ii) 
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      i=ii+1 
      if (i .le. k) go to 2 
      temporeal=freal(k) 
      tempoimag=fimag(k) 
      freal(k)=freal(i) 
      fimag(k)=fimag(i) 
      freal(i)=temporeal 
      fimag(i)=tempoimag 
 2     continue 
      return 
      end 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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11.8 Brief Review About “MPI-parallel” FORTRAN-90 Programming. 
 
 
c  --------------------------------------------------------------------------------------------------------- 
 
c  Message Passing Interface (MPI) parallel application codes can be 
c  implemented in either FORTRAN, or C++ language, under UNIX, LINUX, 
c  or WINDOWS environments. The syntax for "parallel" MPI/FORTRAN-90 are 
c  essentially identical to the ones used in "serial" FORTRAN-90, with 
c  few exceptions for "specific parallel computational purposes". 
 
c  Regardless the computer language adopted by the users (such as C, or 
C++, 
c  or FORTRAN-77, or FORTRAN-90, or BASIC etc...), one only needs to be 
c  familiar with the syntax for "IF" statements, "DO" loop, "DIMENSION" 
c  statements (for handling 1-D, and/or 2-D, and/or 3-D integer/real 
arrays), 
c  input/output, and usage of "subroutines". 
 
c  The following listed MPI/FORTRAN-90 demonstrated code can be 
conveniently 
c  used to understand the "syntax" for writing any general application 
codes. 
 
 
c===========================================================!000 
c2345678901234567890123456789012345678901234567890123456789012345678!001 
c Purposes:  Reviewing some basic FORTRAN_90 syntax, and MPI_FORTRAN     !002 
c Author(s): Prof. Duc Thai NGUYEN (757-683-3761; DNguyen@odu.edu)            !003 
c Date:      June 10, 2008                                                                                               !004 
c Stored At: cd ~/cee/*odu*class*/teach_fortran90_mpi.f                                           !005 
c                                                                                                                                     !006 
     implicit real*8(a-h,o-z)                                                                                            !007 
     include 'mpif.h'                                                                                                        !008 
     character*80 title                                                                                                     !009 
     parameter (num=10)                                                                                                !010 
     parameter (master=0)                                                                                              !011 
     parameter (from_master=1)                                                                                     !012 
     parameter (from_worker=2)                                                                                    !013 
     dimension a(num),b(num)                                                                                         !014 
     allocatable:: ia(:),a11(:,:),a22(:,:)                                                                               !015 
c-----------------------------------------------------------------------------------------------------!016 
     call MPI_INIT(ierr)                                                                                                   !017 
     call MPI_COMM_RANK(MPI_COMM_WORLD, me, ierr)                                  !018 
     call MPI_COMM_SIZE(MPI_COMM_WORLD, np, ierr)                                      !019 
      if (me .eq. 0) then                                                                                                   !019.1 

mailto:DNguyen@odu.edu
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       write(6,*) '                                  '                                                                          !019.2 
       write(6,*) '=================================='                               !019.3 
       write(6,*) 'Prof. Duc T. Nguyen; June 17, 2008'                                                  !019.4 
       write(6,*) '=================================='                               !019.5 
       write(6,*) '                                  '                                                                          !019.6 
      endif                                                                                                                       !019.7 
c-----------------------------------------------------------------------                                        !020 
c     call MPI_BARRIER(MPI_COMM_WORLD, ierr)                                                !021 
c     call MPI_SEND(num,1,MPI_INTEGER,i_destination,1,MPI_COMM_WORLD,!             
022 
c    $ierr)                                                                                                                          !023 
c     call MPI_RECV(num,1,MPI_INTEGER,master,mtype,MPI_COMM_WORLD, !024 
c    $status,ierr)                                                                                                               !025 
c-----------------------------------------------------------------------                                       !026 
     idum=0                                                                                                                      !027 
     sum=0.d0                                                                                                                   !028 
     do 1 i=1,num,1                                                                                                           !029 
      a(i)=drand(idum)                                                                                                      !030 
      sum=sum+a(i)                                                                                                           !031 
      if (i .le. 10) then                                                                                                        !032 
      write(6,*) 'i,a(i) = ',i,a(i)                                                                                           !033 
      elseif (i .gt. 10) then                                                                                                  !034 
      write(6,*) 'skip printing too many random numbers !'                                             !035 
      endif                                                                                                                          !036 
 1    continue                                                                                                                   !037 
c                                                                                                                                      !038 
      open (unit=7, file='K.INFO', status='old', form='formatted')                                   !039 
c      open (unit=6, file='out1', status='old', form='formatted')                                       !040 
      read(7,115) title                                                                                                        !041 
 115   format(a60)                                                                                                           !042 
      write(6,115) title                                                                                                       !043 
c                                                                                                                                      !044 
      memory_need=2*num                                                                                              !045 
      allocate ( ia(memory_need), a11(memory_need,memory_need),                            !046 
    $            a22(num,num) )                                                                                            !047 
     do 2 i=1,memory_need,1                                                                                           !048 
      ia(i)=i                                                                                                                        !049 
 2    continue                                                                                                                   !050 
      deallocate(a11,a22)                                                                                                   !051 
     call dummy1(num,memory_need,a,sum_real)                                                          !052 
     write(6,*) ' sum_real= ', sum_real                                                                             !053 
c-----------------------------------------------------------------------                                        !054 
      num_workers=np-1                                                                                                   !055 
      bigest_local=0.d0                                                                                                      !056 
c......each processor (master and workers) will:                                                             !057 
c......generate its own portions of random (real) numbers                                              !058 

http://k.info/
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c......then, it will find its own local maximum number                                                   !059 
     do 11 i=me+1, num, np                                                                                              !060 
      b(i)=drand(idum)                                                                                                      !061 
      if ( b(i) .gt. bigest_local ) bigest_local=b(i)                                                             !062 
       write(6,*) 'processor id# ',me, 'i,b(i) = ',i,b(i)                                                       !062.1 
       write(6,*) 'processor id# ',me, 'bigest_local = ', bigest_local                               !062.2 
 11   continue                                                                                                                  !063 
c                                                                                                                                      !064 
c...... each worker will send its own local maximum to the master                                !065 
     if (me .gt. 0) then                                                                                                       !066 
      mtype=from_worker                                                                                                 !067 
      call MPI_SEND(bigest_local,1,MPI_DOUBLE_PRECISION,master,mtype         !068 
    $,MPI_COMM_WORLD,ierr)                                                                                   !069 
      write(6,*) 'sent by worker # ',me, ' bigest_local= ',bigest_local                            !069.1 
c...... the master processor will receive local maximum                                                 !070 
c...... (from each worker)                                                                                                !071 
c...... and then, comparing amongst all local max to find/print                                      !072 
c...... global max                                                                                                              !073 
     elseif (me .eq. 0) then                                                                                                !074 
     bigest_global=bigest_local                                                                                        !075 
     mtype=from_worker                                                                                                  !076 
      write(6,*) 'processor id # ',me, ' bigest_local= ',bigest_local                                !076.1 
     do 60 i=1,num_workers,1                                                                                          !077 
      isource=i                                                                                                                   !078 
      call MPI_RECV(bigest_local,1,MPI_DOUBLE_PRECISION,isource,mtype,      !079 
    $MPI_COMM_WORLD,status,ierr)                                                                         !080 
      if (bigest_local .gt. bigest_global) bigest_global=bigest_local                                !081 
 60   continue                                                                                                                  !082 
      write(6,*) 'amongst local max, the global max is ',bigest_global                            !083 
     endif                                                                                                                          !084 
c                                                                                                                                      !085 
     write(6,*) 'processor id# ',me, 'out of ',np, ' is alive'                                                  !086 
     call MPI_FINALIZE(ierr)                                                                                         !087 
c-----------------------------------------------------------------------                                       !088 
     stop                                                                                                                             !089 
     end                                                                                                                             !090 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                           !091 
     subroutine dummy1(num,memory_need,a,sum_real)                                               !092 
     implicit real*8(a-h,o-z)                                                                                              !093 
     dimension a(*)                                                                                                           !094 
     sum_real=0.d0                                                                                                           !095 
     do 1 i=1,num,1                                                                                                           !096 
      sum_real=sum_real+a(i)                                                                                           !097 
 1    continue                                                                                                                   !098 
     return                                                                                                                         !099 
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     end                                                                                                                             !100 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                           !101 
 
c  Lines #001-006: 
c  In FORTRAN, if a character "c" is typed in column1, then the line will be 
c  treated like a "comment" statement. 
c 
c  Line #007: 
c  In FORTRAN, all "executable" statements should be typed between column 
c  numbers 7 through 72. Any "real" array should be named with the first 
c  character as a, b, c, ..., h, and o, p, q, ..., z. Any "integer" array 
c  should be named with the first character as i,j,k,l,m,n. 
c  This statement implies that each real number will need 8 bytes to store 
c  (in double precision). Similarly, a statement: 
c  implicit real*4(a-h,o-z) implies that each real number will need 4 bytes 
c  to store (in single precision). 
 
c  Line #008: 
c  This include statement "MUST" always be followed the implicit statement 
c  for any MPI/FORTRAN application code 
 
c  Line #009 (also see lines # 041-043): 
c  This statement is necessary only if the user want to read (or write) 
c  a title heading, with upto 80 characters (also see lines # 041-043) 
 
c  Lines # 010-013: 
c  Numerical values of certain variables can be defined/given/assigned by 
c  the parameter statements. 
 
c  Line # 014: 
c  Maximum dimension (or size) for certain arrays are defined by the 
c  "dimension" statement. Note that the value of "num" must already be 
c  earlier defined (through the parameter statements) 
 
c  Line # 015 (also see lines # 045-047): 
c  This is one of the "very useful" features in FORTRAN-90, for which 
c  the users can declare some arrays for "dynamic storage allocation" 
purposes. 
c  The actual, exact "dimension" for these arrays do NOT have to be 
declared 
c  in the begining (such as arrays defined on line # 014). These "exact" 
c  "dimension" needed can be declared "later on", whenever the user knows 
c  exactly how much memory storage one needs for these arrays (also see 
c  lines # 045-047) 
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c  Lines # 017-019: 
c  These 3 "special" MPI/FORTRAN statements "MUST" be defined in any MPI 
c  application codes (and should be inserted right after dimension 
statements). 
c  The variable "np" on line # 019 represents (Number of Processors". Thus, 
c  if 3 processors are used, then np will be assigned the value 3 by the 
system. 
c  The variable "me" on line # 018 will have the values (assined by the 
computer 
c  system) 0,1,2, ..., np-1. This variable "me" will play a CRUCIAL role in 
c  any MPI application codes. 
c 
c  It should be emphasized here that all processor ID # = 0,1,2, ..., np 
c  will execute the same application code. However, depending on the 
algorithms, 
c  the user will have direct control of deciding "WHICH processor ID" will 
c  execute on "WHAT portions of the code" etc..., through the usage of 
variable 
c  "me" (also refer to lines # 060-063) 
 
c  Lines # 019.1-019.7: 
c  Only the "master" processor (me=0) will execute this block of 
statements, 
c  which basically print out some output message [any desired output 
message 
c  can be placed inside (open/close) single quotes]. 
 
c  Lines # 020-026: 
c  There are about 10-20 "special, parallel" MPI constructs that are very 
c  commonly used in any application codes. Amongst these MPI statements, 
c  however, BARRIER, SEND and RECV are probably the most important ones to 
c  be used. Basically, BARRIER statement will make sure that all processors 
c  have to arrive at this statement, before they can proceed to execute 
c  subsequent statements of the application code. SEND statement will send 
c  a message (such as an integer/real variable, or integer/real arrays) 
from 
c  one processor to another (specified) processor. Important argument lists 
c  are explained as following: 
c  1-st Argument = name of a variable (or array) 
c  2-nd Argument = the "dimension" associated with this variable (or array) 
c  3-rd Argument = the variable (or array) must be defined as INTEGER, or 
c                  REAL (or DOUBLE PRECISION) 
c  4-th Argument = send to WHICH processor ?? 
c  5-th Argument = message type # 
c  6-th Argument = user does NOT need to know ! 
c  7-th Argument = user does NOT need to know ! 
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c 
c  RECV statement can be used for RECEIVING a message. Important argument 
c  lists are explained as following: 
c  1-st Argument = name of a variable (or array) 
c  2-nd Argument = the "dimension" associated with this variable (or array) 
c  3-rd Argument = the variable (or array) must be defined as INTEGER, or 
c                  REAL (or DOUBLE PRECISION) 
c  4-th Argument = receive from WHICH processor ?? 
c  5-th Argument = message type # 
c  6-th Argument = user does NOT need to know ! 
c  7-th Argument = user does NOT need to know ! 
c  8-th Argument = user does NOT need to know ! 
c 
c  The user does NOT need to know about the 2 argument lists of the MPI 
c  BARRIER statement. 
 
c  Lines # 027-037: 
c  The purpose of this block of FORTRAN statements are: 
c  to show the "syntax" of "do" loop (see line # 029), the integer index 
"i" 
c  will have the values from 1 through num (=10), with the increment of 1. 
c  Lines # 027, and # 030 show how to use "built-in" library function to 
c  generate a real random number (between 0.00 and 1.00). 
c  to show the "syntax" of "IF" statement (see lines # 032, # 034, and # 
036) 
c  to show the "syntax" of writing/printing some intermediate output 
variables. 
 
c  Lines # 038-044: 
c  Input (read), and output (write) data files can be used through the 
"open" 
c  statements on line # 039 and line # 040, respectively. 
 
c  Lines # 045-050: 
c  At this moment, the user knows "exactly" how much memory space that 
he/she 
c  needs to allocate (or assign) to INTEGER array ia(-), REAL arrays 
a11(-,-), 
c  and a22(-,-). Thus, request to allocate memory space was done on line # 
046- 
c  # 047. 
 
c  Line # 051: 
c  Assuming that at this stage the user does NOT need the arrays a11(-,-), 
and 
c  a22(-,-) any more, hence he/she can request to DELETE all memory spaces 
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c  allocated to these 2 arrays, through the DEALLOCATE statement. 
 
c  Lines # 052-054: 
c  A subroutine dummy1 is called by the main program, in order to perform a 
c  certain task. In this example, the first 3 argument lists are "INPUT" 
c  to this subroutine, and the 4-th argument list ( = sum_real) provide the 
 
c  "OUTPUT" from this subroutine. 
 
c  Line # 055: 
c  Since in this example np = Number of Processors = 3, hence processor 
ID#0 
c  will be the "master" processor, and processor ID# 1, #2 are considered 
c  as "worker" processors. 
 
c  Lines # 056-063: 
c  Each processor will generate its own random numbers, and also 
compute/print 
c  its own (local) maximum number (amongst its own random numbers). The 
most 
c  important statement for this block is shown on line # 060 (please pay 
c  attention to variable "me"). 
c  For the "master" processor (such as me=0), it will generate random 
numbers 
c  coresponding to the do-loop integer index i = 1, 4, 7, and 10 (the 
increment 
c  for index i is np = 3). 
c  For the "worker" processor (such as me=1), it will generate random 
numbers 
c  coresponding to the do-loop integer index i = 2, 5 and 8. 
c  For the "worker" processor (such as me=2), it will generate random 
numbers 
c  coresponding to the do-loop integer index i = 3, 6 and 9. 
c  Also, all 3 processors (such as the "master" processor me=0, and "slave" 
c  processors me=1, 2) will compute its own local maximum value (stored in 
c  variable name bigest_local) 
c 
c  Lines 064-069.1: 
c  Upon completion its task, each "slave" worker will send its own local 
maximum 
c  to the "master" processor. 
c 
c  Lines 070-085 
c  The "master" will receive all "slaves'" local maximum values, and it 
will 
c  compare all these local maximum (including the "master's" own local 
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maximum), 
c  in order to identify , and print the global maximum (stored in variable 
name 
c  bigest_global). 
c 
c  Line 086 
c  All (master and slave) processors will print out a message before 
exiting. 
c 
c  Lines 087-091 
c  This MPI_FINALIZE(ierr) "must" be placed before the program stops 
c 
c  Lines 092-101 
c  This subroutine just computes some dummy works, such as calculating 
c  the summation of a given 1-D real array
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11.9 Parallel MPI/FORTRAN FFT Base-2 Algorithms. 
 
Observing Figure 11.5 (FFT algorithms with )1622 4 === rN and also referring to the 

nd2 (or inner) do-loop index I ;1( 2N⇒= where initial value for )82 =N , presented in 
the serial FFT code, the following major changes are necessary for converting the earlier 
serial code into parallel code (assuming NP=2 processors, with processor ME=0 and 
ME=1 are available). The entire parallel MPI/FFT code is listed in Table 11.10. 
 
(a) Computation of “dual node” pair of an array, such as 

)16(),8(

)10(),2(
)9(),1(

2121

212

211

=+==

=+=
=+=

NIfNIf

NIfIf
NIfIf

 

are completely independent from each other. Since FORTRAN does “not enjoy” with 
zero subscript, the above )161(1 →f are correspondent to )150(1 →f , respectively. The 
computation of the dual pair )0(1f and )8(1f in Figure 11.5 will only require the terms 
f(0) and f(8) from previous array. Similarly, computation of the dual pair )7(1f and 

)15(1f  will only require the terms f(7) & f(15) from previous array. 
 
(b) Based on the above observation, the inner serial do-loop: 
Do 2 i=1, 1,2N  should be replaced by the following parallel do-loop: 
Do 2 i = ME+1, 2,82 == NPN  
Thus, processor ME=0 will be assigned to compute 

)13(&)5(),11(&)3(),9(&)1( 111111 ffffff and )15(&)7( 11 ff  
 
while at the same time, processor ME=1 will try to compute  

)14(&)6(),12(&)4(),10(&)2( 111111 ffffff  and )16(&)8( 11 ff  
 
(c) The “local” variable ICOUNT and “local” array index(icount), see MPI source code 
listing, are used to record which terms of the computed array )161(1 →f were computed 
by which processors. These local arrays are required, since we do want to minimize 
processors’ communication time by packing more data for each MPI_SEND (or 
MPI_BROADCAST) statement. 
 
(d) The “Local” variable increase (initiated to zero) will help the parallel FFT algorithm 
to implement the patterns of computing 2N  terms, then skipping next 2N  terms, etc.. 
 
(e) Subroutine unscramble can also be parallelized, as indicated in the parallel MPI 
source code listing. However, due to unsignificant computational efforts occurred in a 
single (not nested) do-loop, serial coding for this subroutine is recommended. 
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(f) If the incore memory is limited, and is a concern for the user, then the entire do 28 
loop (including the 2 real arrays tempo1real(-) and tempo1imag(-)) can be eliminated. 
Also, the 2 call MPI_BROADCAST statements should be placed right before the “2 
continue” statement (or inside the loop do 2 i=me+1, 2N ,NP). The trade-off in this case, 
ofcourse, will be a substantial increase in processors’ communication cost! 
 
(g) The suggested parallel FFT strategies are mainly designed for “educational” purpose, 
and might not be practical for the following reasons: 
   1. Due to the nature of FFT algorithms, parallel processing can only be done at the 
innermost (or 2nd ) do-loop, rather than at the preferable outermost (or1st ) do-loop! 
   2. Even for fairly large data points (say N is large), there are not-much computational 
efforts inside the “inner” do-loop. 
 
(h) In the DFT (see Eq.11.65, or 11.67), matrix times vector operations are needed, which 
also requires two nested do-loops (see Table 11.2). It is a well-known fact that for 
“matrix*vector” operations, efficient parallel processing can be done at the “outermost” 
do loop while “unrolling strategies” can be exploited at the “innermost” do-loop [Refs. 5 
– 6]. Despite of the above favorable features, DFT is not matched for FFT algorithms 
(recalled Eq.11.75, and for even small-medium size ,204822 11 === rN FFT offers 
372.36 times less # operations as compared to DFT formula !) 
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Table 11.10:   MPI/FORTRAN "FFT" Source Code 
c 
      implicit real*8(a-h,o-z) 
      include 'mpif.h' 
c......purpose:  mpi/parallel fft algorithms & software 
      dimension freal(1000000), fimag(1000000) 
      dimension tempo1real(1000000),tempo1imag(1000000) 
    $,          index(1000000) 
      open(unit=5,file='fft.dat',status='old',form='formatted') 
       call MPI_INIT(ierr) 
       call MPI_COMM_RANK(MPI_COMM_WORLD,me,ierr) 
       call MPI_COMM_SIZE(MPI_COMM_WORLD,np,ierr) 
       write(6,*) 'processor ME = ',me, ' is alive !' 
       if (me .eq. 0) then 
      read(5,*) iautodata, n, igama, method 
      write(6,*) 'iautodata,n,igama, method = ' 
      write(6,*)  iautodata,n,igama, method 
      if (iautodata .eq. 1) then 
       do 1 i=1,n 
       freal(i)=dfloat(i) 
       fimag(i)=0.d0 
 1      continue 
      elseif (iautodata .eq. 0) then 
       read(5,*) ( freal(i),i=1,n ) 
       read(5,*) ( fimag(i),i=1,n ) 
      endif 
       endif 
c 
c       write(6,*) 'input data for FFT: i,freal,fimag =' 
c       do 22 i=1,n 
c       write(6,*) i, freal(i), fimag(i) 
c22     continue 
c 
       call MPI_BCAST(iautodata,1,MPI_INTEGER,0, 
    $  MPI_COMM_WORLD,ierr) 
       call MPI_BCAST(n,1,MPI_INTEGER,0, 
    $  MPI_COMM_WORLD,ierr) 
       call MPI_BCAST(igama,1,MPI_INTEGER,0, 
    $  MPI_COMM_WORLD,ierr) 
       call MPI_BCAST(method,1,MPI_INTEGER,0, 
    $  MPI_COMM_WORLD,ierr) 
       call MPI_BCAST(freal,n,MPI_DOUBLE_PRECISION,0, 
    $  MPI_COMM_WORLD,ierr) 
       call MPI_BCAST(fimag,n,MPI_DOUBLE_PRECISION,0, 
    $  MPI_COMM_WORLD,ierr) 
       if (method .eq. 1) then 
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      call fft(freal,fimag,n,igama,me,np, 
    $ tempo1real,tempo1imag,index) 
       elseif (method .eq. 2) then 
      call dft(freal,fimag,n,igama) 
       endif 
c 
c       write(6,*) 'output for FFT: i,freal,fimag =' 
c       do 23 i=1,n 
c       write(6,*) i, freal(i), fimag(i) 
c23     continue 
c 
999    call MPI_FINALIZE(ierr) 
      stop 
      end 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
      subroutine dft(freal,fimag,nn,igama) 
      implicit real*8(a-h,o-z) 
      dimension freal(*), fimag(*) 
c 
      pai=3.14159d0 
      w0=2.d0*pai/dfloat(nn) 
      sumreal=0.d0 
      sumimag=0.d0 
       do 1 n=1,nn 
       cnreal=0.d0 
       cnimag=0.d0 
         do 2 k=1,nn 
         angle=(k-1)*w0*(n-1) 
         c=cos(angle) 
         s=sin(angle) 
         cnreal=cnreal+freal(k)*c+fimag(k)*s 
         cnimag=cnimag+fimag(k)*c-freal(k)*s 
 2        continue 
      write(6,*) 'dft results: n,freal,fimag = ' 
      write(6,*) n, cnreal, cnimag 
      sumreal=sumreal+dabs(cnreal) 
      sumimag=sumimag+dabs(cnimag) 
 1     continue 
      write(6,*) 'DFT: sumreal,sumimag = ',sumreal,sumimag 
      return 
      end 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
      subroutine fft(freal,fimag,n,igama,me,np, 
    $ tempo1real,tempo1imag,index) 
      implicit real*8(a-h,o-z) 
      include 'mpif.h' 
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      dimension freal(*),fimag(*) 
    $,tempo1real(*),tempo1imag(*),index(*) 
c......purpose: fft algorithms (for general base 2) 
c......programmed by: Prof. Duc T. Nguyen (DNguyen@odu.edu) 
c......original date: 07-10-2008 
c......freal(n)     = real number of N complex data points 
c......fimag(n)     = imaginary number of N complex data points 
c......n            = number of complex data points = 2**igama 
c......example  n   = 2**4 = 16; hence igama = 4 
c......remarks:       Both DFT & FFT did give IDENTICAL results ! 
c 
c----------------------- 
       ntoddcount = 0      ! temp added by Todd 
       if (me .eq. 0) then 
      write(6,*) '                               ' 
      write(6,*) '===============================' 
      write(6,*) ' Prof. Nguyen Version Date: 07-29-2008' 
      write(6,*) '===============================' 
      write(6,*) '                               ' 
!         write(6,*) 'inside routine fft: echo input freal,fimag = ' 
!         do 24 i=1,n 
!         write(6,*) i, freal(i), fimag(i) 
!  24     continue 
       endif 
c        call MPI_BARRIER(MPI_COMM_WORLD,ierr) 
c----------------------- 
      k=0 
c       write(6,*) 'n, igama = ',n,igama 
      igamatodd = 5        ! by Todd 
      do 1 L=1,igamatodd 
!        if (me.eq.0) write(6,*) '*************************' 
!        if (me.eq.0) write(6,*) 'L=',L 
!        if (me.eq.0) write(6,*) '*************************' 
       write(6,*) me,'L=',L 
 
      n2=n/2**L 
      igaminusL=igama-L 
       icount=0            ! parallel fft 
       increase=0          ! parallel fft 
       tempo1real(1:n)=0.d0 
       tempo1imag(1:n)=0.d0 
!         do 456 kk=1,n 
!         tempo1real(kk)=0.d0 
!  456    tempo1imag(kk)=0.d0 
c123   do 2 i=1,n2 
c        write(6,*) me,me+1,n2,np 

mailto:DNguyen@odu.edu
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 123   do 2 i=ME+1,n2,NP 
!         write(6,*) 'processor ME = ',me, ' is alive !' 
       k=i-1 + increase    ! parallel fft 
c        write(6,*) me,'By Todd',k 
      m=k/2**igaminusL 
      call bitreverse(m,igama,ip) 
c       write(6,*) 'L, i, m, ip = ',L,i,m,ip 
      theta=6.283185*ip/n 
      c=cos(theta) 
      s=sin(theta) 
c       write(6,*) 'theta,c,s = ',theta,c,s 
       k1=k+1 
       icount=icount+1     ! parallel fft 
       index(icount)=k1    ! parallel fft 
      nodedual=k1+n2 
!         write(6,*) 'dual nodes = k1, nodedual = ',k1,nodedual 
        icount=icount+1    ! parallel fft 
        index(icount)=nodedual   ! parallel fft 
c......applying Duc's Eqs.(11.90A, 11.90B) 
      partreal=c*freal(nodedual)+s*fimag(nodedual) 
      partimag=c*fimag(nodedual)-s*freal(nodedual) 
      freal(nodedual)=freal(k1)-partreal 
      fimag(nodedual)=fimag(k1)-partimag 
      freal(k1)=freal(k1)+partreal 
      fimag(k1)=fimag(k1)+partimag 
      k=k+1 
c       write(6,*) 'partreal, partimag = ',partreal,partimag 
 2     continue 
c......broadcast and update the computed array to all other processors 
      do 28 jj=1,icount 
       kk=index(jj) 
       tempo1real(kk)=freal(kk) 
       tempo1imag(kk)=fimag(kk) 
 28    continue 
!          call MPI_BARRIER(MPI_COMM_WORLD,ierr) 
c       call MPI_REDUCE(tempo1real,freal,n,MPI_DOUBLE_PRECISION, 
c    $  MPI_SUM,0,MPI_COMM_WORLD,ierr) 
c       call MPI_BCAST(freal,n,MPI_DOUBLE_PRECISION,0, 
c    $  MPI_COMM_WORLD,ierr) 
c       call MPI_REDUCE(tempo1imag,fimag,n,MPI_DOUBLE_PRECISION, 
c    $  MPI_SUM,0,MPI_COMM_WORLD,ierr) 
c       call MPI_BCAST(fimag,n,MPI_DOUBLE_PRECISION,0, 
c    $  MPI_COMM_WORLD,ierr) 
c        write(6,*) me,'before mpi_allreduce',L 
 
       call MPI_ALLREDUCE(tempo1real,freal,n,MPI_DOUBLE_PRECISION, 
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    $  MPI_SUM,MPI_COMM_WORLD,ierr) 
c    $  MPI_SUM,COMM,ierr) 
       call MPI_ALLREDUCE(tempo1imag,fimag,n,MPI_DOUBLE_PRECISION, 
    $  MPI_SUM,MPI_COMM_WORLD,ierr) 
c    $  MPI_SUM,COMM,ierr) 
c      k=k+n2                  ! parallel fft 
c      if (k .lt. n) go to 123 ! parallel fft 
       ntoddcount = ntoddcount+1       ! added by todd 
c        if (L.eq.igamatodd) write(6,*) 'me,k,n,ncount',me,k,n,ntoddcount 
       if (k .le. n) then 
       increase=increase+n2 
       if (L.eq.igamatodd)write(6,*) me,'Todd',ntoddcount,k,increase 
       go to 123 
       endif 
      k=0 
 1     continue 
       goto 999            ! by Todd 
c 
c       write(6,*) 'before unscramble FFT: i,freal,fimag =' 
c       do 22 i=1,n 
c       write(6,*) i, freal(i), fimag(i) 
c22     continue 
c......unscramble results of FFT 
c-------------------------------------------- 
       if (me .eq. 0) then 
      call unscramble(freal,fimag,n,igama) 
c       call MPI_BCAST(freal,n,MPI_DOUBLE_PRECISION,0, 
c    $  MPI_COMM_WORLD,ierr) 
c       call MPI_BCAST(fimag,n,MPI_DOUBLE_PRECISION,0, 
c    $  MPI_COMM_WORLD,ierr) 
c......output FFT solution 
       write(6,*) 'after unscramble FFT: i,freal,fimag =' 
       sumreal=0.d0 
       sumimag=0.d0 
       do 42 i=1,n 
       write(6,*) i, freal(i), fimag(i) 
       sumreal=sumreal+dabs( freal(i) ) 
       sumimag=sumimag+dabs( fimag(i) ) 
 42     continue 
      write(6,*) 'FFT: sumreal,sumimag = ',sumreal,sumimag 
       endif 
c-------------------------------------------- 
 999   return 
      end 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
      subroutine bitreverse(m,igam,ip) 
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      ip=0 
      j1=m 
c 
      do 2 i=1,igam 
      j2=j1/2 
      idiff=j1-j2*2 
      ip=ip*2 + idiff 
      j1=j2 
 2     continue 
c       write(6,*) 'p, or ii = ',ip 
      return 
      end 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
      subroutine unscramble(freal,fimag,n,igama) 
      implicit real*8(a-h,o-z) 
c......purpose: parallel unscramble algorithms 
      dimension freal(*),fimag(*) 
c 
      do 2 k=1,n 
c      do 2 k=ME+1, n, NP 
      m=k-1 
      call bitreverse(m,igama,ii) 
      i=ii+1 
      if (i .le. k) go to 2 
      temporeal=freal(k) 
      tempoimag=fimag(k) 
      freal(k)=freal(i) 
      fimag(k)=fimag(i) 
      freal(i)=temporeal 
      fimag(i)=tempoimag 
 2     continue 
c......each processor has independently swap certain 
c......terms of the arrays freal(n), and fimag(n). 
c......now, we need to use appropriated mpi command 
c......to "merge" all these partial results, and 
c......make the entire updated array available to 
c......all processors. 
c      call MPI_merge & broadcast (freal, ...) ?? 
c      call MPI_merge & broadcast (fimag, ...) ?? 
      return 
      end 
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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