1. (40pts) Differentiate the following functions.

 (i) \(f(x) = x^4 + \frac{1}{\sqrt{x}} \)
 (ii) \(g(x) = t^2 \sin t - \tan t \)
 (iii) \(f(x) = \frac{x^2 - 1}{x+1} \)
 (iv) \(h(t) = (1 + t^2)^6 \)
 (v) \(h(x) = \ln(\cos x) + 2^x \)
 (vi) \(f(t) = \frac{\sqrt{1-t^2}}{t} \)
 (vii) \(g(x) = \tan^{-1}(x^3) \)
 (viii) \(h(t) = xe^{\frac{1}{t}} \)

2. (10pts) Using the implicit differentiation, find \(\frac{dy}{dx} \), then use it to find an equation of the tangent line to \(\frac{x^2}{9} + \frac{y^2}{36} = 1 \) at \((-1, 4\sqrt{2})\).

3. (15pts) Find the following limits.

 (i) \(\lim_{x \to 0^+} x \ln x \)
 (ii) \(\lim_{h \to 0} \frac{\sin 3h}{\sin 5h} \)
 (iii) \(\lim_{x \to \infty} (1 + \frac{1}{x})^x \)

4. (25pts) Graph \(f(x) = \frac{x^2}{x^2+1} \) by answering the following parts.

 (i) Verify that \(f'(x) = \frac{2x}{(x^2+1)^2} \).
 (ii) Classify the regions according to increasing or decreasing of \(f \).
 (iii) Find all the local extrema of \(f \).
 (iv) Verify that \(f''(x) = \frac{2(1-3x^2)}{(x^2+1)^3} \).
 (v) Classify the regions according to the concavities of \(f \).
 (vi) Find the inflection point(s) of \(f \).
 (vii) Find all the asymptotes of \(f \).
 (viii) Graph \(f \).

5. (10pts) Air is being pumped into a spherical balloon at the rate of \(5\text{in}^3/\text{sec} \). At what rate is the radius of the balloon increasing when the radius \(r \) is 9 inches.