Chapter 11: Fourier Series, Discrete Fourier Transform and Fast Fourier Transform

In general, curve fitting through a set of data points can be done by a linear combination of polynomial functions, with based functions 1,
[image: image780.wmf])

(

4

k

f

 In this chapter, however, trigonometric functions such as
[image: image2.wmf])

sin(

),......,

2

sin(

),

sin(

),

cos(

),......

2

cos(

),

cos(

,

1

nx

x

x

nx

x

x

will be used as based functions. In the former, the unknown coefficients of based functions can be found by solving the associated linear simultaneous equations (where the number of unknown coefficients will be matched with the same number of equations, provided by a set of given data points). In the later, however, the unknown coefficients can be efficiently solved (by exploiting special properties of trigonometric functions) without requiring to solve the expensive simultaneous linear equations.

11.1 Background

The following relationships can be readily established, and will be used in subsequent sections for derivation of useful formulas for the unknown Fourier coefficients, in both time and frequency domains.

[image: image3.wmf]ò

ò

ò

ò

ò

ò

ò

=

=

=

=

=

=

=

T

T

T

T

T

T

T

dt

t

gw

t

kw

dt

t

gw

t

kw

dt

t

gw

t

kw

T

dt

t

kw

dt

t

kw

dt

t

kw

dt

t

kw

0

0

0

0

0

0

0

0

0

0

0

0

2

0

2

0

0

0

0

)

5

.

11

.........(

..........

..........

..........

..........

..........

..........

..........

..........

0

)

cos(

)

cos(

)

4

.

11

.(

..........

..........

..........

..........

..........

..........

..........

..........

..........

0

)

sin(

)

sin(

)

3

.

11

(

..........

..........

..........

..........

..........

..........

..........

..........

..........

0

)

sin(

)

cos(

)

2

.

11

.....(

..........

..........

..........

..........

..........

..........

..........

2

)

(

cos

)

(

sin

)

1

.

11

.(

..........

..........

..........

..........

..........

..........

..........

..........

0

)

cos(

)

sin(

In Eqs (11.1 – 11.5), one has

[image: image4.wmf])

7

.

11

..(

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

1

)

6

.

11

........(

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

2

0

T

f

f

w

=

=

p

where f and T represents the frequency (in cycles/time) and period (in seconds) respectively.

A periodic function f(t) with a period T should satisfy the following equation

[image: image5.wmf])

(

)

(

t

f

T

t

f

=

+

Proof of Eq.(11.1)

Let
[image: image6.wmf][

]

T

T

t

kw

kw

dt

t

kw

A

0

0

0

0

0

)

cos(

1

)

sin(

ò

÷

÷

ø

ö

ç

ç

è

æ

-

=

=

[image: image7.wmf][

]

[

]

0

1

)

2

cos(

1

)

0

cos(

)

cos(

1

0

0

0

=

-

÷

÷

ø

ö

ç

ç

è

æ

-

=

-

÷

÷

ø

ö

ç

ç

è

æ

-

=

p

k

kw

T

kw

kw

A

Proof of Eq. (11.2)

Let
[image: image8.wmf]ò

=

T

dt

t

kw

B

0

0

2

)

(

sin

Since
[image: image9.wmf])

(

sin

2

1

)

(

sin

)

(

cos

)

cos(

)

2

cos(

2

2

2

a

a

a

a

a

a

-

=

-

=

+

=

Hence
[image: image10.wmf]2

)

2

cos(

1

)

(

sin

2

a

a

-

=

Thus:
[image: image11.wmf]T

T

o

t

kw

kw

t

dt

t

kw

B

0

0

0

0

)

2

sin(

2

1

2

1

2

1

)

2

cos(

2

1

2

1

ú

û

ù

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

-

÷

ø

ö

ç

è

æ

=

ú

û

ù

ê

ë

é

-

=

ò

[image: image12.wmf][

]

2

)

2

*

2

sin(

4

1

2

0

)

2

sin(

4

1

2

0

0

0

T

k

kw

T

T

kw

kw

T

B

=

÷

÷

ø

ö

ç

ç

è

æ

-

=

-

ú

û

ù

ê

ë

é

-

=

p

Proof of Eq. (11.3)

Let
[image: image13.wmf]ò

=

T

dt

t

kw

t

gw

C

0

0

0

)

cos(

)

sin(

………………………………………………..…….(11.8)

Recalled:

[image: image14.wmf])

cos(

)

sin(

)

cos(

)

sin(

)

sin(

a

b

b

a

b

a

+

=

+

Hence:

[image: image15.wmf](

)

[

]

[

]

ò

-

+

=

T

dt

t

gw

t

kw

t

w

k

g

C

0

0

0

0

)

cos(

)

sin(

sin

[image: image16.wmf][

]

ò

ò

-

+

=

T

T

dt

t

gw

t

kw

dt

t

w

h

g

C

0

0

0

0

0

)

cos(

)

sin(

)

(

sin

C=0
[image: image17.wmf]ò

-

T

dt

t

gw

t

kw

seeEq

0

0

0

)

cos(

)

sin(

)

1

.

11

.

(

…………………………………….(11.9)

Adding Eqs.(11.8,11.9), side by side one obtains

[image: image18.wmf][

]

(

)

[

]

[

]

ò

ò

ò

-

=

-

=

-

=

T

T

T

dt

t

w

k

g

dt

t

kw

t

gw

C

dt

t

gw

t

kw

t

kw

t

gw

C

0

0

0

0

0

0

0

0

0

0

)

(

sin

)

(

sin

2

)

cos(

)

sin(

)

cos(

)

sin(

2

2C = 0, since the right side of the above equation is zero (see Eq.11.1). Thus,

[image: image19.wmf]0

)

cos(

)

sin(

0

0

=

=

ò

T

o

dt

t

kw

t

gw

C

Proof of Eq.(11.4)

Let
[image: image20.wmf]ò

=

T

dt

t

gw

t

kw

D

0

0

0

)

sin(

)

sin(

…………………………………………………….(11.10)

Since
[image: image21.wmf])

sin(

)

sin(

)

cos(

)

cos(

)

cos(

b

a

b

a

b

a

-

=

+

or
[image: image22.wmf])

cos(

)

cos(

)

cos(

)

sin(

)

sin(

b

a

b

a

b

a

+

-

=

Thus,

[image: image23.wmf]{

}

[

]

ò

ò

ò

+

-

=

+

-

=

T

T

T

dt

t

w

g

k

dt

t

gw

t

kw

D

dt

t

gw

t

kw

t

gw

t

kw

D

0

0

0

0

0

0

0

0

0

0

)

(

cos

)

cos(

)

cos(

)

cos(

)

cos(

)

cos(

[image: image24.wmf]ò

-

=

T

dt

t

gw

t

kw

D

0

0

0

0

)

cos(

)

cos(

 (see Eq.(11.1))………………………..……..…...(11.11)

Adding Eqs. (11.10, 11.11) side by side, one obtains:

[image: image25.wmf]{

}

[

]

[

]

ò

ò

ò

-

=

-

=

+

=

T

T

T

dt

t

w

g

k

dt

t

gw

t

kw

D

dt

t

gw

t

kw

t

gw

t

kw

D

0

0

0

0

0

0

0

0

0

0

)

(

cos

cos

2

)

sin(

)

sin(

)

cos(

)

cos(

2

2D = 0, since the right side of the above equation is zero (see Eq.11.1). Thus,

[image: image26.wmf]ò

=

º

T

dt

t

gw

t

kw

D

0

0

0

0

)

sin(

)

sin(

Proof of Eq.(11.5)

Eq(11.5) can be proved in a same fashion as the proof for Eq(11.4)

11.2 Fourier Series, and Discrete Fourier Transforms (DFT).

For a function with period T, a continuous Fourier series can be expressed as

[image: image27.wmf]å

¥

=

+

+

=

1

0

0

0

)

sin(

)

cos(

)

(

k

k

k

t

kw

b

t

kw

a

a

t

f

………………………………………….(11.12)

The unknown Fourier coefficients
[image: image28.wmf]k

a

a

,

0

 and
[image: image29.wmf]k

b

 can be computed as

[image: image30.wmf]dt

t

f

T

a

T

o

ò

÷

ø

ö

ç

è

æ

=

)

(

1

0

…………………………………………………...…………...….(11.13)

Thus,
[image: image31.wmf]0

a

can be interpreted as the “average” function value between the period interval [0,T].

[image: image32.wmf]ò

ò

-

-

-

º

÷

ø

ö

ç

è

æ

=

º

÷

ø

ö

ç

è

æ

=

T

k

k

T

k

k

b

dt

t

kw

t

f

T

b

a

dt

t

kw

t

f

T

a

0

0

0

0

)

15

.

11

.......(

..........

..........

..........

..........

..........

..........

..........

)

sin(

)

(

2

)

14

.

11

........(

..........

..........

..........

..........

..........

..........

..........

)

cos(

)

(

2

(A) Derivation of formulas for
[image: image33.wmf]k

a

a

,

0

 and
[image: image34.wmf]k

b

Integrating both sides of Eq.(11.12) with respect to time, one gets

[image: image35.wmf]ò

ò

ò

å

ò

å

¥

=

¥

=

+

+

=

T

T

T

k

T

k

k

k

dt

t

kw

b

dt

t

kw

a

dt

a

dt

t

f

0

0

0

1

0

1

0

0

0

)

sin(

)

cos(

)

(

……………………….(11.16)

The second and third terms on the right hand side of the above equations are both zeros, due to earlier results stated in Eq.(11.1)

Thus:

[image: image36.wmf][

]

T

a

t

a

dt

t

f

T

T

0

0

0

0

)

(

=

=

ò

Hence:

[image: image37.wmf]dt

t

f

T

a

T

ò

÷

ø

ö

ç

è

æ

=

0

0

)

(

1

………………………………………...……………….(11.13, repeated)

Now, if both sides of Eq.(11.12) are multiplied by
[image: image38.wmf])

sin(

0

t

mw

and then integrated with respect to time, one obtains:

[image: image39.wmf]ò

å

ò

ò

ò

å

¥

=

¥

=

¼

¼

¼

¼

¼

¼

¼

¼

¼

+

+

=

T

k

k

T

T

T

k

k

dt

t

mw

t

kw

b

dt

t

mw

t

kw

a

dt

t

mw

a

dt

t

mw

t

f

0

1

0

0

0

0

0

1

0

0

0

0

0

.(11.17)

........

..........

..........

..........

..........

)

sin(

)

sin(

)

sin(

)

cos(

)

sin(

)

sin(

*

)

(

Due to Eqs. (11.1, 11.3), the first and second terms on the right hand side (RHS) of Eq(11.17) are zero.

Due to Eq. (11.4), the third RHS term of Eq.(11.17) is also zero, with the exception when k=m, which will become (by referring to Eq.11.2):

[image: image40.wmf]ò

ò

=

+

+

=

T

T

k

k

T

b

dt

t

kw

b

dt

t

kw

t

f

0

0

0

2

0

2

*

)

(

sin

0

0

)

sin(

)

(

Thus:

[image: image41.wmf]ò

÷

ø

ö

ç

è

æ

=

T

k

dt

t

kw

t

f

T

b

0

0

)

sin(

)

(

2

……………………………………………….(11.15, repeated)

Similar derivation can be used to obtain
[image: image42.wmf]k

a

, as shown in Eq.(11.14)

(B) A Fortran Program for finding Fourier Coefficients
[image: image43.wmf]k

k

b

a

a

,

,

0

Based upon the derived formulas for
[image: image44.wmf],

,

0

k

a

a

and
[image: image45.wmf]k

b

 (shown in Eqs. 11.13-11.15, respectively). A FORTRAN computer program has been developed (refer to Table 11.1 for a complete source code listing) and tested for several class examinations in the past several years. Major descriptions of the Fourier program can be summarized as

(a) Input Descriptions (See Example 11.2)

The following input information are required in the input data file:

. Period = 2*3.1416 (assumed); nterms=8 (assumed, for
[image: image46.wmf]k

a

and
[image: image47.wmf]k

b

)

. nsegments = 3 (to determine the given periodic function)

. integration limits for all segments =
[image: image48.wmf]p

p

p

p

,

2

,

2

,

-

-

. descriptions of given periodic function in each segment, defined in subroutine_f

function =
[image: image49.wmf]2

p

-

 ; for the
[image: image50.wmf]st

1

segment.

function = -t ; for the
[image: image51.wmf]nd

2

segment.

function =
[image: image52.wmf]2

p

-

 ; for the
[image: image53.wmf]rd

3

segment.

(b) Output Descriptions: (See Example 11.2)
The numerical values of the unknown Fourier Coefficients
[image: image54.wmf]k

k

b

b

b

a

a

a

a

....,

,

,

,.....,

,

,

2

1

2

1

0

 will be printed.

(c) Users’ Internet Access for computer simulations of Fourier Coefficients
 can be found at the following website

www.lions.odu.edu/~amoha006/numerical_methods.

Table 11.1 FORTRAN Listings of Fourier Coefficient Program

program ce305 ! Updated Version = August 7, 2008
 implicit real*8(a-h,o-z)
 dimension alimit_int(10), ff(10), ak(10), bk(10) ! for Fourier series
c
 write(6,*) '===================================='
 write(6,*) 'Name: Duc T. NGUYEN; TODAY Date: 08/07/2008'
 write(6,*) 'Course: Numerical Methods'
 write(6,*) '===================================='
c......Fourier series, with N (max N = 3) segments for integration
 pai=3.14159
 period=2.0*pai
 angfreq=2.0*pai/period
 ntrapezoid=1234
 nterms_ak=8 ! maximum = 10
 nterms=nterms_ak
c--
c......test (Fall'2008 semester)
c......user's input to define: # segments, and integration limits
 nsegments=3
 alimit_int(1)=-pai
 alimit_int(2)=-pai/2.d0
 alimit_int(3)= pai/2.d0
 alimit_int(nsegments+1)=+pai
c--
c
 write(6,*) 'nsegments,period,angfreq,nterms for FOURIER coeff. ='
 write(6,*) nsegments,period,angfreq,nterms
 write(6,*) '(alimit_int(i),i=1,nsegments+1)'
 write(6,*) (alimit_int(i),i=1,nsegments+1)
c
 iaoakbk=0 ! for computing a0
 call area_under_curve(nsegments, pai, period, angfreq,
 $ ntrapezoid,
 $ nterms_ak, alimit_int, ff, a0, ak, bk,
 $ area,iaoakbk)
c
 iaoakbk=1 ! for computing ak
 call area_under_curve(nsegments, pai, period, angfreq,
 $ ntrapezoid,
 $ nterms_ak, alimit_int, ff, a0, ak, bk,
 $ area,iaoakbk)
c
 iaoakbk=2 ! for computing bk
 call area_under_curve(nsegments, pai, period, angfreq,
 $ ntrapezoid,
 $ nterms_ak, alimit_int, ff, a0, ak, bk,
 $ area,iaoakbk)
c
 999 stop
 end
c%%
 subroutine area_under_curve(nsegments, pai, period, angfreq,
 $ ntrapezoid,
 $ nterms_ak, alimit_int, ff, a0, ak, bk,
 $ area,iaoakbk)
 implicit real*8(a-h,o-z)
 dimension ff(10)
 dimension alimit_int(10), ak(10), bk(10) ! for Fourier series
c
 nfourier_series=nterms_ak
 if (iaoakbk .eq. 0) nfourier_series=1
c
 do 1 k=1, nfourier_series
c
 area=0.d0 ! initialized value
c
 do 2 i=1,nsegments
 a=alimit_int(i)
 b=alimit_int(i+1)
 deltat=(b-a)/ntrapezoid
 t=a-deltat
c......
 do 3 m=1, ntrapezoid
 t=t+deltat ! Thus, t will start at value = "a"
 t1=t
 t2=t1+deltat
 call periodic_f(i, t1, function,alimit_int,k,nsegments)
 ff(i)=function
 call periodic_f(i, t2, function,alimit_int,k,nsegments)
 ff(i+1)=function
c...... compute ak
 if (iaoakbk .eq. 1) then
 ff(i)=ff(i)*cos(k*angfreq*t1)
 ff(i+1)=ff(i+1)*cos(k*angfreq*t2)
c...... compute bk
 elseif (iaoakbk .eq. 2) then
 ff(i)=ff(i)*sin(k*angfreq*t1)
 ff(i+1)=ff(i+1)*sin(k*angfreq*t2)
 endif
c
 area = area + (ff(i)+ff(i+1)) * deltat/2.d0
 3 continue
c
 2 continue
c
c write(6,*) 'iaoakbk, k, area = ',iaoakbk, k, area
c
 if (iaoakbk .eq. 0) then
 aa0=area/period
 write(6,*) 'a0 = ', aa0
 write(6,*) '---------------------'
 elseif (iaoakbk .eq. 1) then
 aak=area*2.d0/period
 write(6,*) 'ak(',k,') = ', aak
 write(6,*) '---------------------'
 elseif (iaoakbk .eq. 2) then
 bbk=area*2.d0/period
 write(6,*) 'bk(',k,') = ', bbk
 endif
c
 1 continue
c
 return
 end
c%%
 subroutine periodic_f(isegment, t, function,alimit_int,
 $ kthfourier,nsegments)
 implicit real*8(a-h,o-z)
 dimension alimit_int(10)
c......user has to define the periodic function for each & every segment
c......within a period T
 pai=3.14159
 i=isegment
c===
 if (isegment .eq. 1 .and. t .eq. alimit_int(1) .and.
 $ kthfourier .eq. 1) then
c--
c......test (Fall'2008 semester)
 write(6,*) 'segments integration limits = '
 $,(alimit_int(m),m=1,nsegments+1)
 write(6,*) 'segment #1 '
 write(6,*) 'function = -pai/2 '
 write(6,*) 'segment #2 '
 write(6,*) 'function = -t '
 write(6,*) 'segment #3 '
 write(6,*) 'function = -pai/2 '
c--
 endif
c===
 go to (11,12,13),i ! assume integral is splited into max. 3 segments
c...... compute Fourier series coefficient a0 (by default)
c......user's input to define: the function in EACH segment
c--
c......test (Fall'2008 semester)
 11 function=-pai/2.d0 ! user defined function for 1-st segment
 go to 444
 12 function=-t ! user defined function for 2-nd segment
 go to 444
 13 function=-pai/2.d0 ! user defined function for 3-rd segment
 go to 444
c--
c
 444 continue
 return
 end
c%%

Example 11.1

Using the continuous Fourier series to approximate the following periodic rectangular wave function:

[image: image1.wmf].

,.......,

,

2

m

x

x

x

……………………………………………...…….(11.17A)

The above periodic function f(f) can be plotted, as shown in Fig.11.1

[image: image55.png]f®

Fig.11.1 A Periodic Rectangular Wave Function.

From Eqs. (11.13-11.15), one obtains :

[image: image56.wmf]0

4

4

2

4

4

2

2

2

0

0

)

1

(

)

1

(

)

1

(

1

)

(

1

a

dt

dt

dt

T

dt

t

f

T

a

T

T

T

T

T

T

T

T

=

=

ï

þ

ï

ý

ü

ï

î

ï

í

ì

-

+

+

-

÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

=

ò

ò

ò

ò

-

-

-

-

The above numerical value for
[image: image57.wmf]0

a

is expected, since it can be observed from Fig.11.1 that the “average” amplitude of the given periodic function f(t) is zero, for the period interval
[image: image58.wmf].

2

,

2

ú

û

ù

ê

ë

é

-

T

T

[image: image59.wmf]ï

þ

ï

ý

ü

ï

î

ï

í

ì

-

+

+

-

÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

=

ò

ò

ò

ò

-

-

-

-

4

4

2

4

0

0

0

4

2

2

2

0

)

sin(

)

1

(

)

sin(

)

1

(

)

sin(

)

1

(

2

)

sin(

)

(

2

T

T

T

T

T

T

T

T

k

dt

t

kw

dt

t

kw

dt

t

kw

T

dt

t

kw

t

f

T

b

[image: image60.wmf][

]

[

]

[

]

þ

ý

ü

î

í

ì

+

-

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

=

-

-

-

2

4

0

4

4

0

4

2

0

0

)

cos(

)

cos(

)

cos(

*

1

2

T

T

T

T

T

T

k

t

kw

t

kw

t

kw

kw

T

b

or, since
[image: image61.wmf],

2

0

T

w

p

=

 therefore :

[image: image62.wmf]ï

ï

ï

þ

ï

ï

ï

ý

ü

ï

ï

ï

î

ï

ï

ï

í

ì

÷

ø

ö

ç

è

æ

-

+

÷

ø

ö

ç

è

æ

-

+

-

÷

ø

ö

ç

è

æ

-

-

-

÷

ø

ö

ç

è

æ

=

4

*

2

*

cos

2

*

2

*

cos(

4

*

2

*

cos

4

*

2

*

cos(

2

*

2

*

cos

4

*

2

*

cos(

1

T

T

k

T

T

k

T

T

k

T

T

k

T

T

k

T

T

k

k

b

k

p

p

p

p

p

p

p

Since cosine is an even function, hence
[image: image63.wmf]);

cos(

)

cos(

a

a

-

=

the above equation becomes:

[image: image64.wmf]þ

ý

ü

î

í

ì

÷

ø

ö

ç

è

æ

-

+

÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

-

-

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

=

2

cos

)

cos(

2

cos

2

cos

)

cos(

2

cos

1

p

p

p

p

p

p

p

k

k

k

k

k

k

k

b

k

[image: image652.wmf]3

2

1

=

=

J

J

[image: image65.wmf];

0

=

k

b

 for all k.

[image: image66.wmf]ï

þ

ï

ý

ü

ï

î

ï

í

ì

-

+

+

-

÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

=

ò

ò

ò

ò

-

-

-

-

2

4

0

4

4

0

4

2

0

2

2

0

)

cos(

)

1

(

)

cos(

)

1

(

)

cos(

)

1

(

2

)

cos(

)

(

2

T

T

T

T

T

T

k

T

T

k

dt

t

kw

dt

t

kw

dt

t

kw

T

a

dt

t

kw

t

f

T

a

or

[image: image67.wmf][

]

[

]

[

]

þ

ý

ü

î

í

ì

-

+

+

-

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

=

-

-

-

2

4

0

4

4

0

4

2

0

0

)

sin(

)

sin(

sin(

1

2

T

T

T

T

T

T

k

t

kw

t

kw

t

kw

kw

T

a

since
[image: image68.wmf]:

,

2

0

hence

T

w

p

=

[image: image69.wmf]ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

-

÷

ø

ö

ç

è

æ

-

-

÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

-

+

÷

ø

ö

ç

è

æ

-

-

÷

ø

ö

ç

è

æ

=

4

*

2

*

sin

2

*

2

*

sin

4

*

2

*

sin

4

*

2

*

sin

2

*

2

*

sin

4

*

2

*

sin

1

T

T

k

T

T

k

T

T

k

T

T

k

T

T

k

T

T

k

k

a

k

p

p

p

p

p

p

p

Since sine is an “odd” function, hence
[image: image70.wmf]),

sin(

)

sin(

a

a

-

-

=

 the above equation becomes:

[image: image71.wmf](

)

(

)

þ

ý

ü

î

í

ì

÷

ø

ö

ç

è

æ

+

-

÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

+

-

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

=

2

sin

sin

2

sin

2

sin

sin

2

sin

1

p

p

p

p

p

p

p

k

k

k

k

k

k

k

a

k

or

[image: image72.wmf](

)

þ

ý

ü

î

í

ì

-

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

=

p

p

p

k

k

k

a

k

sin

2

2

sin

4

1

……………………………………………....(11.17B)

For k = even integer = 2,4,6…, one gets

[image: image653.wmf]å

å

å

=

+

+

=

+

=

=

=

=

1

0

)

2

4

(

0

1

0

2

2

1

0

3

1

0

2

)

2

(

0

1

0

1

0

1

0

2

1

0

4

0

1

2

0

1

0

1

0

0

0

1

2

1

1

0

1

2

2

0

)

114

.

11

....(

..........

..........

..........

..........

..........

)

,

,

(

)

,

,

(

)

113

.

11

........(

..........

..........

..........

..........

..........

)

,

,

(

)

,

,

(

)

112

.

11

.....(

..........

..........

..........

..........

..........

..........

)

,

,

(

)

,

,

(

k

k

n

n

n

k

k

n

n

k

k

n

W

k

n

n

f

n

n

n

f

W

k

k

n

f

k

n

n

f

W

k

k

k

f

k

k

n

f

[image: image73.wmf]0

,..

6

,

4

,

2

=

=

k

a

For
[image: image74.wmf]{

}

p

p

p

)

1

(

4

4

0

4

1

1

1

=

=

-

÷

ø

ö

ç

è

æ

=

Þ

=

=

k

a

k

For
[image: image75.wmf]{

}

p

p

)

5

(

4

0

4

5

1

5

5

=

-

÷

ø

ö

ç

è

æ

=

Þ

=

=

k

a

k

Thus

[image: image654.wmf]0

0

1

1

2

1

0

1

1

0

2

1

0

1

1

)

(

)

(

)

)(

(

k

n

r

n

r

k

n

r

n

k

r

k

n

r

n

W

W

W

+

+

+

+

=

[image: image76.wmf]for

k

a

k

;

)

(

4

p

=

 k = 1,5,9,…

For
[image: image77.wmf]þ

ý

ü

î

í

ì

-

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

=

Þ

=

=

)

*

3

sin(

2

2

*

3

sin

4

3

1

3

3

p

p

p

k

a

k

or
[image: image78.wmf]{

}

p

p

)

(

4

0

4

3

1

3

k

a

k

-

=

-

-

÷

ø

ö

ç

è

æ

=

=

For
[image: image79.wmf]þ

ý

ü

î

í

ì

-

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

=

Þ

=

=

)

*

7

sin(

2

2

*

7

sin

4

7

1

7

7

p

p

p

k

a

k

or
[image: image80.wmf]{

}

p

p

)

(

4

0

4

7

1

7

k

a

k

-

=

-

-

÷

ø

ö

ç

è

æ

=

=

[image: image655.wmf]ï

ï

ï

î

ï

ï

ï

í

ì

<

<

-

<

<

-

<

<

-

-

=

2

4

;

1

4

4

;

1

4

2

;

1

)

(

T

t

T

for

T

t

T

for

T

t

T

for

t

f

Hence
[image: image81.wmf]for

k

a

k

;

)

(

4

p

-

=

 k = 3,7,11,…

In conclusion, the periodic rectangular wave function f(t) (shown in Eq.11.17.A) can be expressed as:

[image: image82.wmf]å

å

=

=

+

=

,...

9

,

5

,

1

,...

11

,

7

,

3

0

0

)

cos(

)

cos(

)

(

k

k

k

k

t

kw

a

t

kw

a

t

f

or
[image: image83.wmf]).......

5

cos(

)

3

cos(

)

1

cos(

)

(

0

5

0

3

0

1

t

w

a

t

w

a

t

w

a

t

f

+

+

=

[image: image84.wmf]).......

5

cos(

5

4

)

3

cos(

3

4

)

1

cos(

1

4

)

(

0

0

0

t

w

t

w

t

w

t

f

p

p

p

+

-

=

[image: image85.png]L)

N
e/
g

Jiey yAD)
ValVa

(®)

Notes:

(a) 1-Term Fourier Approximation of a Rectangular Wave Function

[image: image86.wmf])

1

cos(

1

4

)

(

)

(

0

1

t

w

t

f

t

f

p

=

»

(b) 2-Term Fourier Approximation of Rectangular Wave Function

[image: image87.wmf])

3

cos(

3

4

)

(

)

(

)

(

0

1

2

t

w

t

f

t

f

t

f

p

-

=

»

Example 11.2

The periodic triangular wave function f(t) is defined as

[image: image88.wmf]ï

ï

ï

î

ï

ï

ï

í

ì

<

<

-

<

<

-

-

-

-

<

<

-

-

=

p

p

p

p

p

p

p

p

t

for

t

for

t

t

for

t

f

2

;

2

2

2

;

2

;

2

)

(

Find the Fourier coefficients
[image: image89.wmf]???

,

,

,

,

2

1

2

1

0

b

b

a

a

a

[image: image90.png]f®

NN
NN

Solutions:

From the developed computer program (see Table 11.1), one gets

[image: image91.wmf];

00

.

0

;

143

.

0

;

00

.

0

;

20

.

0

;

00

.

0

;

333

.

0

;

00

.

0

;

00

.

1

785

.

0

8

7

6

5

4

3

2

1

0

=

-

=

=

=

=

-

=

=

=

-

=

a

a

a

a

a

a

a

a

a

[image: image92.wmf]125

.

0

013

.

0

167

.

0

025

.

0

25

.

0

071

.

0

50

.

0

64

.

0

8

7

6

5

4

3

2

1

=

=

-

=

-

=

=

=

-

=

-

=

b

b

b

b

b

b

b

b

(C) Complex Form of the Fourier Series:

Using Euler’s identity, the sine and cosine can be expressed in the exponential form as:

[image: image93.wmf],

"

"

2

)

sin(

function

odd

i

e

e

x

ix

ix

=

-

=

-

 since sin(x) = -sin(-x) ………….…………….(11.18)

[image: image94.wmf],

"

"

2

)

cos(

function

even

e

e

x

ix

ix

=

+

=

-

 since cos(x) = cos(-x) …………………...….(11.19)

Thus, the Fourier series (expressed in Eq.11.12) can be casted in the following form:

[image: image95.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

=

-

¥

=

-

å

i

e

e

b

e

e

a

a

t

f

t

ikw

t

ikw

k

k

t

ikw

t

ikw

k

2

*

2

*

)

(

0

0

0

0

1

0

………………………….(11.20)

or

[image: image96.wmf]÷

ø

ö

ç

è

æ

-

+

÷

ø

ö

ç

è

æ

+

+

=

-

¥

=

å

i

i

i

b

a

e

i

i

i

b

a

e

a

t

f

k

k

t

ikw

k

k

k

t

ikw

*

2

2

*

*

2

2

*

)

(

0

0

1

0

or, since
[image: image97.wmf],

1

2

-

=

i

 one obtains:

[image: image98.wmf]÷

ø

ö

ç

è

æ

+

+

÷

ø

ö

ç

è

æ

-

+

=

-

¥

=

å

2

*

2

*

)

(

0

0

1

0

k

k

t

ikw

k

k

k

t

ikw

ib

a

e

ib

a

e

a

t

f

………………………...……(11.21)

Define the following constants:

[image: image99.wmf]0

0

~

a

C

º

………………………………………………………………………...…....(11.22)

[image: image100.wmf]2

~

k

k

k

ib

a

C

-

º

……………………………………………………………………….(11.23)

Hence:

[image: image101.wmf]2

~

k

k

k

ib

a

C

-

-

-

-

º

…………..…….…………………………………………………(11.24)

Using the even, odd properties shown in Eqs. (11.14, 11.15), respectively,

Eq. (11.24) becomes:

[image: image102.wmf]2

~

k

k

k

ib

a

C

+

º

-

……………………………………………………………………...(11.25)

Substituting Eqs. (11.22,11.23,11.25) into Eq. (11.21), one gets:

[image: image103.wmf]å

å

¥

=

-

-

¥

=

+

+

=

1

1

0

0

0

~

~

~

)

(

k

t

ikw

k

k

t

ikw

k

e

C

e

C

C

t

f

[image: image104.wmf]å

å

-¥

-

=

¥

=

+

=

1

0

0

0

~

~

)

(

k

t

ikw

k

k

t

ikw

k

e

C

e

C

t

f

[image: image105.wmf]å

å

-

-¥

=

¥

=

+

=

1

0

0

0

~

~

)

(

k

t

ikw

k

k

t

ikw

k

e

C

e

C

t

f

or

[image: image106.wmf]å

¥

-¥

=

=

k

t

ikw

k

e

C

t

f

0

~

)

(

………………………………………………………………….(11.26)

The coefficient
[image: image107.wmf]k

C

~

 can be computed, by substituting Eqs.(11.14,11.25) into Eq.(11.23) to obtain:

[image: image108.wmf]

[image: image109.wmf]þ

ý

ü

î

í

ì

-

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

=

ò

ò

T

T

k

dt

t

kw

t

f

i

dt

t

kw

t

f

T

C

0

0

0

0

)

sin(

)

(

)

cos(

)

(

2

2

1

~

……………………………(11.27)

or

[image: image110.wmf][

]

þ

ý

ü

î

í

ì

-

÷

ø

ö

ç

è

æ

=

ò

T

k

dt

t

kw

i

t

kw

t

f

T

C

0

0

0

)

sin(

)

cos(

*

)

(

1

~

Substituting Eqs. (11.18,11.19) into the above equation, one gets:

[image: image111.wmf]þ

ý

ü

î

í

ì

ú

û

ù

ê

ë

é

-

-

+

÷

ø

ö

ç

è

æ

=

ò

-

-

T

t

ikw

t

ikw

t

ikw

t

ikw

k

dt

i

e

e

i

e

e

t

f

T

C

0

2

*

2

*

)

(

1

~

0

0

0

0

[image: image112.wmf]þ

ý

ü

î

í

ì

÷

ø

ö

ç

è

æ

=

ò

-

T

t

ikw

k

dt

e

t

f

T

C

0

0

*

)

(

1

~

………………………………………………………...(11.28)

Thus, Eqs. (11.26,11.28) are the equivalent complex version of Eqs.(11.12-11.15).

(D) Fourier Transform Pair

As up to this point, Fourier approximation has been expressed in the time domain. The amplitude (vertical axis) of a periodic function can be plotted versus time (horizontal axis), but it can also be plotted versus frequency (horizontal axis).

The periodic rectangular wave function expressed in the time domain (see Fig.11.1), can also be plotted in the frequency domain as shown in Fig.11.2.

[image: image113.png]h phase angle

a4 Cr
Z e T 2/(r) I AR T
Al [2/(37) x
45wy [{ ------------- 2/(57) 2
A [T 2677)
T f
L M 5L TS L M LTS

(@) Amplitude (b)Phase

Figure 11.2 Periodic Rectangular Wave Function in Frequency Domain.

Explanation of Figures 11.2(a) and 11.2(b)

[image: image114.wmf]å

¥

-¥

=

=

k

t

ikw

k

e

C

t

f

0

~

)

(

where

[image: image115.wmf]þ

ý

ü

î

í

ì

÷

ø

ö

ç

è

æ

=

ò

-

T

t

ikw

k

dt

e

t

f

T

C

0

0

*

)

(

1

~

For the periodic function shown in Example 11.1 (or Figure 11.1), one has:

[image: image116.wmf]ï

þ

ï

ý

ü

ï

î

ï

í

ì

-

+

+

-

÷

ø

ö

ç

è

æ

=

ò

ò

ò

-

-

-

-

-

-

2

4

4

4

4

2

0

0

0

*

)

1

(

*

)

1

(

*

)

1

(

1

~

T

T

t

ikw

T

T

t

ikw

T

T

t

ikw

k

dt

e

dt

e

dt

e

T

C

or

[image: image117.wmf]{

}

C

B

A

T

C

k

+

+

÷

ø

ö

ç

è

æ

=

1

~

where, making use of
[image: image118.wmf]T

w

p

2

0

=

; one obtains:

[image: image119.wmf]ú

û

ù

ê

ë

é

-

÷

ø

ö

ç

è

æ

=

-

º

ò

-

-

-

p

p

ik

ik

ikw

T

T

t

ikw

e

e

dt

e

A

2

4

2

0

0

1

[image: image120.wmf]ú

û

ù

ê

ë

é

+

-

÷

ø

ö

ç

è

æ

=

º

-

-

-

ò

2

2

4

4

0

0

1

p

p

ik

ik

ikw

T

T

t

ikw

e

e

dt

e

B

[image: image121.wmf]ú

û

ù

ê

ë

é

-

÷

ø

ö

ç

è

æ

=

-

º

-

-

-

ò

2

2

4

0

0

1

p

p

ik

ik

ikw

T

T

t

ikw

e

e

dt

e

C

Hence:

[image: image122.wmf]þ

ý

ü

î

í

ì

-

+

-

÷

ø

ö

ç

è

æ

=

-

-

p

p

p

p

p

ik

ik

ik

ik

k

e

e

e

e

ik

C

2

2

2

2

2

1

~

Recalled:

[image: image123.wmf])

sin(

)

cos(

q

q

q

i

e

i

+

=

[image: image124.wmf])

sin(

)

cos(

)

sin(

)

cos(

q

q

q

q

q

i

i

e

i

-

=

-

+

-

=

-

Then, the above equation for
[image: image125.wmf]k

C

~

can be expressed as:

[image: image126.wmf](

)

(

)

{

}

(

)

(

)

{

}

ï

þ

ï

ý

ü

ï

î

ï

í

ì

+

+

-

+

-

+

+

þ

ý

ü

î

í

ì

÷

ø

ö

ç

è

æ

+

-

÷

ø

ö

ç

è

æ

+

-

þ

ý

ü

î

í

ì

÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

=

p

p

p

p

p

p

p

p

p

k

i

k

k

i

k

k

i

k

k

i

k

ik

C

k

sin

cos

sin

cos

2

sin

2

cos

2

2

sin

2

cos

2

2

1

~

[image: image127.wmf]þ

ý

ü

î

í

ì

-

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

=

)

sin(

2

2

sin

4

2

1

~

p

p

p

k

i

k

i

ik

C

k

[image: image128.wmf]þ

ý

ü

î

í

ì

-

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

=

)

sin(

2

2

sin

4

2

1

~

p

p

p

k

k

k

C

k

= real number.

Since
[image: image129.wmf]2

2

~

k

k

k

k

a

ib

a

C

=

-

=

 ; because
[image: image130.wmf]k

C

~

= real number

Hence

[image: image131.wmf]k

k

C

a

~

2

=

For
[image: image132.wmf][

]

)

0

(

1

1

4

4

2

4

2

1

~

1

i

e

a

C

k

÷

ø

ö

ç

è

æ

=

=

Þ

=

÷

ø

ö

ç

è

æ

=

Þ

=

p

p

p

p

Hence the amplitude and phase angle are
[image: image133.wmf]p

4

and (0) radian, respectively.

For
[image: image134.wmf][

]

0

0

0

4

1

~

2

2

2

=

Þ

=

÷

ø

ö

ç

è

æ

=

Þ

=

a

C

k

p

For
[image: image135.wmf][

]

)

(

3

3

3

4

3

4

3

2

4

6

1

~

3

p

p

p

p

p

i

e

a

C

k

÷

ø

ö

ç

è

æ

=

-

=

Þ

-

=

-

÷

ø

ö

ç

è

æ

=

Þ

=

Hence the amplitude and phase angle are
[image: image136.wmf]p

3

4

and
[image: image137.wmf](

)

p

 radian, respectively.

For
[image: image138.wmf][

]

0

0

0

8

1

~

4

4

4

=

Þ

=

÷

ø

ö

ç

è

æ

=

Þ

=

a

C

k

p

For
[image: image139.wmf][

]

)

0

(

5

5

5

4

5

4

5

2

10

4

4

10

1

~

5

i

e

a

C

k

÷

ø

ö

ç

è

æ

=

=

Þ

=

=

÷

ø

ö

ç

è

æ

=

Þ

=

p

p

p

p

p

Hence the amplitude and phase angle are
[image: image140.wmf]p

5

4

and (0) radian, respectively.

For
[image: image141.wmf][

]

0

0

0

12

1

~

6

6

6

=

Þ

=

÷

ø

ö

ç

è

æ

=

Þ

=

a

C

k

p

For
[image: image142.wmf][

]

)

(

7

7

7

4

7

4

7

2

4

14

1

~

7

p

p

p

p

p

i

e

a

C

k

÷

ø

ö

ç

è

æ

=

-

=

Þ

-

=

-

÷

ø

ö

ç

è

æ

=

Þ

=

Hence the amplitude and phase angle are
[image: image143.wmf]p

7

4

and
[image: image144.wmf](

)

p

 radian, respectively.

Remarks:

For k =0; then

[image: image145.wmf]ò

-

=

÷

ø

ö

ç

è

æ

=

2

2

0

0

)

(

1

T

T

dt

t

f

T

a

 (See Example 11.1)

(E) Non-Periodic Function

Recalled that a periodic function can be expressed in terms of the exponential form, accordingly to Eqs. (11.26,11.28) as :

[image: image146.wmf]å

¥

-¥

=

=

k

t

ikw

k

e

C

t

f

0

~

)

(

………………………………………………………..(11.26, repeated)

[image: image147.wmf]þ

ý

ü

î

í

ì

÷

ø

ö

ç

è

æ

=

ò

-

T

t

ikw

k

dt

e

t

f

T

C

0

0

*

)

(

1

~

……………………………………………...(11.28, repeated)

Define the following function:

[image: image148.wmf]ò

-

-

=

2

2

0

0

)

(

)

(

T

T

t

ikw

dt

e

t

f

ikw

x

…………………………………………………………….(11.29)

Then, Eq. (11.28) can be written as:

[image: image149.wmf])

(

*

1

~

0

ikw

x

T

C

k

÷

ø

ö

ç

è

æ

=

…………………………………………………………………(11.30)

And Eq.(11.26) becomes

[image: image150.wmf]å

¥

-¥

=

÷

ø

ö

ç

è

æ

=

k

t

ikw

e

ikw

x

T

t

f

0

)

(

*

1

)

(

0

……………………………………………………....(11.31)

A non-periodic function
[image: image151.wmf]np

f

can be considered as a periodic function, with the period

[image: image152.wmf],

¥

®

T

 or
[image: image153.wmf]0

1

®

º

D

T

f

 (See Fig 11.3)

From Eqs. (11.6-11.7), one gets:

[image: image154.wmf](

)

f

T

f

w

D

=

=

=

p

p

p

2

2

2

0

…………………………………………………………...(11.32)

[image: image155.png]Fl@)=F@n

A 20f 3 g I Frequency

o A A Af

Fig. 11.3 : Frequency are Discretized.

From Eq.(11.31), one obtains:

[image: image156.wmf]å

¥

-¥

=

®

D

®

D

¥

®

D

=

=

k

t

ikw

f

f

or

T

np

e

ikw

x

f

t

f

t

f

0

)

(

*

)

(

lim

)

(

lim

)

(

0

0

0

…………………………………..(11.33)

or,

[image: image157.wmf]å

¥

-¥

=

D

®

D

D

D

=

k

ft

ik

f

np

e

f

ik

x

f

t

f

p

p

2

0

)

2

(

*

)

(

lim

)

(

…………………………………………....(11.34)

[image: image158.wmf]ò

=

ft

i

np

e

f

i

x

df

t

f

p

p

2

)

2

(

*

)

(

[image: image159.wmf]df

e

f

i

x

t

f

ft

i

np

ò

=

p

p

2

)

2

(

)

(

……………………………………………………………(11.35)

[image: image160.wmf]ò

÷

ø

ö

ç

è

æ

=

)

2

(

)

2

(

2

1

)

(

2

f

d

e

f

i

x

t

f

ft

i

np

p

p

p

p

[image: image161.wmf]ò

¥

¥

-

÷

ø

ö

ç

è

æ

=

)

(

)

(

2

1

)

(

0

0

0

w

d

e

iw

x

t

f

t

iw

np

p

; inverse Fourier transform…………...………….(11.36)

Using the definition stated in Eq.(11.29), one has

[image: image162.wmf]ò

¥

¥

-

-

=

)

(

)

(

)

(

0

0

t

d

e

t

f

iw

x

t

iw

np

; Fourier transform……………………………………...(11.37)

Thus, Eqs. (11.37,11.36) will transform a non-periodic function from time domain to frequency domain, and from frequency domain to time domain, respectively.

(F) Discrete Fourier Transform (DFT)

Recalled the exponential form of Fourier series (see Eqs.11.26,11.28), one gets:

[image: image163.wmf]å

¥

-¥

=

=

k

t

ikw

k

e

C

t

f

0

~

)

(

………………………….……………………………..(11.26, repeated)

[image: image164.wmf]þ

ý

ü

î

í

ì

÷

ø

ö

ç

è

æ

=

ò

-

T

t

ikw

k

dt

e

t

f

T

C

0

0

*

)

(

1

~

……………………………………………...(11.28, repeated)

If time “t” is discretized at
[image: image165.wmf],

,.......,

3

,

2

,

3

2

1

t

n

t

t

t

t

t

t

t

n

D

=

D

=

D

=

D

=

Then Eq.(11.26) becomes:

[image: image166.wmf]å

-

=

=

1

0

0

~

)

(

N

k

t

ikw

k

n

n

e

C

t

f

……………………………………………………………...…(11.38)

To simplify the notation, define:

[image: image167.wmf]n

t

n

=

……………………………………………………………………………….(11.39)

Then, Eqs.(11.38) can be written as:

[image: image168.wmf]å

-

=

=

1

0

0

~

)

(

N

k

n

ikw

k

e

C

n

f

…………………………………………………………………..(11.40)

Multiplying both sides of eq.(11.40) by
[image: image169.wmf]n

ilw

e

0

-

, and performing the summation on “n”, one obtains (note:l = integer number)

[image: image170.wmf]n

ilw

N

n

N

k

n

ikw

k

N

n

n

ilw

e

e

C

e

n

f

0

0

0

1

0

1

0

1

0

*

~

*

)

(

-

-

=

-

=

-

=

-

å

å

å

=

…………………………………………..…(11.41)

or

[image: image171.wmf]å

å

å

-

=

-

=

-

-

=

-

=

1

0

1

0

)

(

1

0

0

0

~

*

)

(

N

n

N

k

n

w

l

k

i

k

N

n

n

ilw

e

C

e

n

f

…………………………………………………(11.42)

[image: image172.wmf]å

å

-

=

-

=

-

=

1

0

1

0

2

)

(

~

N

n

N

k

n

N

l

k

i

k

e

C

p

…………………………………………….….(11.43)

Switching the order of summations on the right-hand-side of Eq.(11.43), one obtains:

[image: image173.wmf]å

å

å

-

=

-

=

÷

ø

ö

ç

è

æ

-

-

=

÷

ø

ö

ç

è

æ

-

=

1

0

1

0

2

)

(

1

0

2

~

*

)

(

N

k

N

n

n

N

l

k

i

k

N

n

n

N

il

e

C

e

n

f

p

p

…………………………………………....(11.44)

Define:

[image: image174.wmf]å

-

=

÷

ø

ö

ç

è

æ

-

=

1

0

2

)

(

N

n

n

N

l

k

i

e

A

p

………………………………………………………………..….(11.45)

There are 2 possibilities for (k-l) to consider in Eq. (11.45)

Case(1): (k-l) is a multiple integer of N, such as:

 (k-l)=mN; or k=l+mN where
[image: image175.wmf],......

2

,

1

,

0

±

±

=

m

Thus, Eq.(11.45) becomes:

[image: image176.wmf]å

å

-

=

-

=

+

=

=

1

0

1

0

2

)

2

sin(

)

2

cos(

N

n

N

n

n

im

mn

i

mn

e

A

p

p

p

……………………………………….(11.46)

Hence:

A=N…………………………………………..……………………………………..(11.47)

Case(2): (k-l) is NOT a multiple integer of N

In this case, from Eq.(11.45) one has:

[image: image177.wmf]å

-

=

÷

ø

ö

ç

è

æ

-

ï

þ

ï

ý

ü

ï

î

ï

í

ì

=

1

0

2

)

(

N

n

n

N

l

k

i

e

A

p

………………………………………………………………..(11.48)

Define:

[image: image178.wmf]þ

ý

ü

î

í

ì

-

+

þ

ý

ü

î

í

ì

-

=

=

-

)

2

)

(

sin

)

2

)

(

cos

2

)

(

N

l

k

i

N

l

k

e

a

N

l

k

i

p

p

p

………………………………..(11.49)

[image: image179.wmf];

1

¹

a

because (k-l) is “NOT” a multiple integer of N…………………………..….(11.50)

Then, Eq. (11.48) can be expressed as:

[image: image180.wmf]{

}

å

-

=

=

1

0

N

n

n

a

A

………………………………………………………………………....(11.51)

From mathematical handbooks, the right side of Eq. (11.51) represents the “geometric series”, and can be expressed as:

[image: image181.wmf]{

}

;

1

0

N

a

A

N

n

n

=

=

å

-

=

 if
[image: image182.wmf]1

=

a

…………………………………………………………..(11.52)

[image: image183.wmf];

1

1

a

a

N

-

-

=

 if
[image: image184.wmf]1

¹

a

……………………………………………..………(11.53)

Because of Eq. (11.50), hence Eq. (11.53) should be used to compute A. Thus:

[image: image185.wmf]a

e

a

a

A

l

k

i

N

-

-

=

-

-

=

-

1

1

1

1

2

)

(

p

(See Eq. (11.49)) ……………………………………….(11.54)

Since (k-l) is still a multiple of
[image: image186.wmf]p

2

, hence

[image: image187.wmf]{

}

{

}

1

2

)

(

sin

2

)

(

cos

2

)

(

=

-

+

-

º

-

p

p

p

l

k

i

l

k

e

l

k

i

……………………………………....(11.55)

Substituting Eq. (11.55) into Eq. (11.54), one gets:

A=0………………………………………………………...………………………..(11.56)

Thus, combining the results of case (1) and case (2), one gets (see Eqs.11.47 and Eq.11.56):

A=N+0=N……………………………………………………………………….….(11.57)

Substituting Eq.(11.57) into Eq.(11.45), and then referring to Eq(11.44), one gets:

[image: image188.wmf]å

å

-

=

-

=

-

=

1

0

1

0

*

~

)

(

0

N

k

k

N

n

n

ilw

N

C

e

n

f

………………………………………………………..(11.57A)

Recalled k=l+mN (where l,m are integer numbers), and since k must be in the range
[image: image189.wmf]1

0

-

®

N

, therefore m=0. Thus:

k=l+mN becomes k=l

Eq(11.57A) can, therefore, be simplified to:

[image: image190.wmf]N

C

e

n

f

l

N

n

n

ilw

*

~

)

(

1

0

0

=

å

-

=

-

…………………………………………………………...(11.57B)

Thus:

[image: image191.wmf]{

}

å

å

-

=

-

=

-

-

÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

=

1

0

0

0

1

0

)

sin(

)

cos(

)

(

1

)

(

1

~

0

N

n

N

n

n

ikw

k

n

lw

i

n

lw

n

f

N

e

n

f

N

C

…………………..(11.58)

where
[image: image192.wmf]n

t

n

º

and

[image: image193.wmf]{

}

å

å

-

=

-

=

+

=

=

1

0

0

0

~

1

0

~

)

sin(

)

cos(

)

(

0

N

k

k

N

k

n

ikw

k

n

kw

i

n

kw

C

e

C

n

f

……………………..(11.38, repeated)

FORTRAN code for computing the DFT, shown in Eq. (11.58) [or similarly shown in Eq.11.38] is listed in Table 11.2.

Remarks:

(a) Consider the exponential term in the above equation [Eq. (11.38, repeated)]. Let

[image: image194.wmf];

)

2

(

)

(

0

n

N

ik

n

ikw

e

e

E

*

*

=

=

p

where
[image: image195.wmf]14159

.

3

=

p

If one replaces “n” by “-(N-n)” (or “n-N”) into the above equation, then one obtains:

[image: image196.wmf][

]

E

e

e

e

ik

n

N

ik

N

n

N

ik

=

=

=

-

-

1

*

)

2

*

(

)

*

2

*

(

)

*(

2

*

p

p

p

Thus, Eq. (11.38, repeated) indicates that the force corresponding to frequencies of order “n” and “-(N-n) = n-N” have the same values. Hence:

[image: image197.wmf]w

n

w

n

=

 for
[image: image198.wmf]2

N

n

£

[image: image199.wmf]w

n

N

)

(

-

-

=

 for
[image: image200.wmf]2

N

n

>

and the frequency corresponding to
[image: image201.wmf]2

N

n

=

is the highest frequency that can be considered in the discrete Fourier series (
[image: image202.wmf]2

N

w

 is called the Nyquist frequency). If there are harmonic (force) components above
[image: image203.wmf]2

N

w

 in the original function, then these higher components will introduce distortions in the lower harmonic components (known as ALIASING phenomenon). Because of the ALIASING phenomenon, the number of (N) data points should be “at least twice” the highest harmonic component presents in the (forcing) function, for sufficient computational accuracy. As an example, if the forcing function is given as:

[image: image204.wmf]å

=

=

16

1

)

2

cos(

*

100

)

(

n

nt

t

F

p

then, the minimum value of N (= Number of sample data points) should be
[image: image205.wmf].

32

min

=

N

[image: image206.png]g

Figure 11.25: Discretize With Large step Size Will Introduce Large Error.

(b) The factor
[image: image207.wmf],

1

÷

ø

ö

ç

è

æ

N

 shown in the DFT Eq.(11.58), is merely a scale factor. It can also be placed in the inverse Fourier Transform Eq.(11.38), but not both !

Thus, Eqs. (11.58 & 11.38) can be re-written as:

[image: image208.wmf]å

-

=

÷

ø

ö

ç

è

æ

=

-

=

1

0

2

0

)

(

~

N

k

n

N

w

ik

n

e

k

f

C

p

……………………………………………………………(11.59)

[image: image209.wmf]å

-

=

÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

=

1

0

2

~

0

1

)

(

N

n

n

N

w

ik

n

e

C

N

k

f

p

……………………………………………………....(11.60)

To avoid computation with “complex numbers”, Eq.(11.59) can be expressed as:

[image: image210.wmf]{

}

å

-

=

-

þ

ý

ü

î

í

ì

+

=

+

1

0

)

sin(

)

cos(

*

)

(

)

(

~

~

N

k

I

R

I

n

R

n

i

k

f

i

k

f

C

i

C

q

q

………………………….(11.59A)

where

[image: image211.wmf]n

N

w

k

÷

ø

ö

ç

è

æ

=

=

p

q

2

0

…………………………………………………………………(11.59B)

[image: image212.wmf]{

}

{

}

å

-

=

-

+

+

=

+

1

0

)

sin(

)

(

)

cos(

)

(

)

sin(

)

(

)

cos(

*

)

(

~

~

N

k

R

I

I

R

I

n

R

n

i

k

f

k

f

i

k

f

k

f

C

i

C

q

q

q

q

The above “complex number” equation is equivalent to the following 2 “real number” equations:

[image: image213.wmf]{

}

å

-

=

+

=

1

0

)

sin(

)

(

)

cos(

)

(

~

N

k

I

R

R

n

k

f

k

f

C

q

q

…………………………………………...(11.59C)

[image: image214.wmf]{

}

å

-

=

-

=

1

0

)

sin(

)

(

)

cos(

)

(

~

N

k

R

I

I

n

i

k

f

k

f

C

q

q

…………………………………………..(11.59D)

Table 11.2 FORTRAN Coding For DFT (See Eqs. 11.59C, 11.59D)

c
 implicit real*8(a-h,o-z)
 dimension freal(1000000), fimag(1000000)
 write(6,*) ' '
 write(6,*) '==============================='
 write(6,*) ' Prof. Nguyen Version Date: 08-08-2008'
 write(6,*) '==============================='
 write(6,*) ' '
 read(5,*) iautodata, n, igama, method
 write(6,*) 'iautodata,n,igama, method = 1 (FFT); 2(DFT)'
 write(6,*) iautodata,n,igama, method
 if (iautodata .eq. 1) then
 do 1 i=1,n
 freal(i)=dfloat(i)
 fimag(i)=0.d0
 1 continue
 elseif (iautodata .eq. 0) then
 read(5,*) (freal(i),i=1,n)
 read(5,*) (fimag(i),i=1,n)
 endif
c
 write(6,*) 'input data for FFT: i,freal,fimag ='
 do 22 i=1,n
 write(6,*) i, freal(i), fimag(i)
 22 continue
c
 if (method .eq. 1) then
c call fft(freal,fimag,n,igama)
c
 write(6,*) 'output for FFT: i,freal,fimag ='
 do 23 i=1,n
 write(6,*) i, freal(i), fimag(i)
 23 continue
c
 elseif (method .eq. 2) then
 call dft(freal,fimag,n,igama)
 endif
 999 stop
 end
c%%%
 subroutine dft(freal,fimag,nn,igama)
 implicit real*8(a-h,o-z)
 dimension freal(*), fimag(*)
c
 pai=3.14159d0
 w0=2.d0*pai/dfloat(nn)
 sumreal=0.d0
 sumimag=0.d0
 write(6,*) 'dft results: n,freal,fimag = '
 do 1 n=1,nn
 cnreal=0.d0
 cnimag=0.d0
 do 2 k=1,nn
 angle=(k-1)*w0*(n-1)
 c=cos(angle)
 s=sin(angle)
 cnreal=cnreal+freal(k)*c+fimag(k)*s
 cnimag=cnimag+fimag(k)*c-freal(k)*s
 2 continue
 write(6,*) n, cnreal, cnimag
 sumreal=sumreal+dabs(cnreal)
 sumimag=sumimag+dabs(cnimag)
 1 continue
 write(6,*) 'DFT: sumreal,sumimag = ',sumreal,sumimag
 return
 end
c%%

11.3 Intuitive Development of Fast Fourier Transform (FFT)

Recalled the DFT pairs of Eqs. (11.59,11.60) and swapping the indexes n,k one obtains:

[image: image215.wmf]å

-

=

÷

ø

ö

ç

è

æ

=

-

=

1

0

2

0

)

(

~

N

k

k

N

w

in

n

e

k

f

C

p

……………………………………………………………(11.61)

[image: image216.wmf]å

-

=

÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

=

1

0

2

~

0

1

)

(

N

n

k

N

w

in

n

e

C

N

k

f

p

.……………………………………………...………(11.62)

Where n, k = 0,1,2,3,….N-1 ………………………….…………………………….(11.63)

Let
[image: image217.wmf]N

i

e

W

p

2

-

=

(hence
[image: image218.wmf]1

2

=

=

-

p

i

N

e

W

)…………………………..………………….(11.64)

Then Eq. (11.61) becomes:

[image: image219.wmf]å

-

=

=

=

1

0

)

(

)

(

~

~

N

k

nk

n

W

k

f

n

C

C

…………………………………………………………...(11.65)

Assuming
[image: image220.wmf]then

N

r

,

2

4

)

2

(

=

=

=

[image: image221.wmf]ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

)

3

(

)

2

(

)

1

(

)

0

(

)

3

(

~

)

2

(

~

)

1

(

~

)

0

(

~

)

3

)(

3

(

)

2

)(

3

(

)

1

)(

3

(

)

0

)(

3

(

)

3

)(

2

(

)

2

)(

2

(

)

1

)(

2

(

)

0

)(

2

(

)

3

)(

1

(

)

2

)(

1

(

)

1

)(

1

(

)

0

)(

1

(

)

3

)(

0

(

)

2

)(

0

(

)

1

)(

0

(

)

0

)(

0

(

f

f

f

f

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

C

C

C

C

……………………………...(11.66)

[image: image222.wmf]ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

)

3

(

)

2

(

)

1

(

)

0

(

)

3

(

~

)

2

(

~

)

1

(

~

)

0

(

~

9

6

3

0

6

4

2

0

3

2

1

0

0

0

0

0

f

f

f

f

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

C

C

C

C

…………………………………………..(11.67)

For N=4, n=2 and k=3, then:

[image: image223.wmf][

]

[

]

2

2

2

2

2

2

)

4

(

6

W

W

e

W

e

W

W

W

W

i

N

N

i

n

nk

=

=

÷

÷

ø

ö

ç

ç

è

æ

=

=

=

-

-

=

p

p

The term inside the square bracket is equal to 1, since

[image: image224.wmf])

2

sin(

)

2

cos(

]

[

2

p

p

p

-

+

-

=

-

i

e

i

[image: image225.wmf])

2

sin(

)

2

cos(

p

p

i

-

=

 = 1 - i(0) = 1

. For N=4, n=3 and k=3, then

[image: image226.wmf]1

1

8

9

]

[

W

W

W

W

W

nk

=

=

=

. Thus, in general (for
[image: image227.wmf])

N

nk

³

[image: image228.wmf]p

nk

W

W

=

 where p = mod(nk,N) ………………………………………………….(11.68)

 or p = remainder of
[image: image229.wmf]÷

ø

ö

ç

è

æ

N

nk

Remarks:

(a) Matrix times vector, shown in Eq. (11.67), will require 16 (or
[image: image230.wmf])

2

N

complex multiplications and 12 (or N*{N-1}) complex additions.

(b) Usage of Eq. (11.68) will help to reduce the number of operation counts, as explained in the next section.

Factorized Matrix and Further Operation Count:

Eq. (11.67) can be factorized as:

[image: image231.wmf]ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

)

3

(

)

2

(

)

1

(

)

0

(

0

1

0

0

0

1

0

1

0

0

0

1

1

0

0

1

0

0

0

0

1

0

0

1

)

3

(

~

)

1

(

~

)

2

(

~

)

0

(

~

2

2

0

0

3

1

2

0

f

f

f

f

W

W

W

W

W

W

W

W

C

C

C

C

………………………...….(11.69)

Remarks:

(a) The theoretical behind the 2 matrices on the right hand side (RHS) of Eq.(11.69) will be clearly explained soon !.

(b) The order of the left-hand-side (LHS) vector has been changed, such as rows 2 and 3 have been swapped !.

(c) Let the row-interchanged LHS vector be defined as:

[image: image232.wmf]ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

=

*

)

3

(

~

)

1

(

~

)

2

(

~

)

0

(

~

)

(

~

C

C

C

C

n

C

…………………………………………………………………….(11.70)

Now performing the inner-product (matrix times vector) on the RHS of Eq. (11.69), one obtains:

[image: image233.wmf]ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

)

3

(

)

2

(

)

1

(

)

0

(

0

1

0

0

0

1

0

1

0

0

0

1

)

3

(

)

2

(

)

1

(

)

0

(

2

2

0

0

1

1

1

1

f

f

f

f

W

W

W

W

f

f

f

f

……………………………………………….(11.71)

or

[image: image234.wmf])

2

(

)

0

(

)

0

(

0

1

f

W

f

f

+

=

…………………………………………………………...(11.71A)

[image: image235.wmf])

3

(

)

1

(

)

1

(

0

1

f

W

f

f

+

=

…………………………………………………………….(11.72B)

[image: image236.wmf])

2

(

)

0

(

)

2

(

2

1

f

W

f

f

+

=

[image: image237.wmf])

2

(

)

0

(

0

f

W

f

-

=

……………………………………………………………(11.72C)

since
[image: image238.wmf]0

2

*

4

2

2

1

W

e

e

W

i

i

-

=

-

=

=

=

-

-

p

p

[image: image239.wmf])

3

(

)

1

(

)

3

(

2

1

f

W

f

f

+

=

[image: image240.wmf])

3

(

)

1

(

0

f

W

f

-

=

……………………………………………………...…….(11.72D)

Eqs.(11.72A through 11.72D) for the “inner” matrix times vector requires 2 complex multiplications and 4 complex additions.

(d) In Eqs.(11.72A through 11.72D),
[image: image241.wmf]0

W

is intentionally not reduced to the numerical value of 1.0 in order to facilitate the discussions of more general cases.

Finally, performing the “outer” product (matrix times vector) on the RHS of Eq.(11.69), one obtains:

[image: image242.wmf]ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

=

ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

)

3

(

)

2

(

)

1

(

)

0

(

1

0

0

1

0

0

0

0

1

0

0

1

)

3

(

)

2

(

)

1

(

)

0

(

)

3

(

~

)

1

(

~

)

2

(

~

)

0

(

~

1

1

1

1

3

1

2

0

2

2

2

2

f

f

f

f

W

W

W

W

f

f

f

f

C

C

C

C

……………………………………(11.73)

or

[image: image243.wmf])

1

(

)

0

(

)

0

(

1

0

1

2

f

W

f

f

+

=

…………………………………………………………..(11.74A)

[image: image244.wmf])

1

(

)

0

(

)

1

(

)

0

(

)

1

(

1

0

1

1

2

1

2

f

W

f

f

W

f

f

-

=

+

=

………………………………………..(11.74B)

[image: image245.wmf])

3

(

)

2

(

)

2

(

1

1

1

2

f

W

f

f

+

=

…………………………………………………………..(11.74C)

[image: image246.wmf])

3

(

)

2

(

)

3

(

)

2

(

)

3

(

1

1

2

1

1

3

1

2

f

W

W

f

f

W

f

f

+

=

+

=

[image: image247.wmf])

3

(

)

2

(

1

1

1

f

W

f

-

=

………………………………………………………….(11.74D)

Again, Eqs (11.74A-11.74D) requires 2 complex multiplications and 4 complex additions. Thus, the complete RHS of Eq.(11.69) can be computed by only 4 complex multiplications (or
[image: image248.wmf])

2

2

4

2

=

r

N

and 8 complex additions (or Nr = 4*2). Since computational time is mainly controlled by the number of multiplications, hence implementing Eq.(11.69) will significantly reduce the number of multiplication, as compared to direct matrix times vector operations (as shown in Eq.11.67).

For large value of data points (=N), one obtains:

[image: image249.wmf]÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

=

r

N

Nr

N

Ratio

2

2

2

……………………………………………………………..(11.75)

For
[image: image250.wmf],

2

2048

)

11

(

=

=

=

r

N

 Eq. (11.75) gives:

[image: image251.wmf]36

.

372

11

)

2048

(

2

=

=

Ratio

Graphical flow of Eq.(11.69), for case
[image: image252.wmf]4

2

2

2

=

=

=

r

N

Eq. (11.69) can also be presented in the graphical form, as shown in Figure11.4

[image: image253.png]Computational Vectors

Initial data Vector 1 (I=1) Vector 2 (1=2-1)
Vector Fi0)) FAG) £®

fO o8 O < 3%°® 5O

fm

1) > £
wl
& 13 . 1O

Figure 11.4 Graphical form of FFT (Eq.11.69). For the case
[image: image254.wmf]4

2

2

2

=

=

=

r

N

Remarks

(a) Computed vector 1 does correspond to Eq.(11.71).

(b) Computed vector 2 does correspond to Eq.(11.74)

(c) Since r = 2 in this example, one needs to compute 2 vectors
[image: image255.wmf]{

}

)

(

)

(

2

1

k

andf

k

f

=

(d) Each node in the graph is computed from 2(=r) nodes in the “previous” vector.

(e) Factor
[image: image256.wmf]P

W

 (such as
[image: image257.wmf])

,

,

,

3

2

1

0

W

W

W

W

 appears near the arrow head of the transmission path. Absence of
[image: image258.wmf]P

W

implies that
[image: image259.wmf]P

W

=
[image: image260.wmf]0

W

=1.

For example:
[image: image261.wmf]1

1

1

2

)

3

(

)

2

(

)

2

(

W

f

f

f

+

=

, which is the same as Eq.(11.74C)

Graphical Flow of Eq.(11.69), for case
[image: image262.wmf]16

2

2

4

=

=

=

r

N

In order to see a more detailed computational patterns of FFT, a slightly larger data size (
[image: image263.wmf]16

2

2

4

=

=

=

r

N

) is shown in the graphical form, as indicated in Figure 11.5.

[image: image656.wmf]15

7

10

3

13

5

9

1

14

6

11

2

12

4

8

0

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

[image: image657.wmf]14

14

6

6

10

10

2

2

12

12

4

4

8

8

0

0

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

[image: image658.wmf]12

12

12

12

4

4

4

4

8

8

8

8

0

0

0

0

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

[image: image659.wmf]8

8

8

8

8

8

8

8

0

0

0

0

0

0

0

0

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

[image: image660.wmf])

(

4

k

f

[image: image661.wmf])

(

3

k

f

[image: image662.wmf])

(

2

k

f

[image: image663.wmf])

(

1

k

f

[image: image664.wmf])

(

0

k

f

[image: image665.wmf])

15

(

)

14

(

)

13

(

)

12

(

)

11

(

)

10

(

)

9

(

)

8

(

)

7

(

)

6

(

)

5

(

)

4

(

)

3

(

)

2

(

)

1

(

)

0

(

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

[image: image666.wmf])

15

(

)

14

(

)

13

(

)

12

(

)

11

(

)

10

(

)

9

(

)

8

(

)

7

(

)

6

(

)

5

(

)

4

(

)

3

(

)

2

(

)

1

(

)

0

(

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

[image: image667.wmf])

15

(

)

14

(

)

13

(

)

12

(

)

11

(

)

10

(

)

9

(

)

8

(

)

7

(

)

6

(

)

5

(

)

4

(

)

3

(

)

2

(

)

1

(

)

0

(

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

[image: image668.wmf])

15

(

)

14

(

)

13

(

)

12

(

)

11

(

)

10

(

)

9

(

)

8

(

)

7

(

)

6

(

)

5

(

)

4

(

)

3

(

)

2

(

)

1

(

)

0

(

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

[image: image669.wmf])

15

(

)

14

(

)

13

(

)

12

(

)

11

(

)

10

(

)

9

(

)

8

(

)

7

(

)

6

(

)

5

(

)

4

(

)

3

(

)

2

(

)

1

(

)

0

(

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

[image: image670.wmf])

(

~

n

C

[image: image671.wmf])

(

4

k

f

[image: image672.wmf]3

[image: image673.wmf]15

[image: image674.wmf]14

[image: image675.wmf]13

[image: image676.wmf]12

[image: image677.wmf]11

[image: image678.wmf]10

[image: image679.wmf]9

[image: image680.wmf]8

[image: image681.wmf]7

[image: image682.wmf]6

[image: image683.wmf]5

[image: image684.wmf]4

[image: image685.wmf]2

[image: image686.wmf]1

[image: image687.wmf]0

[image: image688.wmf])

0011

(

~

C

[image: image689.wmf])

1111

(

~

C

[image: image690.wmf])

1110

(

~

C

[image: image691.wmf])

1101

(

~

C

[image: image692.wmf])

1100

(

~

C

[image: image693.wmf])

1011

(

~

C

[image: image694.wmf])

1010

(

~

C

[image: image695.wmf])

1001

(

~

C

[image: image696.wmf])

1000

(

~

C

[image: image697.wmf])

0111

(

~

C

[image: image698.wmf])

0110

(

~

C

[image: image699.wmf])

0101

(

~

C

[image: image700.wmf])

0100

(

~

C

[image: image701.wmf])

0010

(

~

C

[image: image702.wmf])

0001

(

~

C

[image: image703.wmf])

0000

(

~

C

[image: image704.wmf])

1001

(

4

f

[image: image705.wmf])

0110

(

4

f

[image: image706.wmf])

0101

(

4

f

[image: image707.wmf])

0100

(

4

f

[image: image708.wmf])

0010

(

4

f

[image: image709.wmf])

0001

(

4

f

[image: image710.wmf])

0000

(

4

f

[image: image711.wmf])

16

2

2

4

=

=

=

r

N

[image: image712.wmf]16

2

2

4

=

=

=

r

N

[image: image713.wmf]3

2

1

=

=

J

J

[image: image714.wmf]å

å

å

=

+

+

=

+

=

=

=

=

1

0

)

2

4

(

0

1

0

2

2

1

0

3

1

0

2

)

2

(

0

1

0

1

0

1

0

2

1

0

4

0

1

2

0

1

0

1

0

0

0

1

2

1

1

0

1

2

2

0

)

114

.

11

....(

..........

..........

..........

..........

..........

)

,

,

(

)

,

,

(

)

113

.

11

........(

..........

..........

..........

..........

..........

)

,

,

(

)

,

,

(

)

112

.

11

.....(

..........

..........

..........

..........

..........

..........

)

,

,

(

)

,

,

(

k

k

n

n

n

k

k

n

n

k

k

n

W

k

n

n

f

n

n

n

f

W

k

k

n

f

k

n

n

f

W

k

k

k

f

k

k

n

f

[image: image715.wmf]ï

ï

ï

î

ï

ï

ï

í

ì

<

<

-

<

<

-

<

<

-

-

=

2

4

;

1

4

4

;

1

4

2

;

1

)

(

T

t

T

for

T

t

T

for

T

t

T

for

t

f

[image: image716.wmf])

15

(

)

14

(

)

13

(

)

12

(

)

11

(

)

10

(

)

9

(

)

8

(

)

7

(

)

6

(

)

5

(

)

4

(

)

3

(

)

2

(

)

1

(

)

0

(

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

[image: image717.wmf])

15

(

)

14

(

)

13

(

)

12

(

)

11

(

)

10

(

)

9

(

)

8

(

)

7

(

)

6

(

)

5

(

)

4

(

)

3

(

)

2

(

)

1

(

)

0

(

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

[image: image718.wmf])

15

(

)

14

(

)

13

(

)

12

(

)

11

(

)

10

(

)

9

(

)

8

(

)

7

(

)

6

(

)

5

(

)

4

(

)

3

(

)

2

(

)

1

(

)

0

(

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

[image: image719.wmf])

15

(

)

14

(

)

13

(

)

12

(

)

11

(

)

10

(

)

9

(

)

8

(

)

7

(

)

6

(

)

5

(

)

4

(

)

3

(

)

2

(

)

1

(

)

0

(

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

[image: image720.wmf])

15

(

)

14

(

)

13

(

)

12

(

)

11

(

)

10

(

)

9

(

)

8

(

)

7

(

)

6

(

)

5

(

)

4

(

)

3

(

)

2

(

)

1

(

)

0

(

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

[image: image721.wmf])

(

0

k

f

[image: image722.wmf])

(

1

k

f

[image: image723.wmf]8

8

8

8

8

8

8

8

0

0

0

0

0

0

0

0

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

[image: image724.wmf]12

12

12

12

4

4

4

4

8

8

8

8

0

0

0

0

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

[image: image725.wmf]14

14

6

6

10

10

2

2

12

12

4

4

8

8

0

0

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

[image: image726.wmf]15

7

10

3

13

5

9

1

14

6

11

2

12

4

8

0

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

[image: image727.wmf])

0000

(

4

f

[image: image728.wmf])

0001

(

4

f

[image: image729.wmf])

0010

(

4

f

[image: image730.wmf])

0100

(

4

f

[image: image731.wmf])

0101

(

4

f

[image: image732.wmf])

0110

(

4

f

[image: image733.wmf])

0111

(

4

f

[image: image734.wmf])

1000

(

4

f

[image: image735.wmf])

1001

(

4

f

[image: image736.wmf])

1010

(

4

f

[image: image737.wmf])

1011

(

4

f

[image: image738.wmf])

1100

(

4

f

[image: image739.wmf])

1101

(

4

f

[image: image740.wmf])

1110

(

4

f

[image: image741.wmf])

1111

(

4

f

[image: image742.wmf])

0011

(

4

f

[image: image743.wmf])

0000

(

~

C

[image: image744.wmf])

0001

(

~

C

[image: image745.wmf])

0010

(

~

C

[image: image746.wmf])

0100

(

~

C

[image: image747.wmf])

0101

(

~

C

[image: image748.wmf])

0110

(

~

C

[image: image749.wmf])

0111

(

~

C

[image: image750.wmf])

1000

(

~

C

[image: image751.wmf])

1001

(

~

C

[image: image752.wmf])

1010

(

~

C

[image: image753.wmf])

1011

(

~

C

[image: image754.wmf])

1100

(

~

C

[image: image755.wmf])

1101

(

~

C

[image: image756.wmf])

1110

(

~

C

[image: image757.wmf])

1111

(

~

C

[image: image758.wmf])

0011

(

~

C

[image: image759.wmf]0

[image: image760.wmf]1

[image: image761.wmf]2

[image: image762.wmf]4

[image: image763.wmf]5

[image: image764.wmf]6

[image: image765.wmf]7

[image: image766.wmf]8

[image: image767.wmf]9

[image: image768.wmf]10

[image: image769.wmf]11

[image: image770.wmf]12

[image: image771.wmf]13

[image: image772.wmf]14

[image: image773.wmf]15

[image: image774.wmf]3

[image: image775.wmf])

(

4

k

f

[image: image776.wmf])

(

~

n

C

[image: image777.wmf])

(

2

k

f

[image: image778.wmf]0

0

1

1

2

1

0

1

1

0

2

1

0

1

1

)

(

)

(

)

)(

(

k

n

r

n

r

k

n

r

n

k

r

k

n

r

n

W

W

W

+

+

+

+

=

[image: image779.wmf])

(

3

k

f

Dual Node Observation:

Careful observation of Figure 11.5 has revealed that each computed
[image: image264.wmf]th

l

-vector (where l=1,2,….r; and
[image: image265.wmf]16

2

2

4

=

=

=

r

N

), we can always find two (dual) nodes which came from the same pair of nodes in the previous vector. For example,
[image: image266.wmf])

0

(

1

f

and
[image: image267.wmf])

8

(

1

f

 are computed in terms of
[image: image268.wmf])

0

(

f

and
[image: image269.wmf])

8

(

f

. Similarly, the dual nodes
[image: image270.wmf])

8

(

2

f

and
[image: image271.wmf])

12

(

2

f

 are computed from the same pair of nodes
[image: image272.wmf])

8

(

1

f

and
[image: image273.wmf])

12

(

1

f

, etc..

Furthermore, the computation of dual nodes are independent of other nodes (within the
[image: image274.wmf]th

l

-vector). Therefore, the computed
[image: image275.wmf])

0

(

1

f

and
[image: image276.wmf])

8

(

1

f

will override the original space of

[image: image277.wmf])

0

(

f

and
[image: image278.wmf])

8

(

f

. Similarly, the computed
[image: image279.wmf])

8

(

2

f

and
[image: image280.wmf])

12

(

2

f

will over ride the space occupied by
[image: image281.wmf])

8

(

1

f

and
[image: image282.wmf])

12

(

1

f

, which in turns, will occupy the original space of
[image: image283.wmf])

8

(

f

and
[image: image284.wmf])

12

(

f

. Hence, only one complex vector (or 2 real vectors) of length N are needed for the entire FFT process !.

Dual Node Spacing.

Observing Fig 11.5, the following statements can be made:

(a) in the first vector (l=1), the dual nodes
[image: image285.wmf])

0

(

1

f

and
[image: image286.wmf])

8

(

1

f

is separated by k=8 (or
[image: image287.wmf])

8

2

16

2

1

=

=

l

N

spaces.

(b) In the second vector (l=2), the dual nodes
[image: image288.wmf])

8

(

2

f

and
[image: image289.wmf])

12

(

2

f

is separated by k=4 (or
[image: image290.wmf])

4

16

2

16

2

2

=

=

l

N

, etc..

Dual Node Computation:

The operation counts in any dual nodes (of the
[image: image291.wmf]nd

th

l

2

=

 vector), such as
[image: image292.wmf])

8

(

2

f

and
[image: image293.wmf])

12

(

2

f

can be explained as (see Fig.11.5):

[image: image294.wmf]4

1

1

2

*

)

12

(

)

8

(

)

8

(

W

f

f

f

+

=

…………………………………………………………(11.76)

[image: image295.wmf]12

1

1

2

*

)

12

(

)

8

(

)

12

(

W

f

f

f

+

=

[image: image296.wmf]4

8

1

1

*

)

12

(

)

8

(

W

W

f

f

+

=

[image: image297.wmf]4

8

)

16

(

2

1

1

)

12

(

)

8

(

W

e

f

f

N

i

ú

ú

û

ù

ê

ê

ë

é

+

=

=

-

p

[image: image298.wmf][

]

4

1

1

)

12

(

)

8

(

W

e

f

f

i

p

-

+

=

[image: image299.wmf]4

1

1

2

*

)

12

(

)

8

(

)

12

(

W

f

f

f

-

=

……………………………………………………..…(11.77)

Thus, the dual nodes
[image: image300.wmf])

8

(

2

f

and
[image: image301.wmf])

12

(

2

f

computation will require 1 complex multiplication and 2 complex additions (See Eqs.(11.76 and 11.77). The weighting factors for the dual nodes [
[image: image302.wmf])

8

(

2

f

and
[image: image303.wmf])

12

(

2

f

] are
[image: image304.wmf])

(

4

P

orW

W

 and
[image: image305.wmf])

(

2

12

N

P

orW

W

+

, respectively.

Thus, in general:

[image: image306.wmf])

2

(

)

(

)

(

1

1

l

l

P

l

l

N

k

f

W

k

f

k

f

+

+

=

-

-

…………………………………………………...(11.78)

[image: image307.wmf])

2

(

)

(

)

2

(

1

1

l

l

P

l

l

l

N

k

f

W

k

f

N

k

f

+

-

=

+

-

-

……………………………………………...(11.79)

Skipping certain nodes’ computation:
Because the pair of dual nodes “k” and
[image: image308.wmf]"

2

"

L

N

k

+

 are separated by the “distance” (
[image: image309.wmf])

2

L

N

=

, hence, at the
[image: image310.wmf]th

L

 level, after every
[image: image311.wmf]L

N

2

 node computation, then the next
[image: image312.wmf]L

N

2

nodes will be skipped ! (see Fig 11.5)

Determination of
[image: image313.wmf]P

W

The values of “P” can de determined by the following steps:

Step 1: Express the index k(=0,1,2,…,N-1) in binary form, using r bits. For k=8, and r =4; one obtains

[image: image314.wmf]0

1

2

3

1

2

)

0

(

2

)

0

(

2

)

0

(

2

)

1

(

0

,

0

,

0

,

1

8

+

+

+

=

=

=

=

-

r

k

Step2: Sliding this binary number “r-L = 4-2 =2” positions to the right, and fill in zeros, the results are:

[image: image315.wmf]0

,

1

,

0

,

0

0

,

1

,

,

0

,

0

,

0

,

1

®

®

X

X

It is important to realize that the results of Step 2 (0,0,1,0) is equivalent to express an integer
[image: image316.wmf]2

2

8

2

2

4

=

=

=

-

-

L

r

k

M

 in the binary formats. In other words: M=2=(0,0,1,0).

Step3: Reverse the order of the bits, then:

0,0,1,0 becomes 0,1,0,0 = P

Thus,
[image: image317.wmf]4

2

)

0

(

2

)

0

(

2

)

1

(

2

)

0

(

0

1

2

3

=

+

+

+

=

P

It is “NOT” really necessary to perform Step 3, since the results of Step 2 can be used to compute “P” as following:

[image: image318.wmf]4

2

)

0

(

2

)

1

(

2

)

0

(

2

)

0

(

3

2

1

0

=

+

+

+

=

P

In conclusion, for
[image: image319.wmf]8

;

2

;

16

2

2

4

=

=

=

=

=

k

L

N

r

 and P=4; the computation of dual nodes from general formulas (See Eqs.11.78, 11.79) gives:

[image: image320.wmf])

12

(

)

8

(

)

8

(

1

4

1

2

f

W

f

f

+

=

[image: image321.wmf])

12

(

)

8

(

)

12

(

1

4

1

2

f

W

f

f

-

=

The above 2 equations are identical to Eqs.(11.76,11.77)!

Computer Implementation to Find Value of “P” (in
[image: image322.wmf])

P

W

Based on the previous discussions (with the 3-step procedures), to find the value of “P”, one only needs a procedure to express an integer
[image: image323.wmf]L

r

k

M

-

=

2

 in binary formats, with “r” bits.

Assuming M (a base 10 number) can be expressed as (assuming r=4bits):

[image: image324.wmf]1

1

2

3

4

J

a

a

a

a

M

=

=

………………………………………………………………….(11.80)

Divide M by 2 (say,
[image: image325.wmf])

2

1

2

J

J

=

, multiply the truncated result by 2 (say,
[image: image326.wmf]),

2

*

2

2

J

JJ

=

and compute the difference between the original number (=M=
[image: image327.wmf]:

&

&

)

2

1

JJ

J

[image: image328.wmf]þ

ý

ü

î

í

ì

÷

ø

ö

ç

è

æ

-

=

-

=

2

*

2

2

1

Truncated

M

M

JJ

J

IDIFF

………………………………………...(11.81)

If
[image: image329.wmf],

0

=

IDIFF

 then the bit
[image: image330.wmf]0

1

=

a

If
[image: image331.wmf],

0

¹

IDIFF

 then the bit
[image: image332.wmf]1

1

=

a

Once the bit
[image: image333.wmf]1

a

 been determined, the value of
[image: image334.wmf]1

J

 is set to
[image: image335.wmf]2

J

 (or value of
[image: image336.wmf]1

J

 is reduced by a factor of 2; since previous
[image: image337.wmf]1

J

=
[image: image338.wmf]1

2

3

4

a

a

a

a

M

=

.
[image: image339.wmf]3

4

2

3

1

2

0

1

1

2

)

(

2

)

(

2

)

(

2

)

(

a

a

a

a

J

+

+

+

=

 and similar process can be used to determine the value of bit
[image: image340.wmf],

2

a

 etc…

Example 1: For k=8;
[image: image341.wmf]4

;

2

16

=

=

=

r

N

r

bits and
[image: image342.wmf].

2

=

L

 Find the value of “P” ??

[image: image343.wmf]L

r

k

M

-

=

2

=
[image: image344.wmf]1

2

4

2

2

8

J

=

=

=

-

Determine the bit
[image: image345.wmf]:

1

a

(Index I=1)

Initialize P=0

[image: image346.wmf]1

2

2

2

1

2

=

=

=

J

J

[image: image347.wmf]0

)

2

)(

1

(

2

)

2

*

(

2

2

1

=

-

=

=

-

=

J

JJ

J

IDIFF

Thus

[image: image348.wmf]0

1

=

a

[image: image349.wmf]0

0

2

*

0

2

*

=

+

=

+

=

IDIFF

P

P

 or
[image: image350.wmf]]

0

2

)

0

(

0

2

)

(

[

3

1

=

+

=

+

=

-

I

r

a

P

P

Determine the bit
[image: image351.wmf]2

a

[Index I =2]

[image: image352.wmf]1

2

1

=

=

J

J

[image: image353.wmf]0

2

1

2

1

2

=

=

=

J

J

[image: image354.wmf]1

)

2

*

0

(

1

)

2

*

(

2

2

1

=

-

=

=

-

=

J

JJ

J

IDIFF

Thus
[image: image355.wmf]1

2

=

a

[image: image356.wmf]1

1

2

*

0

2

*

=

+

=

+

=

IDIFF

P

P

 or
[image: image357.wmf]]

4

2

)

1

(

0

2

)

(

[

2

2

=

+

=

+

=

-

I

r

a

P

P

Determine the bit
[image: image358.wmf]3

a

[Index I =3]

[image: image359.wmf]0

2

1

=

=

J

J

[image: image360.wmf]0

2

0

2

1

2

=

=

=

J

J

[image: image361.wmf]0

)

2

*

0

(

0

)

2

*

(

2

2

1

=

-

=

=

-

=

J

JJ

J

IDIFF

Thus
[image: image362.wmf]0

3

=

a

[image: image363.wmf]2

0

2

*

1

2

*

=

+

=

+

=

IDIFF

P

P

 or
[image: image364.wmf]]

4

2

)

0

(

4

2

)

(

[

1

3

=

+

=

+

=

-

I

r

a

P

P

Determine the bit
[image: image365.wmf]4

a

[Index I =4=r]

[image: image366.wmf]0

2

1

=

=

J

J

[image: image367.wmf]0

2

0

2

1

2

=

=

=

J

J

[image: image368.wmf]0

2

*

)

0

(

0

)

2

*

(

2

2

1

=

-

=

=

-

=

J

JJ

J

IDIFF

Thus
[image: image369.wmf]0

4

=

a

[image: image370.wmf]4

0

2

*

2

2

*

=

+

=

+

=

IDIFF

P

P

 or
[image: image371.wmf]]

4

2

)

0

(

4

2

)

(

[

0

4

=

+

=

+

=

-

I

r

a

P

P

Remarks:

Although the “intermediate” results might be different, at the end of the do-loop process (computing
[image: image372.wmf]4

a

), both formulas for “P”, such as

[image: image373.wmf]or

IDIFF

P

P

;

2

*

+

=

………………………………………………………………(11.82)

[image: image374.wmf];

2

)

(

I

r

I

a

P

P

-

+

=

 where I=1,2,3…,r ………………………………………………(11.83)

will eventually give the same final answers for “P”.

Example 2: For k=12;
[image: image375.wmf];

2

16

4

=

=

=

r

N

 and
[image: image376.wmf].

3

=

L

 Compute the corresponding value of “P” ??

One has:

[image: image377.wmf]L

r

k

M

-

=

2

=
[image: image378.wmf]1

3

4

6

2

12

J

=

=

=

-

Determine the bit
[image: image379.wmf]:

1

a

(Index I=1)

Initialize P=0

[image: image380.wmf]3

2

6

2

1

2

=

=

=

J

J

[image: image381.wmf]0

)

2

)(

3

(

6

)

2

*

(

2

2

1

=

-

=

=

-

=

J

JJ

J

IDIFF

Thus

[image: image382.wmf]0

1

=

a

[image: image383.wmf]0

0

2

*

0

2

*

=

+

=

+

=

IDIFF

P

P

 or
[image: image384.wmf]]

0

2

)

0

(

0

2

)

(

[

3

1

1

=

+

=

+

=

-

r

a

P

P

Determine the bit
[image: image385.wmf]2

a

[Index I =2]

[image: image386.wmf]1

2

3

2

1

2

=

=

=

J

J

[image: image387.wmf]1

2

*

)

1

(

3

)

2

*

(

2

2

1

=

-

=

=

-

=

J

JJ

J

IDIFF

Thus
[image: image388.wmf]1

2

=

a

[image: image389.wmf]1

1

2

*

0

2

*

=

+

=

+

=

IDIFF

P

P

 or
[image: image390.wmf]]

4

2

)

1

(

0

2

)

(

[

2

2

2

=

+

=

+

=

-

r

a

P

P

Determine the bit
[image: image391.wmf]3

a

[Index I =3]

[image: image392.wmf]1

2

1

=

=

J

J

[image: image393.wmf]0

2

1

2

1

2

=

=

=

J

J

[image: image394.wmf]1

2

*

)

0

(

1

)

2

*

(

2

2

1

=

-

=

=

-

=

J

JJ

J

IDIFF

Thus
[image: image395.wmf]1

3

=

a

[image: image396.wmf]3

1

2

*

1

2

*

=

+

=

+

=

IDIFF

P

P

 or
[image: image397.wmf]]

6

2

)

1

(

4

2

)

(

[

1

3

3

=

+

=

+

=

-

r

a

P

P

Determine the bit
[image: image398.wmf]4

a

[Index I =4]

[image: image399.wmf]0

2

1

=

=

J

J

[image: image400.wmf]0

2

0

2

1

2

=

=

=

J

J

[image: image401.wmf]0

2

*

)

0

(

0

)

2

*

(

2

2

1

=

-

=

=

-

=

J

JJ

J

IDIFF

Thus
[image: image402.wmf]0

4

=

a

[image: image403.wmf]6

0

2

*

3

2

*

=

+

=

+

=

IDIFF

P

P

 or
[image: image404.wmf]]

6

2

)

0

(

6

2

)

(

[

0

4

4

=

+

=

+

=

-

r

a

P

P

Remarks:

Although both formulas for “P”, shown in Eqs(11.82,11.83), will yield the same “final” value of “P”. Implementation of Eq.(11.82) will be more computationally efficient !.

UnSrambling the FFT.

For the case
[image: image405.wmf]4

2

16

=

=

=

r

N

(see Figure 11.5), the final ‘bit-reversing’ operation for FFT is shown in Fig. 11.6.

For do-loop index k=0=(0,0,0,0)
[image: image406.wmf]Þ

i=(0,0,0,0)=0

[image: image407.wmf]Endif

T

i

f

i

f

k

f

k

f

T

Then

k

GT

i

If

=

=

=

)

(

)

(

)

(

)

(

)

.

.

(

4

4

4

4

Hence,
[image: image408.wmf])

0

(

4

f

=
[image: image409.wmf])

0

(

4

f

; no swapping.

For k=1=(0,0,0,1)
[image: image410.wmf]Þ

 i=(1,0,0,0)=bit-reversion=8

[image: image411.wmf]Endif

T

f

f

f

f

T

Then

k

GT

i

If

=

=

=

)

8

(

)

8

(

)

1

(

)

1

(

)

.

.

(

4

4

4

4

Hence,
[image: image412.wmf])

1

(

4

f

=
[image: image413.wmf])

8

(

4

f

; are swapped.

. For k=2=(0,0,1,0)
[image: image414.wmf]Þ

 i=(0,1,0,0)=4

Hence,
[image: image415.wmf])

2

(

4

f

=
[image: image416.wmf])

4

(

4

f

; are swapped.

 . For k=3=(0,0,1,1)
[image: image417.wmf]Þ

 i=(1,1,0,0)=12

Hence,
[image: image418.wmf])

3

(

4

f

=
[image: image419.wmf])

12

(

4

f

; are swapped.

. For k=4=(0,1,0,0)
[image: image420.wmf]Þ

 i=(0,0,1,0)=2

In this case, since “i” is not greater than “k”.

Hence, no swapping, since
[image: image421.wmf])

2

(

4

=

k

f

 and
[image: image422.wmf])

4

(

4

=

i

f

; had already been swapped earlier !.

.

.

. etc…

Computer Implementation of FFT (for case
[image: image423.wmf]).

2

r

N

=

The pair of dual nodes computation are given by Eqs.(11.78,11.79). To avoid “complex number” operations, Eq.(11.78) can be computed based on “real number” operations, as following:

[image: image424.wmf]{

}

{

}

)

(

)

(

)

(

)

(

1

1

k

if

k

f

k

if

k

f

I

L

R

L

I

L

R

L

-

-

+

=

+

[image: image425.wmf]{

}

þ

ý

ü

î

í

ì

+

+

+

+

+

-

-

)

2

(

)

2

(

*

1

1

,

,

L

I

L

L

R

L

I

P

R

P

N

k

if

N

k

f

iW

W

……….…….(11.84)

In Eq. (11.84), the superscripts R and I denote Real and Imaginary components, respectively.

Multiplying the last 2 complex numbers, one obtains:

[image: image426.wmf]{

}

{

}

)

(

)

(

)

(

)

(

1

1

k

if

k

f

k

if

k

f

I

L

R

L

I

L

R

L

-

-

+

=

+

[image: image427.wmf]þ

ý

ü

î

í

ì

+

-

+

+

-

-

)

2

(

*

)

2

(

*

1

,

1

,

L

I

L

I

P

L

R

L

R

P

N

k

f

W

N

k

f

W

[image: image428.wmf]þ

ý

ü

î

í

ì

+

+

+

+

-

-

)

2

(

*

)

2

(

*

1

,

1

,

L

R

L

I

P

L

I

L

R

P

N

k

f

W

N

k

f

W

i

……………..…(11.85)

Equating the Real (and then, Imaginary) components on the Left-Hand-Side (LHS), and the Right-Hand-Side (RHS) of Eq.(11.85), one obtains:

[image: image429.wmf]{

}

{

}

þ

ý

ü

î

í

ì

+

-

+

+

=

-

-

-

)

2

(

*

)

2

(

*

)

(

)

(

1

,

1

,

1

L

I

L

I

P

L

R

L

R

P

R

L

R

L

N

k

f

W

N

k

f

W

k

f

k

f

……………...(11.86A)

[image: image430.wmf]{

}

{

}

þ

ý

ü

î

í

ì

+

+

+

+

+

=

-

-

-

)

2

(

*

)

2

(

*

)

(

)

(

1

,

1

,

1

L

R

L

I

P

L

I

L

R

P

I

L

I

L

N

k

f

W

N

k

f

W

k

f

k

f

……………..(11.86B)

Recalled Eq. (11.64):

[image: image431.wmf]N

i

e

W

p

2

-

=

Hence:

[image: image432.wmf])

sin(

)

cos(

2

2

q

q

q

p

p

i

e

e

e

W

i

N

P

i

P

N

i

P

-

=

=

=

÷

÷

ø

ö

ç

ç

è

æ

=

-

-

-

…………………………….……(11.87)

where:

[image: image433.wmf]N

P

N

P

28

.

6

2

=

=

p

q

…………………………………………………………………...(11.88)

Thus:

[image: image434.wmf])

cos(

,

q

=

R

P

W

…………………………………………………………………….(11.89A)

[image: image435.wmf])

sin(

,

q

-

=

I

P

W

……………………………………………………………………(11.89B)

Substituting Eqs.(11.89A,11.89B) into Eqs.(11.86A,11.86B), one gets:

[image: image436.wmf]{

}

{

}

þ

ý

ü

î

í

ì

+

+

+

+

=

-

-

-

)

2

(

*

)

sin(

)

2

(

*

)

cos(

)

(

)

(

1

1

1

L

I

L

L

R

L

R

L

R

L

N

k

f

N

k

f

k

f

k

f

q

q

……………(11.90A)

[image: image437.wmf]{

}

{

}

þ

ý

ü

î

í

ì

+

-

+

+

=

-

-

-

)

2

(

*

)

sin(

)

2

(

*

)

cos(

)

(

)

(

1

1

1

L

R

L

L

I

L

I

L

I

L

N

k

f

N

k

f

k

f

k

f

q

q

…………….(11.90B)

Similarly, the single (complex number) Eq.11.79 can be expressed as 2 equivalent (real number) Eqs. Like Eqs. (11.90A,11.90B) !

c%%
 subroutine fft(freal,fimag,n,igama)
 implicit real*8(a-h,o-z)
 dimension freal(*),fimag(*)
c......purpose: fft algorithms (for general base 2)
c......programmed by: Prof. Duc T. Nguyen (DNguyen@odu.edu)
c......original date: 07-10-2008
c......freal(n) = real number of N complex data points
c......fimag(n) = imaginary number of N complex data points
c......n = number of complex data points = 2**igama
c......example n = 2**4 = 16; hence igama = 4
c......remarks: Both DFT & FFT did give IDENTICAL results !
c
c write(6,*) 'inside routine fft: echo input freal,fimag = '
 do 24 i=1,n
c write(6,*) i, freal(i), fimag(i)
 24 continue
 k=0
c write(6,*) 'n, igama = ',n,igama
 do 1 L=1,igama
 n2=n/2**L
 igaminusL=igama-L
 123 do 2 i=1,n2
 m=k/2**igaminusL
 call bitreverse(m,igama,ip)
c write(6,*) 'L, i, m, ip = ',L,i,m,ip
 theta=6.283185*ip/n
 c=cos(theta)
 s=sin(theta)
c write(6,*) 'theta,c,s = ',theta,c,s
 k1=k+1
 nodedual=k1+n2
c write(6,*) 'dual nodes = k1, nodedual = ',k1,nodedual
c......applying Duc's Eqs.(11.90A, 11.90B)
 partreal=c*freal(nodedual)+s*fimag(nodedual)
 partimag=c*fimag(nodedual)-s*freal(nodedual)
 freal(nodedual)=freal(k1)-partreal
 fimag(nodedual)=fimag(k1)-partimag
 freal(k1)=freal(k1)+partreal
 fimag(k1)=fimag(k1)+partimag
 k=k+1
c write(6,*) 'partreal, partimag = ',partreal,partimag
 2 continue
c write(6,*) 'computed array at level L = ',L
 do 26 kk=1,n
c write(6,*) 'freal(kk),fimag(kk) = ',freal(kk),fimag(kk)
 26 continue
 k=k+n2
 if (k .lt. n) go to 123
 k=0
 1 continue
c
c write(6,*) 'before unscramble FFT: i,freal,fimag ='
 do 22 i=1,n
c write(6,*) i, freal(i), fimag(i)
 22 continue
c......unscramble results of FFT
 call unscramble(freal,fimag,n,igama)
c......output FFT solution
c write(6,*) 'after unscramble FFT: i,freal,fimag ='
 sumreal=0.d0
 sumimag=0.d0
 do 42 i=1,n
c write(6,*) i, freal(i), fimag(i)
 sumreal=sumreal+dabs(freal(i))
 sumimag=sumimag+dabs(fimag(i))
 42 continue
 write(6,*) 'FFT: sumreal,sumimag = ',sumreal,sumimag
 999 return
 end
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 subroutine bitreverse(m,igam,ip)
 ip=0
 j1=m
c
 do 2 i=1,igam
 j2=j1/2
 idiff=j1-j2*2
 ip=ip*2 + idiff
 j1=j2
 2 continue
c write(6,*) 'p, or ii = ',ip
 return
 end
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 subroutine unscramble(freal,fimag,n,igama)
 implicit real*8(a-h,o-z)
 dimension freal(*),fimag(*)
c
 do 2 k=1,n
 m=k-1
 call bitreverse(m,igama,ii)
 i=ii+1
 if (i .le. k) go to 2
 temporeal=freal(k)
 tempoimag=fimag(k)
 freal(k)=freal(i)
 fimag(k)=fimag(i)
 freal(i)=temporeal
 fimag(i)=tempoimag
 2 continue
 return
 end
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

11.4 Theoretical Development of FFT (The case
[image: image438.wmf])

2

r

N

=

Recalled Eq.(11.65):

[image: image439.wmf]å

-

=

=

1

0

)

(

)

(

~

N

k

nk

W

k

f

n

C

………………………………………………………(11.65, repeated)

Where
[image: image440.wmf]N

i

e

W

p

2

-

=

………………………………………………………….(11.64,repeated)

Considered case
[image: image441.wmf]4

2

2

2

=

=

=

r

N

In this case, we can express k and n as 2-bit binary numbers:

k = 0,1,2,3 =
[image: image442.wmf])

1

,

1

(

),

0

,

1

(

),

1

,

0

(

),

0

,

0

(

)

,

(

0

1

=

k

k

…………………………………….…(11.91)

n = 0,1,2,3 =
[image: image443.wmf])

1

,

1

(

),

0

,

1

(

),

1

,

0

(

),

0

,

0

(

)

,

(

0

1

=

n

n

………………………………….……(11.92)

Eqs. (11.91,11..92) can also be expressed in compact forms, as following:

[image: image444.wmf]0

1

2

k

k

k

+

=

…………………………………………………………………………(11.93)

[image: image445.wmf]0

1

2

n

n

n

+

=

………………………………………………………………………....(11.94)

where
[image: image446.wmf],

0

,

,

,

0

1

0

1

=

n

n

k

k

or 1

In the new notations, Eq.(11.65) becomes:

[image: image447.wmf]å

å

=

=

+

+

=

1

0

1

0

)

2

)(

2

(

0

1

0

1

0

1

0

1

0

1

)

,

(

)

,

(

~

k

k

k

k

n

n

W

k

k

f

n

n

C

…………………………………………..(11.95)

Considered:

[image: image448.wmf](

)

(

)

(

)

(

)

0

0

1

1

0

1

0

1

0

1

2

2

2

2

2

*

k

n

n

k

n

n

k

k

n

n

W

W

W

+

+

+

+

=

[image: image449.wmf](

)

0

0

1

1

01

1

1

2

2

4

k

n

n

k

n

k

n

W

W

W

+

=

[image: image450.wmf](

)

0

0

1

1

0

1

1

2

2

4

]

[

k

n

n

k

n

k

n

W

W

W

+

=

…………………………………………..(11.96)

Notice that:

[image: image451.wmf][

]

1

)

2

sin(

)

2

cos(

2

4

4

2

4

2

4

=

-

=

=

÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

=

-

-

-

p

p

p

p

p

i

e

e

e

W

i

i

N

i

Hence Eq. (11.95) can be simplified to:

[image: image452.wmf]å

å

=

+

=

ú

û

ù

ê

ë

é

=

1

0

)

2

(

1

0

)

2

(

0

1

0

1

~

0

0

0

1

1

1

0

)

,

(

)

,

(

k

k

n

n

k

k

n

W

W

k

k

f

n

n

C

……………………………….……(11.97)

Define the inner summation as (notice: the index
[image: image453.wmf]1

k

 is repeated, hence
[image: image454.wmf]1

k

will be disappeared, and replaced by the index
[image: image455.wmf]0

n

):

[image: image456.wmf]å

=

=

1

0

)

2

(

0

1

0

0

1

1

1

0

)

,

(

)

,

(

k

k

n

W

k

k

f

k

n

f

……………………………………………………(11.98)

or:

[image: image457.wmf]0

2

0

0

0

0

0

1

)

,

1

(

)

,

0

(

)

,

(

n

W

k

f

W

k

f

k

n

f

+

=

…………………………………………….(11.99)

Hence:

[image: image458.wmf]2

2

0

1

2

2

0

1

0

0

0

1

0

0

0

1

)

1

,

1

(

)

1

,

0

(

)

1

,

1

(

)

1

,

0

(

)

1

,

1

(

)

0

,

1

(

)

0

,

0

(

)

0

,

1

(

)

0

,

0

(

)

0

,

1

(

)

1

,

1

(

)

1

,

0

(

)

1

,

1

(

)

1

,

0

(

)

1

,

0

(

)

0

,

1

(

)

0

,

0

(

)

0

,

1

(

)

0

,

0

(

)

0

,

0

(

W

f

f

W

f

W

f

f

W

f

f

W

f

W

f

f

W

f

f

W

f

W

f

f

W

f

f

W

f

W

f

f

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

……………………….…..(11.100)

In matrix addition, Eq.(11.100) can be written as:

[image: image459.wmf]ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

)

1

,

1

(

)

0

,

1

(

)

1

,

0

(

)

0

,

0

(

0

1

0

0

0

1

0

1

0

0

0

1

)

1

,

1

(

)

0

,

1

(

)

1

,

0

(

)

0

,

0

(

2

2

0

0

1

1

1

1

f

f

f

f

W

W

W

W

f

f

f

f

………………………………………….(11.101)

Thus, Eq. (11.101) plays the same role as Eq.(11.71) !

Now, define the outer summation as (notice : the index
[image: image460.wmf]0

k

is repeated, hence
[image: image461.wmf]0

k

will be disappeared and replaced by the index
[image: image462.wmf]:

)

1

n

[image: image463.wmf]å

=

+

=

1

0

)

2

(

0

0

1

1

0

2

0

0

0

1

)

,

(

)

,

(

k

k

n

n

W

k

n

f

n

n

f

……………………………………………….(11.102)

or:

[image: image464.wmf]1

)

2

(

0

1

0

)

2

(

0

1

1

0

2

0

1

0

1

)

1

,

(

)

0

,

(

)

,

(

n

n

n

n

W

n

f

W

n

f

n

n

f

+

+

+

=

[image: image465.wmf])

2

(

0

1

0

1

1

0

2

0

1

)

1

,

(

)

0

,

(

)

,

(

n

n

W

n

f

n

f

n

n

f

+

+

=

………………………………………..….(11.103)

Hence:

[image: image466.wmf]3

1

1

2

1

1

1

2

2

1

1

2

0

1

1

2

)

1

,

1

(

)

0

,

1

(

)

1

,

1

(

)

1

,

1

(

)

0

,

1

(

)

0

,

1

(

)

1

,

0

(

)

0

,

0

(

)

1

,

0

(

)

1

,

0

(

)

0

,

0

(

)

0

,

0

(

W

f

f

f

W

f

f

f

W

f

f

f

W

f

f

f

+

=

+

=

+

=

+

=

…………………………..…………………………(11.104)

[image: image467.wmf]ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

)

1

,

1

(

)

0

,

1

(

)

1

,

0

(

)

0

,

0

(

1

0

0

1

0

0

0

0

1

0

0

1

)

1

,

1

(

)

0

,

1

(

)

1

,

0

(

)

0

,

0

(

1

1

1

1

3

1

2

0

2

2

2

2

f

f

f

f

W

W

W

W

f

f

f

f

…………………………………………(11.105)

Eq. (11.105) plays the same role as Eq. (11.73) !

Also, comparing Eq.(11.95) and Eq.(11.103), one gets:

[image: image468.wmf])

,

(

)

,

(

~

1

0

2

0

1

n

n

f

n

n

C

=

…………………………………………………………...…(11.106)

Thus, Eq.(11.106) implies that unscrambling (or bit-reversed operations) the results of
[image: image469.wmf])

,

(

1

0

2

n

n

f

will give us the desired results for
[image: image470.wmf])

,

(

0

1

~

n

n

C

 !.

The set of Eqs.(11.98,11.102,11.106) represents the original Cooley-Turkey [Refs. 11.1 – 11.4] formulation of the FFT.

Considered the Case
[image: image471.wmf]8

2

2

3

=

=

=

r

N

In this case, k and n can be expressed in compact forms (using 3-bit binary numbers) as:

[image: image472.wmf])

108

.

11

.........(

..........

..........

..........

..........

..........

..........

..........

2

4

7

,.....

2

,

1

,

0

)

107

.

11

(

..........

..........

..........

..........

..........

..........

..........

..........

2

4

7

,.....

2

,

1

,

0

0

1

2

0

1

2

n

n

n

n

k

k

k

k

+

+

=

=

+

+

=

=

where
[image: image473.wmf],

0

,

=

i

i

n

k

 or 1

In the new notations, Eq. (11.65) becomes:

[image: image474.wmf]å

å

å

=

=

=

+

+

+

+

=

1

0

1

0

1

0

)

2

4

)(

2

4

(

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

)

,

,

(

)

,

,

(

~

k

k

k

k

k

k

n

n

n

W

k

k

k

f

n

n

n

C

……………………….(11.109)

Considered:

[image: image475.wmf]0

0

1

2

1

0

1

2

2

0

1

2

0

1

2

0

1

2

)

2

4

(

2

)

2

4

(

4

)

2

4

(

)

2

4

)(

2

4

(

k

n

n

n

k

n

n

n

k

n

n

n

k

k

k

n

n

n

W

W

W

W

+

+

+

+

+

+

+

+

+

+

+

+

=

[image: image476.wmf]2

0

2

1

2

2

0

1

2

0

1

2

4

8

16

)

2

4

)(

2

4

(

]

][

[

k

n

k

n

k

n

k

k

k

n

n

n

W

W

W

W

=

+

+

+

+

[image: image477.wmf]0

0

1

2

1

0

1

1

2

)

2

4

(

2

)

2

(

8

]

[

k

n

n

n

k

n

n

k

n

W

W

W

+

+

+

+

+

………………….…..(11.110)

Due to the definitions of W (shown in Eq.11.64), each of the 3 terms inside the square bracket is equal to 1. Thus, Eq. (11.109) can be simplified to:

[image: image478.wmf]0

0

1

2

1

0

1

0

1

2

2

0

)

2

4

(

2

)

2

(

1

0

1

1

1

0

4

0

1

2

0

1

2

)

,

,

(

)

,

,

(

~

k

n

n

n

k

n

n

k

k

k

k

n

W

W

W

k

k

k

f

n

n

n

C

+

+

+

=

=

=

å

å

å

ú

û

ù

ê

ë

é

=

…………..(11.111)

Define:

Hence,

[image: image479.wmf])

,

,

(

)

,

,

(

~

2

1

0

3

0

1

2

n

n

n

f

n

n

n

C

=

……………………………………………………....(11.115)

Remarks about Eq. (11.112):

[image: image480.wmf]0

4

0

1

0

0

1

0

1

0

1

)

,

,

1

(

)

,

,

0

(

)

,

,

(

n

W

k

k

f

W

k

k

f

k

k

n

f

+

=

………………………………..(11.112A)

[image: image481.wmf]0

1

0

1

0

1

0

1

)

1

,

1

,

1

(

)

1

,

1

,

0

(

)

1

,

1

,

0

(

)

0

,

1

,

1

(

)

0

,

1

,

0

(

)

0

,

1

,

0

(

)

1

,

0

,

1

(

)

1

,

0

,

0

(

)

1

,

0

,

0

(

)

0

,

0

,

1

(

)

0

,

0

,

0

(

)

0

,

0

,

0

(

W

f

f

f

W

f

f

f

W

f

f

f

W

f

f

f

+

=

+

=

+

=

+

=

Dual nodes

 ……………….…..(11.112B)

[image: image482.wmf]0

4

1

0

4

1

0

4

1

0

4

1

)

1

,

1

,

1

(

)

1

,

1

,

0

(

)

1

,

1

,

1

(

)

1

,

1

,

0

(

)

1

,

1

,

1

(

)

0

,

1

,

1

(

)

0

,

1

,

0

(

)

0

,

1

,

1

(

)

0

,

1

,

0

(

)

0

,

1

,

1

(

)

1

,

0

,

1

(

)

1

,

0

,

0

(

)

1

,

0

,

1

(

)

1

,

0

,

0

(

)

1

,

0

,

1

(

)

0

,

0

,

1

(

)

0

,

0

,

0

(

)

0

,

0

,

1

(

)

0

,

0

,

0

(

)

0

,

0

,

1

(

W

f

f

W

f

f

f

W

f

f

W

f

f

f

W

f

f

W

f

f

f

W

f

f

W

f

f

f

-

=

+

=

-

=

+

=

-

=

+

=

-

=

+

=

 skip computaion

[image: image483.png]L=1 L=2 L=3=r
NOEFICRRS) PACHLEY) PACH ALY fing,n,m)
f(0)=7(000) e——> fi()—> o 160> o 6>, 0

/

el

FD= 5001

_F' f‘y/f,/‘\

L. \\f\z\ll /,.

F0)=70L0) s raf s o5 ror e ——fer
F3=r0OLY o—l f‘}}[;‘,. -------------- f;}‘o %
4= £(,0,0 \\\ 1\\ E £4) £48

F@=70100) o /f}/{?*\ /.
F&)=700D (1O, 3 PTGl B
SRS -
£©= 1010 / ﬁ(t\?‘)\%A\"‘/'"'& A E (o e O
.

FD=1aLD é

FIGURE 11.7 : Graphical Form of FFT (for the case
[image: image484.wmf]8

2

2

3

=

=

=

r

N

).
Considered the general case
[image: image485.wmf]r

N

2

=

(r = any integer number)

Eqs. (11.107,11.108) can be generalized to
[image: image486.wmf]r

N

2

=

, where r can be any integer number, as following:

[image: image487.wmf])

117

.

11

..(

..........

..........

..........

..........

..........

..........

2

........

2

2

)

116

.

11

..(

..........

..........

..........

..........

..........

..........

2

........

2

2

0

1

1

2

2

1

1

0

1

1

2

2

1

1

n

n

n

n

n

k

k

k

k

k

r

r

r

r

r

r

r

r

+

+

+

+

=

+

+

+

+

=

-

-

-

-

-

-

-

-

Eq. (11.65) becomes:

[image: image488.wmf]å

å

å

å

=

-

-

-

-

-

-

=

1

0

1

0

2

1

0

1

2

1

0

1

2

1

)

,....,

,

(

.

..........

)

,

,....

,

(

~

k

k

k

k

P

r

r

r

r

r

r

W

k

k

k

f

n

n

n

n

C

……………..…(11.118)

where:

[image: image489.wmf])

....

2

2

)(

....

2

2

(

0

2

2

1

1

0

2

2

1

1

k

k

k

n

n

n

P

r

r

r

r

r

r

r

r

W

W

+

+

+

+

+

+

-

-

-

-

-

-

-

-

=

……………………………………...(11.119)

The first term of Eq. (11.119) can be computed as:

[image: image490.wmf]1

1

0

1

1

2

2

1

1

1

2

)

2

....

2

2

(

-

-

-

-

-

-

+

+

+

=

r

r

r

r

r

r

k

n

n

n

n

P

W

W

[image: image491.wmf]=

1

P

W

 EMBED Equation.3 [image: image492.wmf]{

}

)

2

(

2

1

1

2

-

-

-

r

r

r

r

k

n

W

 EMBED Equation.3 [image: image493.wmf]{

}

{

}

)

(

2

)

(

2

)

2

(

2

1

0

1

1

1

1

2

3

...

-

-

-

-

-

-

r

r

r

r

r

r

r

r

k

n

k

n

k

n

W

W

W

Since

[image: image494.wmf](

)

1

)

2

sin(

)

2

cos(

2

2

2

2

2

2

2

=

-

=

=

÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

=

-

-

-

p

p

p

p

p

i

e

e

e

W

i

i

N

i

r

r

r

r

Hence all terms inside the brackets are equal to 1.

Thus:

[image: image495.wmf])

(

2

1

0

1

1

-

-

=

r

r

k

n

P

W

W

…………………………………………………………………..(11.120)

Similarly, the second term of Eq.(11.119) can be computed as:

[image: image496.wmf]2

2

0

1

1

2

2

1

1

2

2

)

2

....

2

2

(

-

-

-

-

-

-

+

+

+

=

r

r

r

r

r

r

k

n

n

n

n

P

W

W

[image: image497.wmf][

]

)

2

(

2

2

1

3

2

-

-

-

=

r

r

r

r

k

n

P

W

W

[image: image498.wmf][

]

2

2

0

1

2

2

4

2

)

2

(

)

2

(

2

....

-

-

-

-

-

+

r

r

r

r

r

r

k

n

n

k

n

W

W

……………………………..(11.121)

or

[image: image499.wmf]2

2

0

1

2

2

)

2

(

-

-

+

=

r

r

k

n

n

P

W

W

………………………………………………………………(11.122)

Eq. (11.118) will eventually become:

[image: image500.wmf]..

*

)

,....,

,

(

......

)

,

,....

,

(

~

1

0

1

1

2

)

2

(

1

)

(

2

0

2

1

0

1

2

1

0

1

2

2

2

0

1

0

1

1

0

1

å

å

å

å

=

+

-

-

-

-

-

-

=

-

-

-

ú

û

ù

ê

ë

é

=

k

k

k

k

n

n

k

k

n

r

r

r

r

r

r

r

r

r

W

W

k

k

k

f

n

n

n

n

C

[image: image501.wmf]0

0

2

2

1

1

)

.........

2

2

(

k

n

n

n

r

r

r

r

W

+

+

-

-

-

-

……………………...(11.123)

Let

[image: image502.wmf])

(

2

1

0

0

2

1

0

2

0

1

1

0

1

1

)

,...,

,

(

)

,...,

,

(

-

-

-

å

=

-

-

-

=

r

r

r

k

n

k

r

r

r

W

k

k

k

f

k

k

n

f

……………………………..(11.124)

[image: image503.wmf]2

2

0

1

2

2

)

2

(

1

0

0

2

0

1

0

4

3

1

0

2

)

,...,

,

(

)

,...,

,

,

,

(

-

-

-

+

=

-

-

-

å

=

r

r

r

k

n

n

k

r

r

r

W

k

k

n

f

k

k

k

n

n

f

………………..(11.125)

…..

…..

[image: image504.wmf])

126

.

11

.....(

..........

)

,...,

,

,

(

)

,......,

,

,

(

0

0

2

2

1

1

0

)

.....

2

2

(

1

0

0

2

1

0

1

1

2

1

0

k

n

n

n

k

r

r

r

r

r

r

r

W

k

n

n

n

f

n

n

n

n

f

+

+

+

=

-

-

-

-

-

-

å

=

 EMBED Equation.3 [image: image505.wmf])

,

,...,

,

,

(

)

,

,....

,

(

~

1

2

2

1

0

0

1

2

1

-

-

-

-

=

r

r

r

r

r

n

n

n

n

n

f

n

n

n

n

C

…………………………………(11.127)

11.5 FFT Algorithms for
[image: image506.wmf]2

1

r

r

N

=

 (where
[image: image507.wmf]2

1

,

r

r

are integers)
Let’s first define:

[image: image508.wmf])

129

.

11

.........(

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

)

128

.

11

(

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

0

2

1

0

1

1

k

r

k

k

n

r

n

n

+

=

+

=

where

[image: image509.wmf])

133

.

11

........(

..........

..........

..........

..........

..........

..........

..........

..........

..........

1

,......,

2

,

1

,

0

)

132

.

11

........(

..........

..........

..........

..........

..........

..........

..........

..........

..........

1

,......,

2

,

1

,

0

)

131

.

11

........(

..........

..........

..........

..........

..........

..........

..........

..........

..........

1

,......,

2

,

1

,

0

)

130

.

11

........(

..........

..........

..........

..........

..........

..........

..........

..........

..........

1

,......,

2

,

1

,

0

2

0

1

1

1

0

2

1

-

=

-

=

-

=

-

=

r

k

r

k

r

n

r

n

Remarks:

(a) The smallest value for n = 0 (when
[image: image510.wmf])

0

1

0

n

n

=

=

.

(b) The largest value for “n” will occur when
[image: image511.wmf]1

1

0

-

=

r

n

and
[image: image512.wmf].

1

2

1

-

=

r

n

 Hence,
 Eq. (11.128) gives:

[image: image513.wmf]1

)

1

(

)

1

(

2

1

1

1

2

-

=

-

+

-

=

r

r

r

r

r

n

Thus, if
[image: image514.wmf],

4

2

1

r

r

=

=

 then
[image: image515.wmf]15

0

®

=

n

Using the above notations, Eq.(11.65) can be expressed as:

[image: image516.wmf]å

å

-

=

-

=

+

+

=

1

0

1

0

)

)(

(

0

1

0

1

2

0

1

1

0

2

1

0

1

1

)

,

(

)

,

(

~

r

k

r

k

k

r

k

n

r

n

W

k

k

f

n

n

C

………………………………………...(11.134)

Consider:

………………………………………....(11.135)

[image: image517.wmf][

]

0

0

1

1

2

1

0

1

1

2

1

)

(

k

n

r

n

r

k

n

k

n

r

r

W

W

W

+

=

……………………………………………...………..(11.136)

Due to the fact that

[image: image518.wmf][

]

1

2

1

=

=

N

r

r

W

W

……………………………………………………………...……(11.137)

Substituting Eq. (11.136) into (11.134), one gets:

[image: image519.wmf]å

å

-

=

+

-

=

ú

û

ù

ê

ë

é

=

1

0

)

(

1

0

0

1

0

1

2

0

0

0

1

1

1

1

2

1

0

)

,

(

)

,

(

~

r

k

k

n

r

n

r

k

r

k

n

W

W

k

k

f

n

n

C

…………………………………....(11.138)

Define:
[image: image520.wmf])

140

.

11

..(

..........

..........

..........

..........

..........

..........

..........

)

,

(

)

,

(

)

139

.

11

(

..........

..........

..........

..........

..........

..........

..........

..........

)

,

(

)

,

(

1

0

)

(

0

0

1

1

0

2

1

0

0

1

0

0

1

2

0

0

0

1

1

1

1

2

1

0

å

å

-

=

+

-

=

=

=

r

k

k

n

r

n

r

k

r

k

n

W

k

n

f

n

n

f

W

k

k

f

k

n

f

Hence:

[image: image521.wmf])

,

(

)

,

(

~

1

0

2

0

1

n

n

f

n

n

C

=

…………………………………………………………..….(11.141)

Example 1: for
[image: image522.wmf]then

r

r

N

;

16

)

4

)(

4

(

2

1

=

=

=

=

 Eqs. (11.139,11.140) gives:

[image: image523.wmf])

143

.

11

....(

..........

..........

..........

..........

..........

..........

..........

)

,

(

)

,

(

)

142

.

11

.(

..........

..........

..........

..........

..........

..........

..........

..........

)

,

(

)

,

(

3

0

)

4

(

0

0

1

1

0

2

3

0

4

0

1

0

0

1

0

0

0

1

1

1

0

å

å

=

+

=

=

=

k

k

n

n

k

k

n

W

k

n

f

n

n

f

W

k

k

f

k

n

f

Expanding Eq. (11.142), one obtains:

[image: image524.wmf]0

0

0

12

0

8

0

4

0

0

0

0

0

1

)

,

3

(

)

,

2

(

)

,

1

(

)

,

0

(

)

,

(

n

n

n

W

k

f

W

k

f

W

k

f

W

k

f

k

n

f

+

+

+

=

…….….(11.142A)

Similarly, expanding Eq. (11.143), one gets:

[image: image525.wmf]2

)

4

(

0

1

)

4

(

0

1

0

0

1

1

0

2

0

1

0

1

)

2

,

(

)

1

,

(

)

0

,

(

)

,

(

n

n

n

n

W

n

f

W

n

f

W

n

f

n

n

f

+

+

+

+

=

[image: image526.wmf]3

)

4

(

0

1

0

1

)

3

,

(

n

n

W

n

f

+

+

………………...(11.143A)

For a typical term corresponding to
[image: image527.wmf])

0

,

1

(

)

,

(

1

0

0

1

f

k

n

f

=

, Eq.(11.142A) gives:

[image: image528.wmf]12

8

4

1

)

0

,

3

(

)

0

,

2

(

)

0

,

1

(

)

0

,

0

(

)

0

,

1

(

W

f

W

f

W

f

f

f

+

+

+

=

………………………….(11.142B)

[image: image529.wmf]12

8

4

1

)

1

,

3

(

)

1

,

2

(

)

1

,

1

(

)

1

,

0

(

)

1

,

1

(

W

f

W

f

W

f

f

f

+

+

+

=

……………………...……..(11.142C)

[image: image530.wmf]0

0

0

1

)

3

,

3

(

)

3

,

2

(

)

3

,

1

(

)

3

,

0

(

)

3

,

0

(

W

f

W

f

W

f

f

f

+

+

+

=

For a typical term, such as
[image: image531.wmf])

1

,

0

(

)

,

(

2

1

0

2

f

n

n

f

=

, Eq.(11.143A) gives:

[image: image532.wmf]12

1

8

1

4

1

1

2

)

3

,

0

(

)

2

,

0

(

)

1

,

0

(

)

0

,

0

(

)

1

,

0

(

W

f

W

f

W

f

f

f

+

+

+

=

……………………..…(11.143B)

A partial/ incomplete graph of FFT (based on Eqs.11.142B, 11.142C and 11.143B), for the case
[image: image533.wmf]16

)

4

)(

4

(

2

1

=

=

=

=

r

r

N

 is presented in Figure 11.8, for which it is noted that:

(a) Since
[image: image534.wmf]2

1

r

r

N

=

, there are 2 computational arrays
[image: image535.wmf]);

,

(

[

1

-

-

f

 and
[image: image536.wmf])]

,

(

2

-

-

f

 which need to be computed.

(b) Computation for arrays
[image: image537.wmf]1

f

 (or
[image: image538.wmf])

2

f

 should be proceeded in “top-down” fashion. Each computed term for array
[image: image539.wmf]1

f

 (or
[image: image540.wmf])

2

f

 will have contributions of 4 terms from the “previous” array.

[image: image541.png]Data Array Computational Array

Fl.k) £

£E9)

JIJOLN -ﬂm% . £,000)
SO e e fi(01 FACRY

SO N e £02
£(03) e—>pa /(03
Q.0 A 1,00
Sy e/ s £,0LD)

ra2 0 / /e £0.2)
7a3) e £013)
1(20)e . £,(20)
f@h e . £2D
f(22)e £,22)
139/, * £,23)
fG0 9/ * £,3.0)

fG ¢
fB2)e
f33)

* £GD
* £G2)
® (33

* /,(0.2)
* /,(0.3)
* /2.(.0)
e f2(LD
* f,(1.2)
* /203
* 1,:(20)
* f.(2D)
* f:(2,2)
* f:(23)
* 1.30)
* £,GD
* .32
® £33

FIGURE 11.8: An “Incomplete” FFT for
[image: image542.wmf]16

)

4

)(

4

(

2

1

=

=

=

r

r

N

Example (for the case
[image: image543.wmf])

8

)

2

)(

4

(

2

1

=

=

=

=

r

r

N

In this case, utilizing Eqs.(11.130-11.133) into Eqs.(11.128,11.129), one obtains:(11.111)

[image: image544.wmf])

144

.

11

.........(

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

4

0

1

n

n

n

+

=

[image: image545.wmf])

145

.

11

.........(

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

2

0

1

k

k

k

+

=

where

[image: image546.wmf])

149

.

11

..(

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

1

0

)

148

.

11

..(

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

3

0

)

147

.

11

..(

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

3

0

)

146

.

11

..(

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

..........

1

0

0

1

0

1

®

=

®

=

®

=

®

=

k

k

n

n

Then, Eq. (11.65) becomes:

[image: image547.wmf]å

å

=

+

+

=

=

1

0

)

2

)(

4

(

3

0

0

1

0

1

0

0

1

0

1

1

)

,

(

)

,

(

~

k

k

k

n

n

k

W

k

k

f

n

n

C

…………………………………………(11.150)

Consider:

[image: image548.wmf]0

0

1

1

0

1

0

1

0

1

)

4

(

2

)

4

(

)

2

)(

4

(

k

n

n

k

n

n

k

k

n

n

W

W

W

+

+

+

+

=

[image: image549.wmf]0

0

1

1

0

1

1

)

4

(

2

8

]

[

k

n

n

k

n

k

n

W

W

W

+

=

[image: image550.wmf]0

0

1

1

0

)

4

(

2

k

n

n

k

n

W

W

+

=

……………………………………………….…(11.151)

Substituting Eq.(11.151) into Eq.(11.150), one obtains:

[image: image551.wmf]å

å

=

+

=

ú

û

ù

ê

ë

é

=

1

0

)

4

(

2

3

0

0

1

0

1

0

0

0

1

1

0

1

)

,

(

)

,

(

~

k

k

n

n

k

n

k

W

W

k

k

f

n

n

C

………………………………….…(11.152)

Define:

[image: image552.wmf])

154

.

11

...(

..........

..........

..........

..........

..........

..........

..........

)

,

(

)

,

(

)

153

.

11

(

..........

..........

..........

..........

..........

..........

..........

..........

)

,

(

)

,

(

1

0

)

4

(

0

0

1

1

0

2

3

0

2

0

1

0

0

1

0

0

0

1

1

1

0

å

å

=

+

=

=

=

k

k

n

n

k

k

n

W

k

n

f

n

n

f

W

k

k

f

k

n

f

Hence:

[image: image553.wmf])

155

.

11

......(

..........

..........

..........

..........

..........

..........

..........

..........

).........

,

(

)

,

(

~

1

0

2

0

1

n

n

f

n

n

C

=

Expanding (the summation) of Eqs. (11.153,11.154), one gets:

[image: image554.wmf]0

0

0

6

0

4

0

2

0

0

0

0

0

1

)

,

3

(

)

,

2

(

)

,

1

(

)

,

0

(

)

,

(

n

n

n

W

k

f

W

k

f

W

k

f

W

k

f

k

n

f

+

+

+

=

…………..(11.156)

Assuming
[image: image555.wmf];

2

0

=

n

[image: image556.wmf],

1

0

=

k

 then the above equation becomes:

[image: image557.wmf]12

8

4

1

)

1

,

3

(

)

1

,

2

(

)

1

,

1

(

)

1

,

0

(

)

1

,

2

(

W

f

W

f

W

f

f

f

+

+

+

=

……………………………...(11.157)

Similarly, one has

[image: image558.wmf]0

1

4

0

1

0

0

1

1

0

2

)

1

,

(

)

0

,

(

)

,

(

n

n

W

n

f

W

n

f

n

n

f

+

+

=

………………………………………...(11.158)

Assuming
[image: image559.wmf]2

0

=

n

and
[image: image560.wmf],

1

1

=

n

 then:

[image: image561.wmf]6

1

1

2

)

1

,

2

(

)

0

,

2

(

)

1

,

2

(

W

f

f

f

+

=

……………………………………………………...(11.159)

Thus, computation of each term for arrays
[image: image562.wmf]1

f

 and
[image: image563.wmf]2

f

(see Eqs.11.157, 11.159) will require the “previous” 4 terms and 2 terms, respectively. The partial (or incomplete) graphical display for FFT (with
[image: image564.wmf])

2

,

4

;

2

1

2

1

=

=

=

r

r

r

r

N

 based on Eqs.(11.157,11.159), is shown in Figure 11.9.

[image: image565.png]Data Array

CRY

£(0,0) X
PACAY
S0 X

S
f(2.0) X

J2D) X—

f@@z//
FIER)

Computational Array

£ £,
X£00) X £,00)
X L0 X £,0D
X£10) X £,00)
X £,0D) X £,(11)
X fi20~ X £,(20)
Xﬁan\\‘Xﬁ@D
X530 X £,30)
X£GD X £GD

FIGURE 11.9: An “Incomplete” FFT for
[image: image566.wmf]8

)

2

)(

4

(

2

1

=

=

=

r

r

N

11.6 General FFT Algorithms and Relationships Between FFT Algorithms for
[image: image567.wmf]8

2

)

3

(

=

=

=

r

N

 versus N=
[image: image568.wmf].

8

)

2

)(

2

)(

2

(

3

2

1

=

=

r

r

r

For the more general case, such as:

N=
[image: image569.wmf]m

r

r

r

r

.....

3

2

1

…………………………………………………………………..….(11.160)

where
[image: image570.wmf]m

r

r

r

r

,........

,

,

3

2

1

 are any ‘integer” numbers.

Define:

[image: image571.wmf]0

1

1

2

2

1

2

1

2

1

1

)

(

.....

)

.......

(

)

.......

(

n

r

n

r

r

r

n

r

r

r

n

n

m

m

m

m

+

+

+

+

=

-

-

-

-

……………………..(11.161)

[image: image572.wmf]0

1

4

3

2

3

2

1

)

(

.....

)

.......

(

)

.......

(

k

r

k

r

r

r

k

r

r

r

k

k

m

m

m

m

m

+

+

+

+

=

-

-

………………………..(11.162)

with:

[image: image573.wmf]1

,.......

2

,

1

,

0

1

-

=

-

i

i

r

n

 (for
[image: image574.wmf])

1

m

i

£

£

………………………………………..……..(11.163)

[image: image575.wmf]1

,.......

2

,

1

,

0

-

=

-

i

m

i

r

k

 (for
[image: image576.wmf])

1

0

-

£

£

m

i

…………………………………….…….(11.164)

In order to simplify the “arithematic efforts”, and to easily identify the “patterns” of the general FFT algorithms/formulas, we assume m=3, and therefore the following case will be considered:

[image: image577.wmf]3

2

1

r

r

r

N

=

………………………………………………………………………….(11.165)

Hence, Eqs. (11.161 to 11.164) will be simplified to:

[image: image578.wmf]0

1

1

2

1

2

)

(

)

(

n

r

n

r

r

n

n

+

+

=

…………………………………………………………..(11.166)

[image: image579.wmf]0

3

1

3

2

2

)

(

)

(

k

r

k

r

r

k

k

+

+

=

…………………………………………………………..(11.167)

[image: image580.wmf]1

...,

,.........

1

,

0

1

...,

,.........

1

,

0

1

...,

,.........

1

,

0

3

2

2

1

1

0

-

=

-

=

-

=

r

n

r

n

r

n

…………………………….………………………………..(11.168)

[image: image581.wmf]1

...,

,.........

1

,

0

1

...,

,.........

1

,

0

1

...,

,.........

1

,

0

1

2

2

1

3

0

-

=

-

=

-

=

r

k

r

k

r

k

…………………………….………………………………..(11.169)

Eq. (11.65) can be expressed as

[image: image582.wmf]å

å

å

-

=

-

=

-

=

+

+

+

+

=

1

0

1

0

1

0

)

)(

(

0

1

2

0

1

2

3

0

2

1

1

2

0

3

1

3

2

2

0

1

1

2

1

2

.

)

,

,

(

)

,

,

(

~

r

k

r

k

r

k

k

r

k

r

r

k

n

r

n

r

r

n

W

k

k

k

f

n

n

n

C

…………………….(11.170)

Let’s define:

[image: image583.wmf])

)(

(

0

3

1

3

2

2

0

1

1

2

1

2

k

r

k

r

r

k

n

r

n

r

r

n

P

W

W

+

+

+

+

=

……………………………………………………..(11.171)

[image: image584.wmf]0

0

1

1

2

1

2

3

1

0

1

1

2

1

2

3

2

2

0

1

1

2

1

2

)

(

)

(

)

(

k

n

r

n

r

r

n

r

k

n

r

n

r

r

n

r

r

k

n

r

n

r

r

n

P

W

W

W

W

+

+

+

+

+

+

=

……………………………..(11.172)

or:

[image: image585.wmf]3

2

1

P

P

P

P

W

W

W

W

=

………………………………………………………………....(11.173)

where:

[image: image586.wmf]3

2

2

0

1

1

2

1

2

1

)

(

r

r

k

n

r

n

r

r

n

P

W

W

+

+

=

…………………………………………………………....(11.174)

[image: image587.wmf][

]

[

]

3

2

2

0

3

2

2

1

1

3

2

2

2

1

2

r

r

k

n

r

r

k

r

n

r

r

k

r

r

n

W

W

W

=

[image: image588.wmf][

]

[

]

3

2

2

0

2

1

2

2

2

r

r

k

n

k

Nn

r

k

Nn

W

W

W

=

[image: image589.wmf]3

2

2

0

1

r

r

k

n

P

W

W

=

……………………………………………………………………..(11.175)

since

[image: image590.wmf][

]

1

=

N

W

(see Eq.11.64)

[image: image591.wmf]3

1

0

1

1

2

1

2

2

)

(

r

k

n

r

n

r

r

n

P

W

W

+

+

=

……………………………………………………………..(11.176)

[image: image592.wmf][

]

3

1

0

1

1

3

1

2

1

2

2

)

(

r

k

n

r

n

r

k

r

r

n

P

W

W

W

+

=

[image: image593.wmf][

]

3

1

0

1

1

1

2

2

)

(

r

k

n

r

n

k

Nn

P

W

W

W

+

=

[image: image594.wmf]3

1

0

1

1

2

)

(

r

k

n

r

n

P

W

W

+

=

……………………………………………………………….…(11.177)

[image: image595.wmf]0

0

1

1

2

1

2

3

)

(

k

n

r

n

r

r

n

P

W

W

+

+

=

……………………………………………………………...(11.178)

Substituting Eqs. (11.175,11.177,11.178) into Eq.(11.173), and using Eq.(11.171), then Eq.(11.170) will become:

[image: image596.wmf]å

å

å

-

=

-

=

+

+

+

-

=

ú

û

ù

ê

ë

é

=

1

0

1

0

)

(

)

(

1

0

0

1

2

0

1

2

3

0

2

1

0

0

1

1

2

1

2

3

1

0

1

1

1

2

3

2

2

0

..

)

,

,

(

)

,

,

(

~

r

k

r

k

k

n

r

n

r

r

n

r

k

n

r

n

r

k

r

r

k

n

W

W

W

k

k

k

f

n

n

n

C

……….(11.179)

Define:

[image: image597.wmf])

182

.

11

.......(

..........

..........

..........

..........

..........

.

)

,

,

(

)

,

,

(

)

181

.

11

...(

..........

..........

..........

..........

..........

..........

)

,

,

(

)

,

,

(

)

180

.

11

.........(

..........

..........

..........

..........

..........

..........

)

,

,

(

)

,

,

(

1

0

)

(

0

1

0

2

2

1

0

3

1

0

)

(

0

1

0

1

0

1

0

2

1

0

0

1

2

0

1

0

1

3

0

0

0

1

1

2

1

2

2

1

3

1

0

1

1

3

2

2

0

1

2

å

å

å

-

=

+

+

-

=

+

-

=

=

=

=

r

k

k

n

r

n

r

r

n

r

k

r

k

n

r

n

r

r

k

n

r

k

W

k

n

n

f

n

n

n

f

W

k

k

n

f

k

n

n

f

W

k

k

k

f

k

k

n

f

Then:

[image: image598.wmf])

,

,

(

)

,

,

(

~

2

1

0

3

0

1

2

n

n

n

f

n

n

n

C

=

………………………………………………………(11.183)

In order to see the “connections” between the general FFT algorithms (such as
[image: image599.wmf],.....)

,

,

3

2

1

r

r

r

N

=

and the base 2 FFT algorithms (such as
[image: image600.wmf]),

2

r

N

=

 we now consider the special case where
[image: image601.wmf]2

3

2

1

=

=

=

r

r

r

(hence
[image: image602.wmf]).

2

8

2

*

2

*

2

,.....

,

,

3

3

2

1

=

=

=

=

r

r

r

N

 In this case, Eqs. (11.180 to 11.182) can be simplified to:

[image: image603.wmf])

186

.

11

........(

..........

..........

..........

..........

..........

.

)

,

,

(

)

,

,

(

)

185

.

11

...(

..........

..........

..........

..........

..........

..........

)

,

,

(

)

,

,

(

)

184

.

11

(

..........

..........

..........

..........

..........

..........

..........

)

,

,

(

)

,

,

(

1

0

)

2

4

(

0

1

0

2

2

1

0

3

1

0

2

)

2

(

0

1

0

1

0

1

0

2

4

1

0

0

1

2

0

1

0

1

0

0

0

1

2

1

1

0

1

2

0

2

å

å

å

=

+

+

=

+

=

=

=

=

k

k

n

n

n

k

k

n

n

k

n

k

W

k

n

n

f

n

n

n

f

W

k

k

n

f

k

n

n

f

W

k

k

k

f

k

k

n

f

In facts, Eqs. (11.184 to 11.186) are “identical” to the earlier derived Eqs.(11.112 to 11.114) !.

11.7 Twiddle Factor FFT Algorithms for
[image: image604.wmf]16

)

4

)(

4

(

2

1

=

=

=

=

r

r

N

To facilitate the discussions for better understanding about the “improved FFT” algorithms by using the “twiddle factor” [Refs. 1 - 4], a specific case for
[image: image605.wmf]16

)

4

)(

4

(

2

1

=

=

=

=

r

r

N

 will be explained in the following paragraphs.

Eq. (11.138) can be re-written as:

[image: image606.wmf]å

å

-

=

-

=

ú

û

ù

ê

ë

é

=

1

0

4

1

0

4

0

1

0

1

2

0

0

1

0

0

1

1

1

0

)

,

(

)

,

(

~

r

k

k

n

k

n

r

k

k

n

W

W

W

k

k

f

n

n

C

…………………………………..(11.187)

The factor
[image: image607.wmf]0

0

k

n

W

can be included either in the “inner summation” or in the ”outer summation” (as shown in Eq.11.140). In this section, however, the factor
[image: image608.wmf]0

0

k

n

W

is included in the “inner summation”. Thus, one defines:

[image: image609.wmf]0

0

1

1

0

3

0

4

0

1

0

0

1

)

,

(

)

,

(

k

n

k

k

n

W

W

k

k

f

k

n

f

ú

û

ù

ê

ë

é

=

å

=

……………………………………...…….(11.188)

[image: image610.wmf]å

=

=

3

0

4

0

0

1

1

0

2

0

0

1

)

,

(

)

,

(

k

k

n

W

k

n

f

n

n

f

…………………………………………………...(11.189)

[image: image611.wmf])

,

(

)

,

(

~

1

0

2

0

1

n

n

f

n

n

C

=

…………………………………………………………...…(11.190)

Remarks:

(a) Consider the following term in Eq. (11.188):

[image: image612.wmf](

)

1

0

1

0

1

0

16

4

*

2

4

4

k

n

i

k

n

k

n

e

W

W

÷

÷

ø

ö

ç

ç

è

æ

=

=

-

p

[image: image613.wmf]1

0

1

0

2

4

k

n

i

k

n

e

W

÷

÷

ø

ö

ç

ç

è

æ

-

=

p

……………………………………………………………….(11.191)

Consider the following few possibilities for
[image: image614.wmf]1

0

k

n

, such as:

	
[image: image615.wmf]1

0

k

n

	
[image: image616.wmf]1

0

4

k

n

W

	0
	1

	1
	-i

	2
	-1

	3
	+i

	4
	+1

	.

.
	.

.

Thus, depending on the numerical (integer) value of
[image: image617.wmf]1

0

k

n

, the value of
[image: image618.wmf]1

0

4

k

n

W

can only be
[image: image619.wmf]i

or

±

±

,

1

. Hence, there is “no multiplication” involved in computing
[image: image620.wmf]1

0

4

k

n

W

. The twiddle factor
[image: image621.wmf]0

0

k

n

W

can be done outside the inner summation (on the index
[image: image622.wmf]1

k

).

(b) Since the twiddle factor
[image: image623.wmf]0

0

k

n

W

 is included in the first vector
[image: image624.wmf])

,

(

0

0

1

k

n

f

, as shown in Eq(11.188), the remaining factor
[image: image625.wmf]0

1

4

k

n

W

can also be either
[image: image626.wmf]i

or

±

±

,

1

.

Thus, there is also “no multiplication” involved in calculating the second vector
[image: image627.wmf])

,

(

1

0

2

k

n

f

as shown in Eq(11.189).

(c)The twiddle factor can also be applied for the case
[image: image628.wmf],

3

2

1

r

r

r

N

=

or for the more general case
[image: image629.wmf].

.......

3

2

1

m

r

r

r

r

N

=

(d) It has been concluded in [Refs. 1 - 4] that, using the twiddle factor, the number of operation counts (based on the number of required multiplications) for FFT with base 16 is less than with base 8, which in turns is less (or better) than with base 4, etc..

11.8 Brief Review About “MPI-parallel” FORTRAN-90 Programming.

c ---

c Message Passing Interface (MPI) parallel application codes can be
c implemented in either FORTRAN, or C++ language, under UNIX, LINUX,
c or WINDOWS environments. The syntax for "parallel" MPI/FORTRAN-90 are
c essentially identical to the ones used in "serial" FORTRAN-90, with
c few exceptions for "specific parallel computational purposes".

c Regardless the computer language adopted by the users (such as C, or
C++,
c or FORTRAN-77, or FORTRAN-90, or BASIC etc...), one only needs to be
c familiar with the syntax for "IF" statements, "DO" loop, "DIMENSION"
c statements (for handling 1-D, and/or 2-D, and/or 3-D integer/real
arrays),
c input/output, and usage of "subroutines".

c The following listed MPI/FORTRAN-90 demonstrated code can be
conveniently
c used to understand the "syntax" for writing any general application
codes.

c===!000
c2345678901234567890123456789012345678901234567890123456789012345678!001
c Purposes: Reviewing some basic FORTRAN_90 syntax, and MPI_FORTRAN !002
c Author(s): Prof. Duc Thai NGUYEN (757-683-3761; DNguyen@odu.edu) !003
c Date: June 10, 2008 !004
c Stored At: cd ~/cee/*odu*class*/teach_fortran90_mpi.f !005
c !006
 implicit real*8(a-h,o-z) !007
 include 'mpif.h' !008
 character*80 title !009
 parameter (num=10) !010
 parameter (master=0) !011
 parameter (from_master=1) !012
 parameter (from_worker=2) !013
 dimension a(num),b(num) !014
 allocatable:: ia(:),a11(:,:),a22(:,:) !015
c---!016
 call MPI_INIT(ierr) !017
 call MPI_COMM_RANK(MPI_COMM_WORLD, me, ierr) !018
 call MPI_COMM_SIZE(MPI_COMM_WORLD, np, ierr) !019
 if (me .eq. 0) then !019.1
 write(6,*) ' ' !019.2
 write(6,*) '==================================' !019.3
 write(6,*) 'Prof. Duc T. Nguyen; June 17, 2008' !019.4
 write(6,*) '==================================' !019.5
 write(6,*) ' ' !019.6
 endif !019.7
c--- !020
c call MPI_BARRIER(MPI_COMM_WORLD, ierr) !021
c call MPI_SEND(num,1,MPI_INTEGER,i_destination,1,MPI_COMM_WORLD,! 022
c $ierr) !023
c call MPI_RECV(num,1,MPI_INTEGER,master,mtype,MPI_COMM_WORLD, !024
c $status,ierr) !025
c--- !026
 idum=0 !027
 sum=0.d0 !028
 do 1 i=1,num,1 !029
 a(i)=drand(idum) !030
 sum=sum+a(i) !031
 if (i .le. 10) then !032
 write(6,*) 'i,a(i) = ',i,a(i) !033
 elseif (i .gt. 10) then !034
 write(6,*) 'skip printing too many random numbers !' !035
 endif !036
 1 continue !037
c !038
 open (unit=7, file='K.INFO', status='old', form='formatted') !039
c open (unit=6, file='out1', status='old', form='formatted') !040
 read(7,115) title !041
 115 format(a60) !042
 write(6,115) title !043
c !044
 memory_need=2*num !045
 allocate (ia(memory_need), a11(memory_need,memory_need), !046
 $ a22(num,num)) !047
 do 2 i=1,memory_need,1 !048
 ia(i)=i !049
 2 continue !050
 deallocate(a11,a22) !051
 call dummy1(num,memory_need,a,sum_real) !052
 write(6,*) ' sum_real= ', sum_real !053
c--- !054
 num_workers=np-1 !055
 bigest_local=0.d0 !056
c......each processor (master and workers) will: !057
c......generate its own portions of random (real) numbers !058
c......then, it will find its own local maximum number !059
 do 11 i=me+1, num, np !060
 b(i)=drand(idum) !061
 if (b(i) .gt. bigest_local) bigest_local=b(i) !062
 write(6,*) 'processor id# ',me, 'i,b(i) = ',i,b(i) !062.1
 write(6,*) 'processor id# ',me, 'bigest_local = ', bigest_local !062.2
 11 continue !063
c !064
c...... each worker will send its own local maximum to the master !065
 if (me .gt. 0) then !066
 mtype=from_worker !067
 call MPI_SEND(bigest_local,1,MPI_DOUBLE_PRECISION,master,mtype !068
 $,MPI_COMM_WORLD,ierr) !069
 write(6,*) 'sent by worker # ',me, ' bigest_local= ',bigest_local !069.1
c...... the master processor will receive local maximum !070
c...... (from each worker) !071
c...... and then, comparing amongst all local max to find/print !072
c...... global max !073
 elseif (me .eq. 0) then !074
 bigest_global=bigest_local !075
 mtype=from_worker !076
 write(6,*) 'processor id # ',me, ' bigest_local= ',bigest_local !076.1
 do 60 i=1,num_workers,1 !077
 isource=i !078
 call MPI_RECV(bigest_local,1,MPI_DOUBLE_PRECISION,isource,mtype, !079
 $MPI_COMM_WORLD,status,ierr) !080
 if (bigest_local .gt. bigest_global) bigest_global=bigest_local !081
 60 continue !082
 write(6,*) 'amongst local max, the global max is ',bigest_global !083
 endif !084
c !085
 write(6,*) 'processor id# ',me, 'out of ',np, ' is alive' !086
 call MPI_FINALIZE(ierr) !087
c--- !088
 stop !089
 end !090
c%% !091
 subroutine dummy1(num,memory_need,a,sum_real) !092
 implicit real*8(a-h,o-z) !093
 dimension a(*) !094
 sum_real=0.d0 !095
 do 1 i=1,num,1 !096
 sum_real=sum_real+a(i) !097
 1 continue !098
 return !099
 end !100
c%% !101

c Lines #001-006:
c In FORTRAN, if a character "c" is typed in column1, then the line will be
c treated like a "comment" statement.
c
c Line #007:
c In FORTRAN, all "executable" statements should be typed between column
c numbers 7 through 72. Any "real" array should be named with the first
c character as a, b, c, ..., h, and o, p, q, ..., z. Any "integer" array
c should be named with the first character as i,j,k,l,m,n.
c This statement implies that each real number will need 8 bytes to store
c (in double precision). Similarly, a statement:
c implicit real*4(a-h,o-z) implies that each real number will need 4 bytes
c to store (in single precision).

c Line #008:
c This include statement "MUST" always be followed the implicit statement
c for any MPI/FORTRAN application code

c Line #009 (also see lines # 041-043):
c This statement is necessary only if the user want to read (or write)
c a title heading, with upto 80 characters (also see lines # 041-043)

c Lines # 010-013:
c Numerical values of certain variables can be defined/given/assigned by
c the parameter statements.

c Line # 014:
c Maximum dimension (or size) for certain arrays are defined by the
c "dimension" statement. Note that the value of "num" must already be
c earlier defined (through the parameter statements)

c Line # 015 (also see lines # 045-047):
c This is one of the "very useful" features in FORTRAN-90, for which
c the users can declare some arrays for "dynamic storage allocation"
purposes.
c The actual, exact "dimension" for these arrays do NOT have to be
declared
c in the begining (such as arrays defined on line # 014). These "exact"
c "dimension" needed can be declared "later on", whenever the user knows
c exactly how much memory storage one needs for these arrays (also see
c lines # 045-047)

c Lines # 017-019:
c These 3 "special" MPI/FORTRAN statements "MUST" be defined in any MPI
c application codes (and should be inserted right after dimension
statements).
c The variable "np" on line # 019 represents (Number of Processors". Thus,
c if 3 processors are used, then np will be assigned the value 3 by the
system.
c The variable "me" on line # 018 will have the values (assined by the
computer
c system) 0,1,2, ..., np-1. This variable "me" will play a CRUCIAL role in
c any MPI application codes.
c
c It should be emphasized here that all processor ID # = 0,1,2, ..., np
c will execute the same application code. However, depending on the
algorithms,
c the user will have direct control of deciding "WHICH processor ID" will
c execute on "WHAT portions of the code" etc..., through the usage of
variable
c "me" (also refer to lines # 060-063)

c Lines # 019.1-019.7:
c Only the "master" processor (me=0) will execute this block of
statements,
c which basically print out some output message [any desired output
message
c can be placed inside (open/close) single quotes].

c Lines # 020-026:
c There are about 10-20 "special, parallel" MPI constructs that are very
c commonly used in any application codes. Amongst these MPI statements,
c however, BARRIER, SEND and RECV are probably the most important ones to
c be used. Basically, BARRIER statement will make sure that all processors
c have to arrive at this statement, before they can proceed to execute
c subsequent statements of the application code. SEND statement will send
c a message (such as an integer/real variable, or integer/real arrays)
from
c one processor to another (specified) processor. Important argument lists
c are explained as following:
c 1-st Argument = name of a variable (or array)
c 2-nd Argument = the "dimension" associated with this variable (or array)
c 3-rd Argument = the variable (or array) must be defined as INTEGER, or
c REAL (or DOUBLE PRECISION)
c 4-th Argument = send to WHICH processor ??
c 5-th Argument = message type #
c 6-th Argument = user does NOT need to know !
c 7-th Argument = user does NOT need to know !
c
c RECV statement can be used for RECEIVING a message. Important argument
c lists are explained as following:
c 1-st Argument = name of a variable (or array)
c 2-nd Argument = the "dimension" associated with this variable (or array)
c 3-rd Argument = the variable (or array) must be defined as INTEGER, or
c REAL (or DOUBLE PRECISION)
c 4-th Argument = receive from WHICH processor ??
c 5-th Argument = message type #
c 6-th Argument = user does NOT need to know !
c 7-th Argument = user does NOT need to know !
c 8-th Argument = user does NOT need to know !
c
c The user does NOT need to know about the 2 argument lists of the MPI
c BARRIER statement.

c Lines # 027-037:
c The purpose of this block of FORTRAN statements are:
c to show the "syntax" of "do" loop (see line # 029), the integer index
"i"
c will have the values from 1 through num (=10), with the increment of 1.
c Lines # 027, and # 030 show how to use "built-in" library function to
c generate a real random number (between 0.00 and 1.00).
c to show the "syntax" of "IF" statement (see lines # 032, # 034, and #
036)
c to show the "syntax" of writing/printing some intermediate output
variables.

c Lines # 038-044:
c Input (read), and output (write) data files can be used through the
"open"
c statements on line # 039 and line # 040, respectively.

c Lines # 045-050:
c At this moment, the user knows "exactly" how much memory space that
he/she
c needs to allocate (or assign) to INTEGER array ia(-), REAL arrays
a11(-,-),
c and a22(-,-). Thus, request to allocate memory space was done on line #
046-
c # 047.

c Line # 051:
c Assuming that at this stage the user does NOT need the arrays a11(-,-),
and
c a22(-,-) any more, hence he/she can request to DELETE all memory spaces
c allocated to these 2 arrays, through the DEALLOCATE statement.

c Lines # 052-054:
c A subroutine dummy1 is called by the main program, in order to perform a
c certain task. In this example, the first 3 argument lists are "INPUT"
c to this subroutine, and the 4-th argument list (= sum_real) provide the

c "OUTPUT" from this subroutine.

c Line # 055:
c Since in this example np = Number of Processors = 3, hence processor
ID#0
c will be the "master" processor, and processor ID# 1, #2 are considered
c as "worker" processors.

c Lines # 056-063:
c Each processor will generate its own random numbers, and also
compute/print
c its own (local) maximum number (amongst its own random numbers). The
most
c important statement for this block is shown on line # 060 (please pay
c attention to variable "me").
c For the "master" processor (such as me=0), it will generate random
numbers
c coresponding to the do-loop integer index i = 1, 4, 7, and 10 (the
increment
c for index i is np = 3).
c For the "worker" processor (such as me=1), it will generate random
numbers
c coresponding to the do-loop integer index i = 2, 5 and 8.
c For the "worker" processor (such as me=2), it will generate random
numbers
c coresponding to the do-loop integer index i = 3, 6 and 9.
c Also, all 3 processors (such as the "master" processor me=0, and "slave"
c processors me=1, 2) will compute its own local maximum value (stored in
c variable name bigest_local)
c
c Lines 064-069.1:
c Upon completion its task, each "slave" worker will send its own local
maximum
c to the "master" processor.
c
c Lines 070-085
c The "master" will receive all "slaves'" local maximum values, and it
will
c compare all these local maximum (including the "master's" own local
maximum),
c in order to identify , and print the global maximum (stored in variable
name
c bigest_global).
c
c Line 086
c All (master and slave) processors will print out a message before
exiting.
c
c Lines 087-091
c This MPI_FINALIZE(ierr) "must" be placed before the program stops
c
c Lines 092-101
c This subroutine just computes some dummy works, such as calculating
c the summation of a given 1-D real array

11.9 Parallel MPI/FORTRAN FFT Base-2 Algorithms.

Observing Figure 11.5 (FFT algorithms with
[image: image630.wmf])

16

2

2

4

=

=

=

r

N

and also referring to the
[image: image631.wmf]nd

2

(or inner) do-loop index I
[image: image632.wmf];

1

(

2

N

Þ

=

where initial value for
[image: image633.wmf])

8

2

=

N

, presented in the serial FFT code, the following major changes are necessary for converting the earlier serial code into parallel code (assuming NP=2 processors, with processor ME=0 and ME=1 are available). The entire parallel MPI/FFT code is listed in Table 11.10.

(a) Computation of “dual node” pair of an array, such as

[image: image634.wmf])

16

(

),

8

(

)

10

(

),

2

(

)

9

(

),

1

(

2

1

2

1

2

1

2

2

1

1

=

+

=

=

=

+

=

=

+

=

N

I

f

N

I

f

N

I

f

I

f

N

I

f

I

f

are completely independent from each other. Since FORTRAN does “not enjoy” with zero subscript, the above
[image: image635.wmf])

16

1

(

1

®

f

are correspondent to
[image: image636.wmf])

15

0

(

1

®

f

, respectively. The computation of the dual pair
[image: image637.wmf])

0

(

1

f

and
[image: image638.wmf])

8

(

1

f

in Figure 11.5 will only require the terms f(0) and f(8) from previous array. Similarly, computation of the dual pair
[image: image639.wmf])

7

(

1

f

and
[image: image640.wmf])

15

(

1

f

 will only require the terms f(7) & f(15) from previous array.

(b) Based on the above observation, the inner serial do-loop:

Do 2 i=1,
[image: image641.wmf]1

,

2

N

 should be replaced by the following parallel do-loop:

Do 2 i = ME+1,
[image: image642.wmf]2

,

8

2

=

=

NP

N

Thus, processor ME=0 will be assigned to compute
[image: image643.wmf])

13

(

&

)

5

(

),

11

(

&

)

3

(

),

9

(

&

)

1

(

1

1

1

1

1

1

f

f

f

f

f

f

and
[image: image644.wmf])

15

(

&

)

7

(

1

1

f

f

while at the same time, processor ME=1 will try to compute

[image: image645.wmf])

14

(

&

)

6

(

),

12

(

&

)

4

(

),

10

(

&

)

2

(

1

1

1

1

1

1

f

f

f

f

f

f

 and
[image: image646.wmf])

16

(

&

)

8

(

1

1

f

f

(c) The “local” variable ICOUNT and “local” array index(icount), see MPI source code listing, are used to record which terms of the computed array
[image: image647.wmf])

16

1

(

1

®

f

were computed by which processors. These local arrays are required, since we do want to minimize processors’ communication time by packing more data for each MPI_SEND (or MPI_BROADCAST) statement.

(d) The “Local” variable increase (initiated to zero) will help the parallel FFT algorithm to implement the patterns of computing
[image: image648.wmf]2

N

 terms, then skipping next
[image: image649.wmf]2

N

 terms, etc..

(e) Subroutine unscramble can also be parallelized, as indicated in the parallel MPI source code listing. However, due to unsignificant computational efforts occurred in a single (not nested) do-loop, serial coding for this subroutine is recommended.

(f) If the incore memory is limited, and is a concern for the user, then the entire do 28 loop (including the 2 real arrays tempo1real(-) and tempo1imag(-)) can be eliminated. Also, the 2 call MPI_BROADCAST statements should be placed right before the “2 continue” statement (or inside the loop do 2 i=me+1,
[image: image650.wmf]2

N

,NP). The trade-off in this case, ofcourse, will be a substantial increase in processors’ communication cost!

(g) The suggested parallel FFT strategies are mainly designed for “educational” purpose, and might not be practical for the following reasons:

 1. Due to the nature of FFT algorithms, parallel processing can only be done at the innermost (or 2nd) do-loop, rather than at the preferable outermost (or1st) do-loop!

 2. Even for fairly large data points (say N is large), there are not-much computational efforts inside the “inner” do-loop.

(h) In the DFT (see Eq.11.65, or 11.67), matrix times vector operations are needed, which also requires two nested do-loops (see Table 11.2). It is a well-known fact that for “matrix*vector” operations, efficient parallel processing can be done at the “outermost” do loop while “unrolling strategies” can be exploited at the “innermost” do-loop [Refs. 5 – 6]. Despite of the above favorable features, DFT is not matched for FFT algorithms (recalled Eq.11.75, and for even small-medium size
[image: image651.wmf],

2048

2

2

11

=

=

=

r

N

FFT offers 372.36 times less # operations as compared to DFT formula !)

Table 11.10: MPI/FORTRAN "FFT" Source Code
c
 implicit real*8(a-h,o-z)
 include 'mpif.h'
c......purpose: mpi/parallel fft algorithms & software
 dimension freal(1000000), fimag(1000000)
 dimension tempo1real(1000000),tempo1imag(1000000)
 $, index(1000000)
 open(unit=5,file='fft.dat',status='old',form='formatted')
 call MPI_INIT(ierr)
 call MPI_COMM_RANK(MPI_COMM_WORLD,me,ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD,np,ierr)
 write(6,*) 'processor ME = ',me, ' is alive !'
 if (me .eq. 0) then
 read(5,*) iautodata, n, igama, method
 write(6,*) 'iautodata,n,igama, method = '
 write(6,*) iautodata,n,igama, method
 if (iautodata .eq. 1) then
 do 1 i=1,n
 freal(i)=dfloat(i)
 fimag(i)=0.d0
 1 continue
 elseif (iautodata .eq. 0) then
 read(5,*) (freal(i),i=1,n)
 read(5,*) (fimag(i),i=1,n)
 endif
 endif
c
c write(6,*) 'input data for FFT: i,freal,fimag ='
c do 22 i=1,n
c write(6,*) i, freal(i), fimag(i)
c22 continue
c
 call MPI_BCAST(iautodata,1,MPI_INTEGER,0,
 $ MPI_COMM_WORLD,ierr)
 call MPI_BCAST(n,1,MPI_INTEGER,0,
 $ MPI_COMM_WORLD,ierr)
 call MPI_BCAST(igama,1,MPI_INTEGER,0,
 $ MPI_COMM_WORLD,ierr)
 call MPI_BCAST(method,1,MPI_INTEGER,0,
 $ MPI_COMM_WORLD,ierr)
 call MPI_BCAST(freal,n,MPI_DOUBLE_PRECISION,0,
 $ MPI_COMM_WORLD,ierr)
 call MPI_BCAST(fimag,n,MPI_DOUBLE_PRECISION,0,
 $ MPI_COMM_WORLD,ierr)
 if (method .eq. 1) then
 call fft(freal,fimag,n,igama,me,np,
 $ tempo1real,tempo1imag,index)
 elseif (method .eq. 2) then
 call dft(freal,fimag,n,igama)
 endif
c
c write(6,*) 'output for FFT: i,freal,fimag ='
c do 23 i=1,n
c write(6,*) i, freal(i), fimag(i)
c23 continue
c
999 call MPI_FINALIZE(ierr)
 stop
 end
c%%
 subroutine dft(freal,fimag,nn,igama)
 implicit real*8(a-h,o-z)
 dimension freal(*), fimag(*)
c
 pai=3.14159d0
 w0=2.d0*pai/dfloat(nn)
 sumreal=0.d0
 sumimag=0.d0
 do 1 n=1,nn
 cnreal=0.d0
 cnimag=0.d0
 do 2 k=1,nn
 angle=(k-1)*w0*(n-1)
 c=cos(angle)
 s=sin(angle)
 cnreal=cnreal+freal(k)*c+fimag(k)*s
 cnimag=cnimag+fimag(k)*c-freal(k)*s
 2 continue
 write(6,*) 'dft results: n,freal,fimag = '
 write(6,*) n, cnreal, cnimag
 sumreal=sumreal+dabs(cnreal)
 sumimag=sumimag+dabs(cnimag)
 1 continue
 write(6,*) 'DFT: sumreal,sumimag = ',sumreal,sumimag
 return
 end
c%%
 subroutine fft(freal,fimag,n,igama,me,np,
 $ tempo1real,tempo1imag,index)
 implicit real*8(a-h,o-z)
 include 'mpif.h'
 dimension freal(*),fimag(*)
 $,tempo1real(*),tempo1imag(*),index(*)
c......purpose: fft algorithms (for general base 2)
c......programmed by: Prof. Duc T. Nguyen (DNguyen@odu.edu)
c......original date: 07-10-2008
c......freal(n) = real number of N complex data points
c......fimag(n) = imaginary number of N complex data points
c......n = number of complex data points = 2**igama
c......example n = 2**4 = 16; hence igama = 4
c......remarks: Both DFT & FFT did give IDENTICAL results !
c
c-----------------------
 ntoddcount = 0 ! temp added by Todd
 if (me .eq. 0) then
 write(6,*) ' '
 write(6,*) '==============================='
 write(6,*) ' Prof. Nguyen Version Date: 07-29-2008'
 write(6,*) '==============================='
 write(6,*) ' '
! write(6,*) 'inside routine fft: echo input freal,fimag = '
! do 24 i=1,n
! write(6,*) i, freal(i), fimag(i)
! 24 continue
 endif
c call MPI_BARRIER(MPI_COMM_WORLD,ierr)
c-----------------------
 k=0
c write(6,*) 'n, igama = ',n,igama
 igamatodd = 5 ! by Todd
 do 1 L=1,igamatodd
! if (me.eq.0) write(6,*) '*************************'
! if (me.eq.0) write(6,*) 'L=',L
! if (me.eq.0) write(6,*) '*************************'
 write(6,*) me,'L=',L

 n2=n/2**L
 igaminusL=igama-L
 icount=0 ! parallel fft
 increase=0 ! parallel fft
 tempo1real(1:n)=0.d0
 tempo1imag(1:n)=0.d0
! do 456 kk=1,n
! tempo1real(kk)=0.d0
! 456 tempo1imag(kk)=0.d0
c123 do 2 i=1,n2
c write(6,*) me,me+1,n2,np
 123 do 2 i=ME+1,n2,NP
! write(6,*) 'processor ME = ',me, ' is alive !'
 k=i-1 + increase ! parallel fft
c write(6,*) me,'By Todd',k
 m=k/2**igaminusL
 call bitreverse(m,igama,ip)
c write(6,*) 'L, i, m, ip = ',L,i,m,ip
 theta=6.283185*ip/n
 c=cos(theta)
 s=sin(theta)
c write(6,*) 'theta,c,s = ',theta,c,s
 k1=k+1
 icount=icount+1 ! parallel fft
 index(icount)=k1 ! parallel fft
 nodedual=k1+n2
! write(6,*) 'dual nodes = k1, nodedual = ',k1,nodedual
 icount=icount+1 ! parallel fft
 index(icount)=nodedual ! parallel fft
c......applying Duc's Eqs.(11.90A, 11.90B)
 partreal=c*freal(nodedual)+s*fimag(nodedual)
 partimag=c*fimag(nodedual)-s*freal(nodedual)
 freal(nodedual)=freal(k1)-partreal
 fimag(nodedual)=fimag(k1)-partimag
 freal(k1)=freal(k1)+partreal
 fimag(k1)=fimag(k1)+partimag
 k=k+1
c write(6,*) 'partreal, partimag = ',partreal,partimag
 2 continue
c......broadcast and update the computed array to all other processors
 do 28 jj=1,icount
 kk=index(jj)
 tempo1real(kk)=freal(kk)
 tempo1imag(kk)=fimag(kk)
 28 continue
! call MPI_BARRIER(MPI_COMM_WORLD,ierr)
c call MPI_REDUCE(tempo1real,freal,n,MPI_DOUBLE_PRECISION,
c $ MPI_SUM,0,MPI_COMM_WORLD,ierr)
c call MPI_BCAST(freal,n,MPI_DOUBLE_PRECISION,0,
c $ MPI_COMM_WORLD,ierr)
c call MPI_REDUCE(tempo1imag,fimag,n,MPI_DOUBLE_PRECISION,
c $ MPI_SUM,0,MPI_COMM_WORLD,ierr)
c call MPI_BCAST(fimag,n,MPI_DOUBLE_PRECISION,0,
c $ MPI_COMM_WORLD,ierr)
c write(6,*) me,'before mpi_allreduce',L

 call MPI_ALLREDUCE(tempo1real,freal,n,MPI_DOUBLE_PRECISION,
 $ MPI_SUM,MPI_COMM_WORLD,ierr)
c $ MPI_SUM,COMM,ierr)
 call MPI_ALLREDUCE(tempo1imag,fimag,n,MPI_DOUBLE_PRECISION,
 $ MPI_SUM,MPI_COMM_WORLD,ierr)
c $ MPI_SUM,COMM,ierr)
c k=k+n2 ! parallel fft
c if (k .lt. n) go to 123 ! parallel fft
 ntoddcount = ntoddcount+1 ! added by todd
c if (L.eq.igamatodd) write(6,*) 'me,k,n,ncount',me,k,n,ntoddcount
 if (k .le. n) then
 increase=increase+n2
 if (L.eq.igamatodd)write(6,*) me,'Todd',ntoddcount,k,increase
 go to 123
 endif
 k=0
 1 continue
 goto 999 ! by Todd
c
c write(6,*) 'before unscramble FFT: i,freal,fimag ='
c do 22 i=1,n
c write(6,*) i, freal(i), fimag(i)
c22 continue
c......unscramble results of FFT
c--
 if (me .eq. 0) then
 call unscramble(freal,fimag,n,igama)
c call MPI_BCAST(freal,n,MPI_DOUBLE_PRECISION,0,
c $ MPI_COMM_WORLD,ierr)
c call MPI_BCAST(fimag,n,MPI_DOUBLE_PRECISION,0,
c $ MPI_COMM_WORLD,ierr)
c......output FFT solution
 write(6,*) 'after unscramble FFT: i,freal,fimag ='
 sumreal=0.d0
 sumimag=0.d0
 do 42 i=1,n
 write(6,*) i, freal(i), fimag(i)
 sumreal=sumreal+dabs(freal(i))
 sumimag=sumimag+dabs(fimag(i))
 42 continue
 write(6,*) 'FFT: sumreal,sumimag = ',sumreal,sumimag
 endif
c--
 999 return
 end
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 subroutine bitreverse(m,igam,ip)
 ip=0
 j1=m
c
 do 2 i=1,igam
 j2=j1/2
 idiff=j1-j2*2
 ip=ip*2 + idiff
 j1=j2
 2 continue
c write(6,*) 'p, or ii = ',ip
 return
 end
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 subroutine unscramble(freal,fimag,n,igama)
 implicit real*8(a-h,o-z)
c......purpose: parallel unscramble algorithms
 dimension freal(*),fimag(*)
c
 do 2 k=1,n
c do 2 k=ME+1, n, NP
 m=k-1
 call bitreverse(m,igama,ii)
 i=ii+1
 if (i .le. k) go to 2
 temporeal=freal(k)
 tempoimag=fimag(k)
 freal(k)=freal(i)
 fimag(k)=fimag(i)
 freal(i)=temporeal
 fimag(i)=tempoimag
 2 continue
c......each processor has independently swap certain
c......terms of the arrays freal(n), and fimag(n).
c......now, we need to use appropriated mpi command
c......to "merge" all these partial results, and
c......make the entire updated array available to
c......all processors.
c call MPI_merge & broadcast (freal, ...) ??
c call MPI_merge & broadcast (fimag, ...) ??
 return
 end
c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

References:

11.1 E.Oran Brigham, The Fast Fourier Transform, Prentice-Hall, Inc. (1974).

11.2 S.C. Chapra, and R.P. Canale, Numerical Methods for Engineers, 4th Edition, Mc-Graw Hill (2002).
11.3 W.H . Press, B.P. Flannery, S.A. Tenkolsky, and W.T. Vetterling, Numerical Recipies, Cambridge University Press (1989), Chapter 12.
11.4 M.T. Heath, Scientific Computing, Mc-Graw Hill (1997).

11.5 D.T. Nguyen, Parallel-Vector Equation Solvers For Finite Element Engineering Applications, Kluwer Academic/Plenum Publishers (2002).

11.6 D.T. Nguyen, Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions, Springer Publisher (2006).

11.7 Mario Paz, Structural Dynamics: Theory and Computation, 2nd Edition, Van Nostrand Inc. (1985).

11.8 R.W. Clough, and J. Penzien, Dynamics of Structures, Mc-Graw Hill (1975).

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Computation Arrays

L=4

L=3

L=2

L=1

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Data Array

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

= skip the operation

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Figure 11.6: Final “Bit-Reversing” for FFT (with � EMBED Equation.3 ���

Figure 11.5 Graphical Form of FFT (Eq.11.69) For the case � EMBED Equation.3 ���.

PAGE
34

_1279990671.unknown

_1280043560.unknown

_1280052222.unknown

_1280078641.unknown

_1280081108.unknown

_1280145124.unknown

_1280150918.unknown

_1280316902.unknown

_1280648859.unknown

_1280648899.unknown

_1280648932.unknown

_1282719856.unknown

_1282117590.unknown

_1280648912.unknown

_1280648880.unknown

_1280317556.unknown

_1280318229.unknown

_1280318261.unknown

_1280317580.unknown

_1280318207.unknown

_1280317179.unknown

_1280317513.unknown

_1280317089.unknown

_1280316663.unknown

_1280316855.unknown

_1280316879.unknown

_1280316681.unknown

_1280152652.unknown

_1280152810.unknown

_1280153192.unknown

_1280152746.unknown

_1280151003.unknown

_1280151842.unknown

_1280145715.unknown

_1280145808.unknown

_1280147271.unknown

_1280147631.unknown

_1280148048.unknown

_1280148049.unknown

_1280148047.unknown

_1280147298.unknown

_1280146816.unknown

_1280146831.unknown

_1280145925.unknown

_1280146789.unknown

_1280145753.unknown

_1280145783.unknown

_1280145738.unknown

_1280145686.unknown

_1280145694.unknown

_1280145604.unknown

_1280082045.unknown

_1280082481.unknown

_1280082963.unknown

_1280085858.unknown

_1280144412.unknown

_1280144582.unknown

_1280139409.unknown

_1280139779.unknown

_1280139630.unknown

_1280085895.unknown

_1280085909.unknown

_1280085870.unknown

_1280085713.unknown

_1280085801.unknown

_1280085819.unknown

_1280085734.unknown

_1280083028.unknown

_1280083038.unknown

_1280082990.unknown

_1280082762.unknown

_1280082864.unknown

_1280082907.unknown

_1280082765.unknown

_1280082661.unknown

_1280082721.unknown

_1280082512.unknown

_1280082245.unknown

_1280082327.unknown

_1280082340.unknown

_1280082272.unknown

_1280082199.unknown

_1280082226.unknown

_1280082114.unknown

_1280081765.unknown

_1280081889.unknown

_1280081977.unknown

_1280082004.unknown

_1280081915.unknown

_1280081818.unknown

_1280081854.unknown

_1280081798.unknown

_1280081668.unknown

_1280081701.unknown

_1280081728.unknown

_1280081691.unknown

_1280081604.unknown

_1280081643.unknown

_1280081568.unknown

_1280080140.unknown

_1280080456.unknown

_1280080796.unknown

_1280080992.unknown

_1280081047.unknown

_1280081078.unknown

_1280081006.unknown

_1280080881.unknown

_1280080929.unknown

_1280080859.unknown

_1280080625.unknown

_1280080764.unknown

_1280080794.unknown

_1280080657.unknown

_1280080567.unknown

_1280080622.unknown

_1280080534.unknown

_1280080557.unknown

_1280080341.unknown

_1280080391.unknown

_1280080431.unknown

_1280080364.unknown

_1280080236.unknown

_1280080300.unknown

_1280080321.unknown

_1280080250.unknown

_1280080174.unknown

_1280079531.unknown

_1280079708.unknown

_1280079870.unknown

_1280079980.unknown

_1280079885.unknown

_1280079758.unknown

_1280079594.unknown

_1280079691.unknown

_1280079587.unknown

_1280079312.unknown

_1280079496.unknown

_1280079509.unknown

_1280079376.unknown

_1280079418.unknown

_1280079042.unknown

_1280079079.unknown

_1280079006.unknown

_1280055164.unknown

_1280078206.unknown

_1280078388.unknown

_1280078485.unknown

_1280078604.unknown

_1280078545.unknown

_1280078415.unknown

_1280078291.unknown

_1280078314.unknown

_1280078281.unknown

_1280077912.unknown

_1280077964.unknown

_1280078080.unknown

_1280077942.unknown

_1280077783.unknown

_1280077814.unknown

_1280077742.unknown

_1280052595.unknown

_1280054939.unknown

_1280054996.unknown

_1280055163.unknown

_1280054988.unknown

_1280054883.unknown

_1280054932.unknown

_1280052596.unknown

_1280052426.unknown

_1280052479.unknown

_1280052506.unknown

_1280052452.unknown

_1280052305.unknown

_1280052330.unknown

_1280052240.unknown

_1280049119.unknown

_1280051934.unknown

_1280051951.unknown

_1280051959.unknown

_1280052133.unknown

_1280052173.unknown

_1280052183.unknown

_1280052155.unknown

_1280052058.unknown

_1280052112.unknown

_1280051960.unknown

_1280052015.unknown

_1280051955.unknown

_1280051957.unknown

_1280051958.unknown

_1280051956.unknown

_1280051953.unknown

_1280051954.unknown

_1280051952.unknown

_1280051942.unknown

_1280051946.unknown

_1280051948.unknown

_1280051950.unknown

_1280051947.unknown

_1280051944.unknown

_1280051945.unknown

_1280051943.unknown

_1280051938.unknown

_1280051940.unknown

_1280051941.unknown

_1280051939.unknown

_1280051936.unknown

_1280051937.unknown

_1280051935.unknown

_1280050748.unknown

_1280051254.unknown

_1280051929.unknown

_1280051932.unknown

_1280051933.unknown

_1280051931.unknown

_1280051925.unknown

_1280051927.unknown

_1280051928.unknown

_1280051926.unknown

_1280051921.unknown

_1280051923.unknown

_1280051924.unknown

_1280051922.unknown

_1280051400.unknown

_1280051920.unknown

_1280051919.unknown

_1280051284.unknown

_1280050991.unknown

_1280051066.unknown

_1280051079.unknown

_1280051017.unknown

_1280050933.unknown

_1280050953.unknown

_1280050799.unknown

_1280050330.unknown

_1280050501.unknown

_1280050678.unknown

_1280050718.unknown

_1280050551.unknown

_1280050395.unknown

_1280050415.unknown

_1280050352.unknown

_1280049350.unknown

_1280049586.unknown

_1280050320.unknown

_1280049376.unknown

_1280049302.unknown

_1280049330.unknown

_1280049279.unknown

_1280045041.unknown

_1280047157.unknown

_1280049009.unknown

_1280049077.unknown

_1280049079.unknown

_1280049036.unknown

_1280048889.unknown

_1280048958.unknown

_1280048771.unknown

_1280046879.unknown

_1280047047.unknown

_1280047079.unknown

_1280046886.unknown

_1280045085.unknown

_1280045123.unknown

_1280045049.unknown

_1280044141.unknown

_1280044483.unknown

_1280044714.unknown

_1280045013.unknown

_1280044525.unknown

_1280044263.unknown

_1280044401.unknown

_1280044202.unknown

_1280044021.unknown

_1280044071.unknown

_1280044087.unknown

_1280044047.unknown

_1280043785.unknown

_1280043973.unknown

_1280043589.unknown

_1279995308.unknown

_1279996325.unknown

_1279998227.unknown

_1280043459.unknown

_1280043494.unknown

_1280043531.unknown

_1280043472.unknown

_1280043375.unknown

_1280043440.unknown

_1279998257.unknown

_1279997327.unknown

_1279997360.unknown

_1279997548.unknown

_1279997357.unknown

_1279997268.unknown

_1279997304.unknown

_1279997038.unknown

_1279995876.unknown

_1279995921.unknown

_1279996196.unknown

_1279996298.unknown

_1279995929.unknown

_1279995904.unknown

_1279995912.unknown

_1279995892.unknown

_1279995615.unknown

_1279995848.unknown

_1279995861.unknown

_1279995626.unknown

_1279995587.unknown

_1279995609.unknown

_1279995571.unknown

_1279993624.unknown

_1279994784.unknown

_1279995235.unknown

_1279995268.unknown

_1279995288.unknown

_1279995256.unknown

_1279994855.unknown

_1279994892.unknown

_1279994795.unknown

_1279993735.unknown

_1279993832.unknown

_1279993841.unknown

_1279993804.unknown

_1279993663.unknown

_1279993714.unknown

_1279993647.unknown

_1279991966.unknown

_1279993397.unknown

_1279993578.unknown

_1279993603.unknown

_1279993525.unknown

_1279993436.unknown

_1279992054.unknown

_1279992854.unknown

_1279993035.unknown

_1279993093.unknown

_1279993007.unknown

_1279992282.unknown

_1279992023.unknown

_1279991107.unknown

_1279991168.unknown

_1279991739.unknown

_1279991154.unknown

_1279991008.unknown

_1279991023.unknown

_1279990937.unknown

_1278081547.unknown

_1278241803.unknown

_1278351400.unknown

_1278399914.unknown

_1278572026.unknown

_1278668935.unknown

_1278692098.unknown

_1278696170.unknown

_1278930087.unknown

_1279015570.unknown

_1279990300.unknown

_1279990501.unknown

_1279990521.unknown

_1279990309.unknown

_1279015571.unknown

_1279015563.unknown

_1279015568.unknown

_1279015569.unknown

_1279015564.unknown

_1278930600.unknown

_1279015561.unknown

_1279015562.unknown

_1279015559.unknown

_1279015560.unknown

_1279015557.unknown

_1278930088.unknown

_1278698365.unknown

_1278698464.unknown

_1278699050.unknown

_1278699636.unknown

_1278698587.unknown

_1278698412.unknown

_1278696637.unknown

_1278697478.unknown

_1278696552.unknown

_1278692570.unknown

_1278693297.unknown

_1278693442.unknown

_1278692954.unknown

_1278692308.unknown

_1278692463.unknown

_1278692174.unknown

_1278673195.unknown

_1278691090.unknown

_1278691950.unknown

_1278691981.unknown

_1278691250.unknown

_1278673469.unknown

_1278673684.unknown

_1278673382.unknown

_1278669112.unknown

_1278672256.unknown

_1278673123.unknown

_1278671713.unknown

_1278669023.unknown

_1278669090.unknown

_1278668973.unknown

_1278593732.unknown

_1278667348.unknown

_1278668585.unknown

_1278668877.unknown

_1278667620.unknown

_1278594029.unknown

_1278594673.unknown

_1278593974.unknown

_1278575641.unknown

_1278590608.unknown

_1278593624.unknown

_1278576206.unknown

_1278572392.unknown

_1278575611.unknown

_1278572061.unknown

_1278401062.unknown

_1278570891.unknown

_1278571376.unknown

_1278571789.unknown

_1278572006.unknown

_1278571405.unknown

_1278571112.unknown

_1278571355.unknown

_1278571103.unknown

_1278427999.unknown

_1278429129.unknown

_1278570741.unknown

_1278428965.unknown

_1278401501.unknown

_1278427877.unknown

_1278401142.unknown

_1278400686.unknown

_1278400875.unknown

_1278400949.unknown

_1278401054.unknown

_1278400942.unknown

_1278400779.unknown

_1278400856.unknown

_1278400770.unknown

_1278400025.unknown

_1278400598.unknown

_1278400673.unknown

_1278400209.unknown

_1278399968.unknown

_1278400010.unknown

_1278399921.unknown

_1278398662.unknown

_1278399734.unknown

_1278399848.unknown

_1278399870.unknown

_1278399889.unknown

_1278399864.unknown

_1278399793.unknown

_1278399817.unknown

_1278399763.unknown

_1278399784.unknown

_1278399155.unknown

_1278399298.unknown

_1278399720.unknown

_1278399227.unknown

_1278399122.unknown

_1278399137.unknown

_1278399109.unknown

_1278352236.unknown

_1278352403.unknown

_1278398608.unknown

_1278398640.unknown

_1278353563.unknown

_1278353562.unknown

_1278352342.unknown

_1278352371.unknown

_1278352301.unknown

_1278351894.unknown

_1278352051.unknown

_1278352196.unknown

_1278352139.unknown

_1278352003.unknown

_1278352017.unknown

_1278351936.unknown

_1278351487.unknown

_1278351684.unknown

_1278351788.unknown

_1278351837.unknown

_1278351596.unknown

_1278351466.unknown

_1278351481.unknown

_1278351434.unknown

_1278245049.unknown

_1278247558.unknown

_1278350869.unknown

_1278351252.unknown

_1278351368.unknown

_1278351387.unknown

_1278351352.unknown

_1278351135.unknown

_1278351194.unknown

_1278350940.unknown

_1278350151.unknown

_1278350720.unknown

_1278350781.unknown

_1278350318.unknown

_1278247623.unknown

_1278349448.unknown

_1278247581.unknown

_1278246804.unknown

_1278247144.unknown

_1278247535.unknown

_1278247544.unknown

_1278247180.unknown

_1278247502.unknown

_1278246898.unknown

_1278246975.unknown

_1278246844.unknown

_1278246158.unknown

_1278246367.unknown

_1278246489.unknown

_1278246164.unknown

_1278245967.unknown

_1278245971.unknown

_1278245166.unknown

_1278245918.unknown

_1278245059.unknown

_1278242146.unknown

_1278242350.unknown

_1278244996.unknown

_1278245013.unknown

_1278244891.unknown

_1278242164.unknown

_1278242209.unknown

_1278242304.unknown

_1278242155.unknown

_1278242060.unknown

_1278242091.unknown

_1278241975.unknown

_1278236544.unknown

_1278237614.unknown

_1278241362.unknown

_1278241703.unknown

_1278241748.unknown

_1278241450.unknown

_1278240613.unknown

_1278240755.unknown

_1278240400.unknown

_1278237422.unknown

_1278237504.unknown

_1278237547.unknown

_1278237476.unknown

_1278237291.unknown

_1278237338.unknown

_1278236688.unknown

_1278146933.unknown

_1278150622.unknown

_1278152016.unknown

_1278236513.unknown

_1278151356.unknown

_1278149200.unknown

_1278149934.unknown

_1278147433.unknown

_1278084031.unknown

_1278084340.unknown

_1278084876.unknown

_1278145615.unknown

_1278146379.unknown

_1278140635.unknown

_1278141283.unknown

_1278145558.unknown

_1278142023.unknown

_1278140721.unknown

_1278141263.unknown

_1278085118.unknown

_1278140592.unknown

_1278084778.unknown

_1278084820.unknown

_1278084706.unknown

_1278084211.unknown

_1278084271.unknown

_1278084159.unknown

_1278084042.unknown

_1278084054.unknown

_1278083150.unknown

_1278083928.unknown

_1278083996.unknown

_1278083872.unknown

_1278082952.unknown

_1278083100.unknown

_1278082565.unknown

_1278082740.unknown

_1278082756.unknown

_1278081589.unknown

_1278007285.unknown

_1278009709.unknown

_1278010858.unknown

_1278079702.unknown

_1278081218.unknown

_1278081535.unknown

_1278080868.unknown

_1278011244.unknown

_1278011388.unknown

_1278010927.unknown

_1278010117.unknown

_1278010328.unknown

_1278010444.unknown

_1278010193.unknown

_1278009777.unknown

_1278009845.unknown

_1278009743.unknown

_1278008875.unknown

_1278009480.unknown

_1278009642.unknown

_1278009657.unknown

_1278009520.unknown

_1278009371.unknown

_1278009403.unknown

_1278009125.unknown

_1278007971.unknown

_1278008267.unknown

_1278008830.unknown

_1278008038.unknown

_1278007397.unknown

_1278007527.unknown

_1278007359.unknown

_1277905820.unknown

_1278005901.unknown

_1278006403.unknown

_1278006483.unknown

_1278007088.unknown

_1278006434.unknown

_1278006271.unknown

_1278006320.unknown

_1278006259.unknown

_1277906996.unknown

_1277907711.unknown

_1277908230.unknown

_1277907409.unknown

_1277906384.unknown

_1277906572.unknown

_1277905875.unknown

_1277904340.unknown

_1277904967.unknown

_1277905605.unknown

_1277905653.unknown

_1277905106.unknown

_1277904545.unknown

_1277904901.unknown

_1277904391.unknown

_1277903563.unknown

_1277904184.unknown

_1277904253.unknown

_1277904038.unknown

_1277884794.unknown

_1277903519.unknown

_1277884734.unknown

