
 

STEP‐BY‐STEP DIAGONAL DOMINANT PRECONDITION ALGORITHM FOR UNSYMMETRICAL SLE 

[prepared by Duc T. NGUYEN, on November 5‐2011] 

 

STEP 1:  Input/generate the square NxN unsymmetrical, non‐singular matrix [A] and rhs vector {b}. Using 

MATLAB to find the condition # of [A].  Initialize the iteration counter k = 0.    Copy matrix [M_k] = [A]. 

Note:  We want to solve [A] * {x} = {b}, using iterative solver, such as GMRES, or Bi‐Conjugate_STAB, or 

etc…, record MATLAB final answer, and the # iterations converged to a user’s specified tolerance, say 

error tolerance = 10 ^ (‐7). Also, use MATLAB command spy(A) to plot the non‐zero patterns of matrix 

[A].   Also, record the solution time ! 

STEP 2:   main iteration loop starts here, with  k = k + 1 

(a)  Identify those rows of [A] which are “NOT” diagonal dominant. 

(b)  For those rows in (a), find the LOCATION of the largest absolute value of the “off‐diagonal” 

term, and denote the corresponding location as (row p, column q), or simply denoted as (p, q). 

(c)  Solving 2 non‐linear equations (discussed in the lecture)  to obtain  &  store 2 angles            

theta(k) and phi(k), by using the following MATLAB command: 

[theta, phi] = solve [ ‘ input 1‐st nonlinear equation ‘, ‘ input the 2‐nd nonlinear equation ‘ ]  

(d)  Compute/update matrix [M_k] = [P_k] transpose * [M_k‐1] * [Q_k],  where 

Matrices [P_k] transpose and [Q_k] are “ORTHONORMAL matrices”, and they look almost like 

the Identity matrix, with 4 special values at locations (p,p), (p,q), (q,p), (q,q) which can be 

computed based on the 2 angles theta(k), and phi(k). 

 

Matrix [M_k] is different with matrix [M_k‐1] only in rows #p, q; and in columns #p, q. The 

remaining rows & columns of these 2 matrices were the same ! 

 

Also, for a typical non‐zero term in rows  #p, q; and in columns #p, q  of the matrix [M_k], such 

as M_k(row ii, column jj), we need to check the following criteria: 

 

Sqrt [  M_k(ii ,jj) ^ 2 / { M_K(ii ,ii) * M_k(jj, jj) } ]   <  10 ^ (‐s)    where s = 0.1 is recommended  

 

If the above criteria is satisfied, it means the non‐zero OFF‐DIAGONAL term M_k(ii, jj) is 

relatively small as compared to its diagonal terms [see K.J. Bathe’s textbook (Jacobi iteration for 

eigen‐solution) reference, and therefore this non‐zero OFF‐DIAGONAL term can be neglected ! 

 

The above strategy will offer the following advantages: 

 It will make the updated matrix [M_k] more sparse, and hence it will be RELATIVELY 

CHEAPER (as compared to the matrix [A*], to be discussed later) to solve the system 



[M] * {unknown vector w} = [A*] * {known vector v} 

              *     It will make the process to transform the original matrix [A] into the “diagonal matrix” [A*] 

                    to converge quicker (since we have dropped/neglected a non‐zero off‐diagonal term). 

 It will also save the computer memory required to store matrix [M] 

 

Note:  Matrix [M] needs be EXPLICITLY computed, since we have to provide this matrix [M] 

as a preconditioned matrix for MATLAB/gmres ! 

 

STEP 3:   Test to see if the process has already converge into a diagonal matrix [A*] = [A_k]  ? 

 Where matrix [A*] = matrix [A_k] = [P_k] transpose * [A_k‐1] * [Q_k].     

 

Assuming the process will converge in the k‐th iteration, then matrix [A*] can be computed 

as: 

 

[A*] = [P_k] transpose * .. * [P_2] transpose * [P_1] transpose * [A] * [Q_1] * [Q_2] *. [Q‐k] 

 

Notes: However, there is no need to compute matrix [A*] EXPLICITLY (??), because in any 

iterative solver (such as GMRES), we only need to compute the product of [A*] * {a known 

vector} !?.  On the other hand, we may have to compute/update the matrix [A*] EXPLICITLY, 

in order to check for EACH row of [A*] if already converged to DIAGONAL DOMINANT !?? 

 

Also, we should compute/update the matrix [M], right after computing/updating matrix 

[A*], since the updating matrix [M] is essentially the same as the updating [A*] with some 

non‐zero off‐diagonal terms NEGLECTED !! 

 

If the process CONVERGE (or matrix [A*] CONVERGE) to a diagonal dominant matrix, then 

GO TO STEP 4, 

Else 

RETURN to STEP 2 

endif 

 

STEP 4:   Solve the system   [A*] * {intermediate unknown vector y} = {b*} by using  MATLAB 

iterative solver, such as GMRES, and with the provided preconditioned matrix [M] 

 

                Where {b*} = [P_k] transpose …. [P_2] transpose * [P_1] transpose * {b} 

 

Make sure to report the final answer to the same error tolerance = 10 ^ (‐7), and the # 

iterations converged !  Also, record the solution time ! 

 

 



 

STEP 5:  Compute the original unknown vector {x}, by solving the following equation: 

 

{x} = [Q_1] * [Q_2] * …. * [Q_k] * {y} 

 

For computational efficiency, the above rhs operations should be done from right to left. 

Furthermore, it should be realized that the operation [Q‐k]  * {known vector y} will result 

into an updated/new vector {y} which is different from its previous operation in only 2 

locations (corresponding to locations in rows p, and q) !! 

 

Also, record the solution time ! 

 

STEP 6:   Define/compute matrix [P] = [M] inverse * [A*] 

 

STEP 7:  Use MATLAB built‐in functions to compute and print the condition # of [P], [A*], [M] 

 

Also, use MATLAB command spy (M) to plot the non‐zero sparse pattern of [M]  !! 

 

 

 

 

 

 


