2) one dimensional, multi-channel, discrete time, digital
3) multi-dimensional, single channel, continuous time, analog.
2) one dimensional, single channel, continuous time, analog.
3) one dimensional, multi-channel, discrete time, digital.

1.3 (b)

2) \(\cos(0.01 \pi n) \)
 \[f = \frac{0.01 \pi}{2\pi} = \frac{1}{200} \Rightarrow \text{Periodic with } N_p = 200

3) \(f = \frac{0.01 \pi}{2\pi} \times \frac{1}{2\pi} = \frac{1}{7} \Rightarrow \text{Periodic with } N_p = 7

4) \(f = \frac{0.01 \pi}{2\pi} = \frac{3}{2} \Rightarrow \text{Periodic with } N_p = 2
 \] (since \(\frac{3}{2} \times 2 = 3 \), integer)

5) \(f = \frac{0.01 \pi}{2\pi} + \text{ratio of integers} \Rightarrow \text{non-periodic}

6) \(f = \frac{0.01 \pi}{2\pi} \times \frac{1}{2\pi} = \frac{31}{10} \Rightarrow \text{Periodic with } N_p = 10

(Credit for solutions to Saroja Srinidhi, Northeastern University)
\[\text{Analyze} \] \[x(t) = 3 \sin(100 \pi t) \]

Period is given by \[100 \pi T_a = 2\pi \]
\[T_a = \frac{2\pi}{100 \pi} = \frac{1}{50} = 0.02 \text{ ms} \]

\[x[n] = x[nT_a] = x[n/(100\pi)] = 3 \sin\left(\frac{\pi n}{3}\right) \]

\[f = \frac{\pi}{3} \times \frac{1}{2\pi} = \frac{1}{6}, \text{ so } N_p = 6 \]

\[x[n] = \{0.2, -0.3, 0.2, -0.3, 0.2\} \]

see sketch above

\[N_p = 6 \text{ technically should not refer to period in ms.} \]

\[\text{Yes, clearly } \geq 4 \ \text{ samples/cycle} \]
\[\text{if } F_s = 4 \times (\frac{1}{T_a}) = 200 \text{ samples/sec} \]

\[x(n) = A \cos\left(2\pi F_0 n/f_s + \theta\right) \]
\[= A \cos\left(2\pi \left(\frac{1}{0.02}\right) n + \theta\right) \]

But \[T/f_p = f \Rightarrow x[n] \text{ is periodic if } f \]

\(\text{is rational.} \)
* (Note, in parts b and c of Tp should have been Td)

\[\frac{106.5}{\pi} \text{ of } x(n) \text{ is periodic, then } f = \frac{\alpha}{N} \]

\[n = \frac{\pi}{f} \]

Thus \(T_d = N T = \frac{\pi}{f} T = \pi T_p \)

Thus period of discrete signal \(T_d = A \) periods of analog signal.

(If \(\frac{f}{T_p} \) is integer, \(\alpha = 1 \)

\(T_d = \alpha T_p \Rightarrow N T = \pi T_p \Rightarrow f = \frac{\pi}{N} \Rightarrow f \text{ rational, } x[n] \text{ periodic} \)