Solutions to Selected Problems of Test 2

2-(1) See examples 3.36 and 3.37

2-(2) See exercise 7, 4.3

3. 1-T, 2-T, 3-T, 4-F, 5-F, 6-F, 7-T, 8-F, 9-T, 10-F

4.

(1) Consult our textbook.

(2) Let \(f(x) = e^x - \cos x - 1 \). Note that \(f \) is continuous on \(R \) and \(f(0) = -1 < 0 \) and \(f(\frac{\pi}{2}) > 0 \). Hence by the Intermediate Value Theorem, there exists \(x^* \in (0, \frac{\pi}{2}) \) such that \(f(x^*) = 0 \).

(3) Since \(f \) is continuously differentiable over \([a, b]\), \(f' \) is continuous over \([a, b]\). Hence \(|f'(x)| < M \) for some \(M > 0 \) and for all \(x \in [a, b] \). Hence using MVT, for \(x, y \in [a, b] \), there exists \(c \in (a, b) \) such that \(f(x) - f(y) = f'(c)(x - y) \). Hence, given \(\epsilon > 0 \), choose \(\delta = \epsilon/M \) so that for \(|x - y| < \delta \), we have

\[
|f(x) - f(y)| = |f'(c)(x - y)| \leq M|x - y| < M \cdot \delta = M \cdot \epsilon/M = \epsilon.
\]

(4) \(\Rightarrow \) For this direction, there is nothing to prove, since if \(f \) is continuous over \((0, \infty)\), then it is certainly continuous at 1.

\(\Leftarrow \) Since \(f \) is continuous at 1, given \(\epsilon > 0 \), there exists \(\delta_1 > 0 \) such that \(|1 - a| < \delta_1 \) implies \(|f(1) - f(a)| < \epsilon \). Now for any \(x \in (0, \infty) \), choose \(\delta = x \cdot \delta_1 \), then \(|1 - \frac{y}{x}| < \delta_1 \), or equivalently \(|x - y| < \delta \), we have \(|f(x) - f(y)| = |f(\frac{y}{x})| < \epsilon \).