

STEP-BY-STEP DIAGONAL DOMINANT PRECONDITION ALGORITHM FOR UNSYMMETRICAL SLE

[prepared by Duc T. NGUYEN, on November 5-2011]

STEP 1: Input/generate the square NxN unsymmetrical, non-singular matrix [A] and rhs vector {b}. Using MATLAB to find the condition # of [A]. Initialize the iteration counter $k = 0$. Copy matrix $[M_k] = [A]$. Note: We want to solve $[A] * \{x\} = \{b\}$, using iterative solver, such as GMRES, or Bi-Conjugate_STAB, or etc..., record MATLAB final answer, and the # iterations converged to a user's specified tolerance, say error tolerance = 10^{-7} . Also, use MATLAB command `spy(A)` to plot the non-zero patterns of matrix [A]. Also, record the solution time !

STEP 2: main iteration loop starts here, with $k = k + 1$

- (a) Identify those rows of [A] which are "NOT" diagonal dominant.
- (b) For those rows in (a), find the LOCATION of the largest absolute value of the "off-diagonal" term, and denote the corresponding location as (row p, column q), or simply denoted as (p, q).
- (c) Solving 2 non-linear equations (discussed in the lecture) to obtain & store 2 angles $\theta(k)$ and $\phi(k)$, by using the following MATLAB command:
`[theta, phi] = solve ['input 1-st nonlinear equation', 'input the 2-nd nonlinear equation']`
- (d) Compute/update matrix $[M_k] = [P_k] \text{ transpose} * [M_{k-1}] * [Q_k]$, where Matrices $[P_k]$ transpose and $[Q_k]$ are "ORTHONORMAL matrices", and they look almost like the Identity matrix, with 4 special values at locations (p,p), (p,q), (q,p), (q,q) which can be computed based on the 2 angles $\theta(k)$, and $\phi(k)$.

Matrix $[M_k]$ is different with matrix $[M_{k-1}]$ only in rows #p, q; and in columns #p, q. The remaining rows & columns of these 2 matrices were the same !

Also, for a typical non-zero term in rows #p, q; and in columns #p, q of the matrix $[M_k]$, such as $M_k(\text{row } ii, \text{column } jj)$, we need to check the following criteria:

$$\text{Sqrt} [M_k(ii, jj)^2 / \{ M_k(ii, ii) * M_k(jj, jj) \}] < 10^{-s} \quad \text{where } s = 0.1 \text{ is recommended}$$

If the above criteria is satisfied, it means the non-zero OFF-DIAGONAL term $M_k(ii, jj)$ is relatively small as compared to its diagonal terms [see K.J. Bathe's textbook (Jacobi iteration for eigen-solution) reference, and therefore this non-zero OFF-DIAGONAL term can be neglected !

The above strategy will offer the following advantages:

- It will make the updated matrix $[M_k]$ more sparse, and hence it will be RELATIVELY CHEAPER (as compared to the matrix $[A^*]$, to be discussed later) to solve the system

$$[M] * \{\text{unknown vector } w\} = [A^*] * \{\text{known vector } v\}$$

- * It will make the process to transform the original matrix [A] into the “diagonal matrix” $[A^*]$ to converge quicker (since we have dropped/neglected a non-zero off-diagonal term).
- It will also save the computer memory required to store matrix [M]

Note: Matrix [M] needs be EXPLICITLY computed, since we have to provide this matrix [M] as a preconditioned matrix for MATLAB/gmres !

STEP 3: Test to see if the process has already converge into a diagonal matrix $[A^*] = [A_k]$? Where matrix $[A^*] = \text{matrix } [A_k] = [P_k] \text{ transpose} * [A_{k-1}] * [Q_k]$.

Assuming the process will converge in the k-th iteration, then matrix $[A^*]$ can be computed as:

$$[A^*] = [P_k] \text{ transpose} * \dots * [P_2] \text{ transpose} * [P_1] \text{ transpose} * [A] * [Q_{-1}] * [Q_{-2}] * \dots * [Q_{-k}]$$

Notes: However, there is no need to compute matrix $[A^*]$ EXPLICITLY (??), because in any iterative solver (such as GMRES), we only need to compute the product of $[A^*] * \{\text{a known vector}\}$!?. On the other hand, we may have to compute/update the matrix $[A^*]$ EXPLICITLY, in order to check for EACH row of $[A^*]$ if already converged to DIAGONAL DOMINANT !??

Also, we should compute/update the matrix [M], right after computing/updating matrix $[A^*]$, since the updating matrix [M] is essentially the same as the updating $[A^*]$ with some non-zero off-diagonal terms NEGLECTED !!

If the process CONVERGE (or matrix $[A^*]$ CONVERGE) to a diagonal dominant matrix, then

GO TO STEP 4,

Else

RETURN to STEP 2

endif

STEP 4: Solve the system $[A^*] * \{\text{intermediate unknown vector } y\} = \{b^*\}$ by using MATLAB iterative solver, such as GMRES, and with the provided preconditioned matrix [M]

Where $\{b^*\} = [P_k] \text{ transpose} * \dots * [P_2] \text{ transpose} * [P_1] \text{ transpose} * \{b\}$

Make sure to report the final answer to the same error tolerance = 10^{-7} , and the # iterations converged ! Also, record the solution time !

STEP 5: Compute the original unknown vector $\{x\}$, by solving the following equation:

$$\{x\} = [Q_1] * [Q_2] * \dots * [Q_k] * \{y\}$$

For computational efficiency, the above rhs operations should be done from right to left. Furthermore, it should be realized that the operation $[Q_k] * \{\text{known vector } y\}$ will result into an updated/new vector $\{y\}$ which is different from its previous operation in only 2 locations (corresponding to locations in rows p, and q) !!

Also, record the solution time !

STEP 6: Define/compute matrix $[P] = [M] \text{ inverse} * [A^*]$

STEP 7: Use MATLAB built-in functions to compute and print the condition # of $[P]$, $[A^*]$, $[M]$

Also, use MATLAB command `spy (M)` to plot the non-zero sparse pattern of $[M]$!!