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ABSTRACT
This work proposes GangSweep, a new backdoor detection frame-
work that leverages the super reconstructive power of Generative
Adversarial Networks (GAN) to detect and “sweep out” neural
backdoors. It is motivated by a series of intriguing empirical inves-
tigations, revealing that the perturbation masks generated by GAN
are persistent and exhibit interesting statistical properties with
low shifting variance and large shifting distance in feature space.
Compared with the previous solutions, the proposed approach elim-
inates the reliance on the access to training data, and shows a high
degree of robustness and efficiency for detecting and mitigating a
wide range of backdoored models with various settings. Moreover,
this is the first work that successfully leverages generative net-
works to defend against advanced neural backdoors with multiple
triggers and their polymorphic forms.

CCS CONCEPTS
• Computing methodologies→ Model verification and vali-
dation.
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1 INTRODUCTION
As deep neural network (DNN) is empirical and data-driven, the
performance is highly dependent on the size and quality of the
training data. It also demands extensive expertise, computation,
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and energy resources to carefully design, train and finetune a well-
performed model for production. As a result, it is often unaffordable
for developers and end users to train their own models in large
scale. Instead, most users resort to third parties known as “Machine
Learning as a Service”(MLaaS) [24] or simply reuse the public model
zoo online, e.g., Caffe Model Zoo [10], as a basis for multimedia
and computer vision applications.

However, it raises a fundamental question: Can we trust a model
provided by someone else? There are recently reported attacks of
planting a neural backdoor in the model to cause catastrophic fail-
ure [6, 18, 25, 35]. The attacker can purposely poison the training
data in order to map a normal image with an arbitrarily defined
trigger to a target label. The backdoor model behaves normally
with clean inputs, but whenever the trigger is presented, the in-
put is misclassified into the target category (see example in Fig.
1). This new challenge spans beyond the security community: any
neural-based applications such as image/multimedia search and
retrieval [31, 37], online recommendation [9, 29] and emotion [19]
share the same risks.

The stealth of the attack originates from the opaque and unex-
plainable nature of the model weights, which makes it infeasible
to identify by simply peeking into the millions of floating-point
weight parameters. Fortunately, there are some early efforts to
detect neural backdoors [2, 7, 17, 22, 32]. The state-of-the-art de-
fense called Neural Cleanse uses gradient optimization, aiming to
reverse-engineer a neural backdoor to reconstruct the trigger for
the infected class [32]. It leverages the well-known method for
generating adversarial examples [14] to induce a minimal perturba-
tion required to misclassify all samples from their original labels
into a target label. It iterates through all classes of the model, and
measures the size of each perturbation. If a perturbation is signif-
icantly smaller than others, it represents a real trigger, and the
label matching that trigger is the target label of the backdoor at-
tack. However, the success of Neural Cleanse greatly relies on the
prior knowledge of the trigger as well as the training data in a con-
fined setting. This might be effective against an invariant attacker,
whereas strong attackers can adopt different strategies such as us-
ing multiple, translucent, or even spatially transformed triggers to
evade Neural Cleanse. Further, users are usually given a small set
of data for validation purposes only, but not authorized to access
the rest proprietary training data.

To build a robust defense, in this paper, we propose a new ap-
proach called, GangSweep. Rather than using a mask to capture
the backdoor trigger through gradient optimizations [1, 20, 30], we
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leverage the super reconstructive power of Generative Adversarial
Networks (GAN) [5] to detect and “sweep out” all the neural back-
doors. In contrast to [32], GAN reconstructs the manifold around
the targeted class, such that all the artifacts induced by the attacker
are explicitly exposed, no matter the attacker has planted single,
multiple, translucent, randomly diversified or even hidden trig-
gers. Then we leverage the fundamental statistical heterogeneity
between these exposed artifacts and the rest majority of natural
adversarial perturbations to derive an efficient detection scheme. Fi-
nally, we correct the labels of the backdoor samples and completely
clean out the infected model through finetuning.

The main contributions are summarized below. First, we propose
to use generative networks to tap into the fundamental weakness of
neural backdoors by effectively reconstructing the manifold around
the target class, and expose all the artifacts the attacker has planted
for a successful attack. These insights are offered through a series
of empirical experiments. Second, we discover that the triggers for
the target label exhibit some interesting statistical property with
low shifting variance and large shifting distance in feature space.
We develop an efficient outlier detection mechanism that can make
a clear distinction between the trigger and the ordinary adversarial
perturbations. Finally, we conduct extensive experiments to show
our defense is effective against 3 state-of-the-art backdoor trojan at-
tacks [6, 18, 25] across 5 datasets, through varying number, pattern,
and size of the triggers. Our mechanism can detect and mitigate
all of such trigger combinations, whereas [32] is only effective for
detecting a single, small-size, and invariant trigger. To the best of
our knowledge, this is the first work that successfully leverages
GAN to defend neural backdoors with their polymorphic forms, as
well as the first detection of the more difficult hidden triggers [25].

2 RELATEDWORK
Backdoor Attacks. Neural backdoors have been investigated by
both machine learning and security communities. In contrast to
the ubiquitous adversarial examples [1, 20, 30], neural backdoors
are purposely designed for accomplishing targeted attacks with
high accuracy by taking advantage of inherent vulnerabilities in
neural networks and model distribution process. Such an attack has
raised serious concerns to the integrity and reliability of adopting
machine learning in security-critical applications. BadNets [6] is
the first reported backdoor attack as illustrated in Fig. 1. TrojanNN
[18] is a more advanced and subtle attack, which is less dependent
on the training data. The trigger is generated based on the selected
internal neurons to build a strong connection between the trigger
and the neuron response, thus reducing the training data required
to plant the trigger. It is also worth mentioning a more recent and
advanced attack called Hidden Backdoor Trojan [25]. It actually
introduces an invisible, dynamic backdoor that hides the trigger in
the poisoned data and keeps the trigger secret until the test time. At
the test time, the clean source images patched with trigger pattern
at any location can trigger the backdoor and fool the model. In this
paper, we demonstrate that none of these attacks can escape from
GangSweep.

Backdoor Detection. On the defensive side, the security com-
munity has taken initial steps to detect and mitigate the backdoor
attacks. Neural Cleanse [32] is proposed to detect backdoor by using

gradient optimization to reverse-engineer the possibly embedded
triggers for each output class and identify the infected class based
on measuring the 𝐿1 norm of the possible trigger. A few important
limitations make Neural Cleanse only effective against invariant at-
tackers. Once the trigger has been changed, e.g., translucent, resized
or spatially transformed, it might break down and falsify trigger
recovery. The heavy reliance on the access to training data further
limits its practicality when users only have a small validation set. To
improve Neural Cleanse, TABOR [7] designs a new objective func-
tion to reverse-engineer the potential trigger. However, the complex
objective function consists of 4 regularization terms, which makes
it difficult to converge with a large number of hyperparameters in
their design. Despite the significant optimization efforts to detect a
variety of new triggers, translucent/multiple/spatially transformed
trigger(s) are still at large.

In a parallel direction, Activation Clustering [2] looks into the
intermediate neuron activations for statistical heterogeneity from
the benign inputs. Fine-Pruning [17] intends to sterilize backdoor
by pruning redundant neurons and then finetuning the model using
clean training data. Unfortunately, both of them share the same
limitation of Neural Cleanse, i.e., requiring access to clean-labeled
training data. Activation Clustering requires poisonous data as well,
which is impractical in practice.

3 THREAT MODEL
As discussed in the introduction, we consider a similar but more
realistic threat model than [32]. Particularly, a user has obtained a
pre-trained model from the online repository. It could be a benign
or trojaned model with a backdoor planted. In contrast to [32],
which assumes only one single and static trigger for the backdoor,
multiple triggers could be planted. For example, multiple triggers
might be used by an attacker to guarantee a high success rate, or
left by multiple attackers during the model exchange. Moreover, it
is appealing to the attacker for splitting a large trigger into smaller
pieces and strategically spread over the image, to avoid visual de-
tection from a human. Thus, the backdoor could be activated by
(1) any one of the multiple triggers or (2) by any combination of
multiple triggers. A backdoor model would misclassify inputs with
the triggers to a target label, and at the same time perform normally
on the clean inputs such that it can pass the validation process.

The defender only has access to the model and a small set of
clean label validation data (no access to either the training data or
training process). The defender aims to first detect the backdoor
label and then mitigate it based on the restored trigger image.

4 PROPOSED GANGSWEEP APPROACH
The overall architecture of GangSweep is illustrated in Fig. 2. It
consists of three phases as outlined below.

(1) Perturbation Mask Generation. We design a generative net-
work that can generate a perturbation mask for an input image
such that it will be misclassified to a target label. For a given DNN,
we presume the model is backdoored and enumerate every label to
be a hypothetical target label to generate perturbation masks.

(2) Malicious Model Detection. We take the features of the per-
turbation masks and use an outlier detection algorithm to judge if
there is a persistent, universal perturbation mask (trigger) that leads
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Figure 1: An illustration of a backdoor attack. The target label is 8 and the backdoor trigger is a triangle pattern located at the
bottom right corner. The attacker first poisoned the training dataset with images stamped with the trigger and labeled them
as the target label. After training with the poison dataset, the model will misclassify the input embedded with the trigger as
the target label while behaving normally with inputs without the trigger.
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Figure 2: The framework for GangSweep. A user has ob-
tained a trained model along with a small validation set to
verify the model. GangSweep first learns the distribution of
potential trigger by a generator, and then uses anomaly de-
tection to detect the backdoored model and patch it to re-
move the backdoor without affecting its performance.

Figure 3: Proposed Generative Adversarial Network (GAN)
architecture for perturbation mask generation.

to the misclassification of all images to a target label. If such a mask
exists, the model is considered malicious, and the mask essentially
recovers the original trigger used for training the backdoor.

(3) Backdoor Mitigation.We leverage the restored trigger to re-
move backdoor without affecting the performance on clean data.

4.1 Perturbation Mask Generation
The backdoor attacks [6, 18] are constructed by stamping a trigger
onto clean images to activate the backdoor. The triggers are usually
small to make the attack stealthy. In contrast to adversarial exam-
ples [1, 20, 30] that typically push the sample off the data manifold,
the backdoor planting process is incorporated into training so the
manifold around the target class is learned from trigger images.

Generative Adversarial Networks (GANs) [5, 34] intends to find
an unknown data distribution from a two-player game, in which
the discriminator aims to separate real data from the (forged) one
generated by the generator, whereas the generator tries to fool the
discriminator by generating real data. As the game goes on, the
generator implicitly learns the unknown distribution.

Since we do not know which label the attacker targets at, the
distribution around the target label is unknown. Neural Cleanse

minimizes a loss function to match the generated mask with the
presumed trigger. Though it can expose a single trigger, it takes
no effort to explore the rest majority of the unknown distribution,
where other triggers may reside at. To this end, we extend the
generative capabilities of GAN to learn such unknown distribution,
thereby completely recovering all artifacts planted by the attacker.

(1) Proposed GAN Architecture. As shown in Fig. 3, the pro-
posed GAN architecture consists of a generator𝐺 and the backdoor
model 𝑓 . The generator 𝐺 is based on the ResNet architecture [11]
and has been proved to successfully transform images from one
domain to another [36]. It takes the clean image 𝑥 ∈ R𝑛 as the input
and generates a perturbation𝐺 (𝑥). The perturbation is then scaled
to [0, 1]𝑛 , and subsequently combined with the original images 𝑥
to yield 𝑥 +𝐺 (𝑥), which is sent to the backdoor model 𝑓 . To train
𝐺 for generating the perturbation mask, we design loss 𝐿𝑎𝑑𝑣 as
the difference between the probability of the target label and the
maximum probability of any other labels,

𝐿𝑎𝑑𝑣 = max(max
𝑖≠𝑡
{𝑓 (𝑥 +𝐺 (𝑥))𝑖 } − 𝑓 (𝑥 +𝐺 (𝑥))𝑡 , 𝑘). (1)

Here 𝑘 encourages 𝑥 +𝐺 (𝑥) to be classified as target label 𝑡 with
high confidence. We set 𝑘 = 0 in our training. Similar to [5], we use
the L2 norm to minimize the perturbation,

𝐿𝑝𝑒𝑟𝑡 = E𝑥 ( | |𝐺 (𝑥) | |2) . (2)

Finally, the total loss can be expressed as:

𝐿 = 𝐿𝑝𝑒𝑟𝑡 + 𝛼𝐿𝑎𝑑𝑣, (3)

where 𝛼 balances the importance between the size of perturbation
and the adversarial attack success rate. 𝐿𝑝𝑒𝑟𝑡 controls the pertur-
bation to be less perceivable, while 𝐿𝑎𝑑𝑣 is used to optimize the
attack success rate of the generated adversarial perturbation. In the
first iteration of the generator training, we empirically let 𝛼 = 2 to
encourage mis-classification. In the next iterations, 𝛼 is updated
dynamically according to 𝐿𝑝𝑒𝑟𝑡 and 𝐿𝑎𝑑𝑣 :

𝛼 =

{
1
2 if 𝐿𝑝𝑒𝑟𝑡 > 𝐿𝑎𝑑𝑣

2 if 𝐿𝑝𝑒𝑟𝑡 < 𝐿𝑎𝑑𝑣 .
(4)

For a given DNN 𝑓 with a set of validation images, we presume
the model is backdoored and enumerate every label to be a hypo-
thetical target label. For each hypothetical target label, we use the
validation images to train 𝐺 by minimizing the loss 𝐿. Note that,
the training process only updates the generator 𝐺 but not 𝑓 .
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Figure 4: Comparison between the generated perturbation
masks targeted to the clean and infected labels. The upper
row shows perturbation masks generated from validation
image ‘2’, while the lower row is generated from image ‘6’.

After training, we can feed an image 𝑋 as input, and the gen-
erator 𝐺 will generate a perturbation mask for the corresponding
hypothetical target label. For example, we have conducted experi-
ments based on a backdoored model trained on MNIST (according
to the backdoor attack shown in Fig. 1), which embeds a trigger at
the lower right corner, such that an input image stamped with the
trigger will be misclassified as “8” (the target label). The results are
shown in Fig. 4. As can be seen, with two different images (i.e., “2”
and “6”), the generator𝐺 generates very similar perturbation masks
for the infected target label (i.e., “8”), which essentially recovers the
original trigger for training the backdoor. But when we train 𝐺 for
a clean label, e.g., for label “0”, the generated perturbation masks
are very different, showing a much higher degree of randomness.

(2) Insights into GAN-based Mask Generation. We are also
interested in understanding the difference between the perturba-
tion masks generated by the proposed GAN architecture and the
traditional optimization or gradient-based approaches including
L-BFGS [30], Carlini and Wagner Attack (C&W) [1], and Iterative
Gradient-based Method (BIM) that are used in Neural Cleanse [32].
To this end, we conduct experiments on a CIFAR10 trojaned model,
where the trigger is a 3× 3 white square located at the bottom right
corner, and the target label is “deer”. Fig. 5 shows the perturbation
masks of two images in the “car” category using different methods
(based on the implementation in the open-source Foolbox [23]).

When we employ a traditional method, the masks generated for
the two images consist of random pixel perturbations and are dra-
matically different. In sharp contrast, GAN generates similar masks
that resemble the real trigger. The experiment indicates that though
all targeting at the “deer” label on the backdoor model, gradient-
based approaches naturally pursue an adversarial direction off the
data manifold in high dimensionality and yield perturbations under
0.1 L2-norm bound. Since real data remains on a low-dimensional
manifold (as well as the trigger), GAN directly recovers these ar-
tifacts through adversarial learning. In other words, because the
generator in GangSweep resembles an auto-encoder, it extracts the
feature of the input image and compresses it into low-dimension.
From that, GAN can generate perturbation masks in a small latent
space that are close to the clean data manifold and thus better rep-
resent the feature of the trigger. This also partially explains why
such (on-manifold) neuron trojans cannot work alone. It functions
jointly by tempering the model weights. GAN taps into this weak
link of the attacking mechanism.

a)	L-BFGS c)	BIMb)	C&W d)	GANValidation	image

Figure 5: Comparison of the generated perturbation masks
between the optimization and gradient-based approaches (L-
BFGS, C&W, and BIM) and the proposed GAN-basedmethod.
The norm bound of the former three methods are set to 0.1.
For better visualization, a mask is multiply by 255.

To gain a deeper understanding of the mask generation between
GangSweep (GS) and Neural Cleanse (NC), we adopt the method
introduced in [16] to approximate the error surfaces while reverse
engineering triggers via different methods. As illustrated in Fig. 6a
and 6b, NC results in a large flat minima. Therefore, given a random
start point, the gradient-based approach will quickly converge to a
random point on the flat surface. It works when there is only one
trigger, but performs poorly when dealing with the multi-trigger
scenario, where triggers are mapped to different regions over the
large flat surface. Once it reaches the flat surface with a loss close to
zero, the gradient descent is vanished and thus stops optimization.
Therefore, the recovered trigger is likely only one instead of all
of them. In contrast, GangSweep (see Fig. 6c and 6d) results in a
well-shaped loss landscape, especially in the multi-trigger scenario,
thus more likely reaching the global minima during training.

(a) NC: One Trigger (b) NC: Multi-Trigger

(c) GS: One Trigger (d) GS: Multi-Trigger

Figure 6: Error Surface Comparison.
Fig. 7 compares GangSweep and NC under single trigger and

multi-trigger scenarios. As can be seen, when there is only one
trigger located at the bottom right corner, both approaches can
largely recover the trigger, while NC’s result deviates from the ex-
act location of the trigger (see Fig. 7(a)). When two triggers are used
simultaneously (see Fig. 7(b)), GangSweep successfully recovers
them, but NC only reconstructs the one on the right side. The failure
of NC owes to the design drawbacks of the objective function. The
loss quickly converges to zero when an appropriate perturbation



mask is found, and the optimization no longer progresses near such
local minima. This leads to the limited capacity of NC to expose
multiple triggers. Fig. 7(c) shows a more sophisticated dynamic trig-
ger scenario, where the attacker diversifies the attacking process to
uniformly randomly stamp either the left or the right trigger for an
image. Indeed, this is a more robust attack just being reported [26].
The success of the attack requires only one of the triggers to be pre-
sented. As we can see that, as long as the triggers are built into the
training process, GangSweep can fully expose both. On the other
hand, NC is severely misled by the diversified trigger generation,
generating only a single mask at a totally different location.

4.2 Backdoor Model Detection
The above discussion has demonstrated that the GAN-based ap-
proach can generate (recover) a perturbation mask based on an
input image such that it would be misclassified to the target class of
the backdoored model. Then how about other images? Would the
generated perturbation masks stay the same or entirely different?
To this end, we have the following observations.

Observation 1: Persistence: the perturbation masks (triggers)
for the target label in a backdoored model remain persistent across
different input images [18].

Let L be the set of labels, X ∈ R𝑛 the set of clean images, and 𝑓

the classifier as a function. For a label 𝑖 ∈ L and target label 𝑡 ∈ L,
𝑖 ≠ 𝑡 , consider the case where 𝑓 (𝑥) = 𝑖 and there exists a universal
perturbation 𝐺 (𝑥𝑐 ) (generated by another clean image 𝑥𝑐 from the
same class) that causes an equivalent shift of decision from label
𝑖 to 𝑡 , i.e., 𝑓 (𝑥 + 𝐺 (𝑥𝑐 )) = 𝑡, 𝑡 ≠ 𝑖 , for 𝑥 ∈ X [20]. We propose a
metric called the persistence of the perturbation mask as follows:

P𝑥∼X (𝑓 (𝑥 +𝐺 (𝑥𝑐 )) = 𝑡 ), (5)

which measures the probability of clean image 𝑥 ∈ X stamped
with the perturbation mask generated by another clean image 𝑥𝑐
from the same class, being classified as the target label 𝑡 . If this
probability is high, it indicates that the mask is likely a trigger.

Observation 2: The perturbation masks (triggers) for the target
label in a backdoored model exhibit low shifting variance and large
shifting distance in the feature space.

We define 𝜑 (𝑥) as the logits vector of a clean image 𝑥 (i.e., the
output of all layers except the softmax function), and 𝜑 (𝑥 +𝐺 (𝑥))
as the logits vector of its generated adversarial example. For a clean
label, the generated perturbation masks exhibit more diversity in
their output feature vectors. This finding is consistent with the
previous research showing that though the perturbation is off the
manifold, their patterns are dependent on the data manifold to opti-
mize “deceptive features” for misclassification [28]. This motivates
us to derive the shift variance of the logits:

𝑉 = 𝑣𝑎𝑟 (𝜑 (𝑥 ′) − 𝜑 (𝑥)), (6)

where 𝑥 ′ = 𝑥 +𝐺 (𝑥) and 𝑣𝑎𝑟 (·) is the variance of the difference in
logits vector between 𝑥 and 𝑥 ′.

At the same time, we observe that the perturbation masks for a
clean label and a targeted label exhibit different shifting distance in
feature space. More specifically, we define the shifting distance as:

𝐷 = max𝜑 (𝑥′) −max𝜑 (𝑥), (7)

where max(·) represents the maximum value of the logits vector.
The perturbation mask generated from a backdoor shows a strong

Algorithm 1: Detection Algorithm
1 Input: Validation data X, number of classes N, sample size 𝑛;
2 Output: The possible backdoor infected label 𝑙 ;
3 for each output label 𝑡 = 1 to 𝑁 do
4 Training a generative network𝐺 with X;
5 for source label 𝑠 = 1 to 𝑁 do
6 Randomly select 𝑛 images from class 𝑠 ≠ 𝑡 ;
7 Compute 𝑃 ,𝑉 , and 𝐷 ;
8 end
9 end

10 if ∀𝑃 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
11 Return None
12 else
13 calculate 𝑍𝑉 , 𝑍𝐷 ;
14 𝐴𝐼 ← 𝑍𝑉 +𝑍𝐷

2 ;
15 if 𝐴𝐼 > 2 then
16 Return label 𝑙
17 end
18 end

shift (i.e., large 𝐷) towards the targeted label, while the shifting
distance of the mask for a clean label is often small to merely ensure
the misclassification. Fig. 8 shows an example based on the GTSRB
benchmark. The red point at the lower right corner in Fig. 8(a)
represents the perturbation mask for the targeted label (with small
shifting variance 𝑉 and large shifting distance 𝐷), which clearly
distinguishes itself from the masks for clean labels.

Based on the above observations, we design the backdoor detec-
tion algorithm as follows.

Persistence. Given a DNN model and its validation dataset, we
randomly select a set of images from each class. Based on each
image, we generate its perturbation masks targeting to all possible
output labels except the actual label of the image. For each target
label, the image is stamped with different perturbation masks gen-
erated by the other images from the same class and then fed into
the DNN model to evaluate whether the attack is successful, i.e.,
misclassified to the targeted label. We define the attack success
rate as “persistence”, which essentially approximates Eq. (5). If it is
higher than a threshold, we consider it a potentially malicious label.
The threshold is 90% in our implementation to be discussed next.

Anomaly Index. If a potential malicious model is identified, we
use the images, and the masks generated previously to measure
𝑉 and 𝐷 based on Eq. (6) and Eq. (7), and then run the following
outlier detection algorithm to detect if the perturbation masks for
a particular label share strong and similar shifting patterns. If the
result is positive, we claim the label to be infected.

The outlier detection is based on the classical z-score algorithm [8],
which offers a more efficient and robust measure of statistical dis-
persion than the sample variance or standard deviation. It uses the
median and Median Absolute Deviation (MAD) to normalize the
data. The z-score is calculated as follows:

𝑍 =
(𝑢 − �̃�)

𝑐 ·𝑚𝑒𝑑𝑖𝑎𝑛( |𝑢 − �̃� |) , (8)

where 𝑢 represents a data sample, �̃� is the median of all samples,
and 𝑐 is a constant (e.g., set to be 1.4826 if the data satisfies normal
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Figure 7: Comparison between the perturbation masks generated by GangSweep (GS) and Neural Clease (NC).
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Figure 8: The shifting distance and variance of the perturba-
tionmasks (GTSRBbenchmark). (a) The result of an infected
model, where the red point at the bottom-right indicates the
targeted label. (b) The result of a clean model.

distribution) such that with 95% percent confidence level, the data
point with z-score larger than 2 is considered as an outlier [8].

Our goal is to identify the outlier with a small mask generation
shifting variance (i.e., 𝑉 ) and a large shifting distance (i.e., 𝐷). To
this end, we calculate z-score for both of them, i.e., 𝑍𝑉 and 𝑍𝐷 .
The overall Anomaly Index (AI) is defined as the average of two
z-scores: 𝐴𝐼 = (𝑍𝑉 + 𝑍𝐷 )/2. In our experiment, if AI is larger than
2, then the target label is deemed to be malicious.

Remarks: The rationale of our design can also be explained in
the context of frequency domain [33], where new findings attest to
the contributing effects of the high frequency components to ad-
versarial examples. Here, neural triggers can be considered as their
low-frequency counterparts, generated for higher success rates in
the physical environment [4]. Once reconstructed by GAN, they are
statistically distinctive from other gradient-optimized adversarial
examples, thus identifiable by our mechanism.

4.3 Backdoor Mitigation
Once a backdoored model is detected, we can mitigate the backdoor
by model patching, i.e., finetuning the backdoored DNNmodel with
a new dataset, which includes a small percentage (less than 10%) of
validation data and (10%) adversarial data. Note that the adversarial
data is obtained by stamping a generated perturbation mask on a
clean validation image and labeling it as the original, correct label.
Compared to using the original training dataset in Neural Cleanse,
we do not need access to the original training data nor the actual
adversarial data.

5 EVALUATION
We have implemented the proposed backdoor detection and mit-
igation framework and tested it using five benchmarks: MNIST
[15], GTSRB [27], CIFAR10 [13], VGG-FACE [21], Mini ImageNet
[3], and three well-known backdoor attack methods, BadNets [6],

TrojanNN [18], and Hidden Trigger Backdoor [25]. We compare
its performance with the state-of-the-art detection system Neural
Cleanse (NC) [32]. The experiment information, including dataset,
backdoor attack method, neural network model architecture pa-
rameters, trigger size, the number of classes, target label, input
image size, number of testing images are summarized in Table 1. To
construct the Mini ImageNet dataset, we randomly select 10 classes
from the ImageNet and extract the images of those classes.

For each attack, we first train a benchmark model using a clean
training dataset. The testing accuracy of this clean model is illus-
trated in the column “Clean Model Acc.” of Table 1. Then we train
a backdoored model by poisoning the training dataset, using one of
the three backdoor attack methods. The testing accuracy with clean
images is illustrated in the column “Backdoor Model Acc.” At last,
we stamp triggers to (clean) test images, and measure the percent-
age of those poisoned images that are misclassified to the target
label, shown as the “Backdoor Attack Success Rate” in Table 1.

We first use the BadNets method to inject backdoor during train-
ing on the MNIST, GTSRB, and CIFAR10 datasets, respectively. For
each benchmark, we randomly choose a target label 𝑡 and modify a
portion of the training dataset, by embedding a white square trigger
located at the bottom right (see Fig. 9(a)) and labeling those data
with the target label 𝑡 . In our experiments, we vary the ratio of
poisoned data in training set to achieve over 95% attack success
rate on adversarial images, while maintaining a high classification
accuracy on clean data. We also evaluate the detection of the Tro-
janNN attack that injects a special square trigger on the VGG-FACE
dataset (see Fig. 9(b)) using the open-source implementation [18].

The Hidden Trigger Backdoor Attack [25] can achieve a high
attack success rate only on the single source attack on ImageNet.
We use their open-source implementation for the single source
attack as follows. We first randomly select a source label and a
target label. Then we choose a location to inject the trigger pat-
tern on each source image and generate poisoned images that are
close to the target images in the pixel space and also close to the
backdoored source images in the feature space. Finally, we train
the trojaned model using the clean training set with 10% poisoned
images without changing their labels. Note that the trigger can be
at different locations for different source images, e.g., see Fig. 9(c).

5.1 Backdoor Detection
We use the Adam solver[12] with a learning rate 0.01 to train the
generator network in GangSweep. For each benchmark we repeat
the experiments ten times and average the detection results. Fig. 10
shows the anomaly index of the clean models and the correspond-
ing backdoored models. The anomaly index of all trojaned models
is larger than the threshold 2, and that of all clean models is smaller



Table 1: Five Benchmarks for Backdoor Detection and Mitigation Experiments

Benchmark
Dataset Attack Method # of Label

(target t) Input Size # of Img. Trigger Size Model Architecture Clean
Model Acc.

Backdoor
Model Acc.

Backdoor Attack
Success Rate

MNIST BadNets 10(1) 28 × 28 × 1 10000 4 × 4 2Conv + 1Pooling + 2Dropout + 2Dense 99.1% 98.9% 99.8%
GTSRB BadNets 43(37) 32 × 32 × 3 12630 4 × 4 6Conv + 3Pooling +4Dropout+ 2Dense 97.5% 97.4% 98.9%
CIFAR10 BadNets 10(4) 32 × 32 × 3 10000 4 × 4 Resnet-18 83.5% 82.5% 99.0%

VGG-FACE Trojan Attack 2622(0) 224 × 224 × 3 2622 60 × 60 VGG16 74.0% 70.8% 97.1%

ImageNet Hidden Trigger
Backdoor Attack 10(2->1) 224 × 224 × 3 1000 30 × 30 AlexNet 96.6% 96.1% 76.8%

(a) (e)(d)(c)(b)

Figure 9: Samples of embedded triggers: (a) a white square
trigger at the bottom right; (b) a trojan trigger on a face im-
age; (c) a color pattern trigger; (d) Firefox logo trigger at the
bottom right; (e) Firefox logo trigger with a certain trans-
parency covering the whole image.
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Figure 10: Anomaly indices of clean and backdooredmodels.

than 2. Thus, GangSweep successfully detects all backdoored mod-
els.
Detection Metrics. Table 2 compares the backdoor detection per-
formance of GangSweep using different metrics on three bench-
marks applied with one, two, and four triggers, respectively. For
example, with the GTSRB benchmark (GTSRB dataset with BadNets
planted by two triggers), if we apply the persistence metric, we can
detect that the model is backdoored and Label 37 is the target label.
A similar result is observed when we apply the shifting distance
and the combined metric (i.e., AI). If the shift similarity is used,
Labels 38 is reported malicious. Overall, by using the combined
metric, GangSweep not only detects backdoor but also accurately
pinpoints the target label in all experiments.
Trigger Size. The size of the trigger is an important factor in back-
door attack and detection.We run the test on the GTSRB benchmark,
with the increasing Firefox logo trigger (see Fig. 9(d)) from 4 × 4
to 16 × 16 pixels, and compare the detection performance with NC
[32]. The results are shown in Table 3. NC fails to detect the back-
door when the trigger size is larger than 8 × 8. This is because NC
uses the 𝐿1 norm of the perturbation as the decision criteria, hence
a larger trigger is much closer to the clean label in the 𝐿1 norm,
making the detection less effective. Compared to NC, GangSweep
continues its success to detect the backdoor (and the target label) in
all cases. Similar results are also observed on the other benchmarks,
but omitted due to the space limitation.
Trigger Transparency. An attacker may use triggers of different
transparency levels to construct backdoored models, to make the
attack stealthier. We run a series of experiments on the GTSRB

Table 2: Backdoor detection using different metrics.

Benchmarks Num of
triggers

Combined
metrics

Anomaly
Index

Detected
Label

ImageNet 1

Persistence N/A 1
Shift Distance 8.1 1,7
Shift Similarity 1.37 None

Combined 4.39 1

GTSRB 2

Persistence N/A 37
Shift Distance 7.47 37
Shift Similarity 2.09 38

Combined 3.63 37

CIFAR10 4

Persistence N/A 0,1,2,4
Shift Distance 4.37 4
Shift Similarity 1.48 None

Combined 2.27 4

Table 3: Comparison of GangSweep and Neural Cleanse for
models backdoored with varying sizes of Firefox logo trig-
gers on GTSRB targeting label 37.

Trigger
Size

GangSweep Neural Cleanse
Anomaly
Index

Detected
Target Label

Anomaly
Index

Detected
Target Label

4 × 4 8.66 37 2.56 37
8 × 8 5.91 37 2.21 37
12 × 12 8.47 37 1.8 None
16 × 16 2.55 37 1.6 None

Table 4: Comparison of GangSweep and Neural Cleanse for
models backdoored with different transparency levels.

Trigger
Transparency

GangSweep Neural Cleanse
Anomaly
Index

Detected
Target Label

Anomaly
Index

Detected
Target Label

0.1 8.47 10 5.47 10
0.2 6.75 10 3.06 10,11
0.4 3.35 10 1.8 None
0.6 2.10 10 1.6 None

benchmark, using a Firefox logo trigger covering the whole image
(see Fig. 9(e)), ranging the trigger transparency from 0.1 to 0.6
(from less to more transparent). As shown in Table 4, GangSweep
succeeds in detecting triggers in all cases, whereas Neural Cleanse
can detect the backdoor and target label only when transparency
level = 0.1.
Computational Efficiency.To evaluate the efficiency of GangSweep
and NC, we implement both of them on Nvidia RTX2080 Mobile
Max-Q with 8GB memory. Since we do not require to generate
high-quality images with fine-grained details, less than 15 epochs
are enough to generate a mask. The result shows that in small scale



Table 5: Classification accuracy and attack success rate be-
fore and after patching.

Benchmark
Before Patching After Patching

Classification
Accuracy

Attack Success
Rate

Classification
Accuracy

Attack Success
Rate

MNIST 98.9% 99.8% 99.1% 0.24%
GTSRB 97.4% 98.9% 98.5% 0.15%
CIFAR10 82.5% 99.0% 91.4% 0.44%

VGG-FACE 70.80% 97.1% 80.6% 5.60%
ImageNet 96.10% 76.8% 98.0% 9.60%
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Figure 11:Mitigation of trojanedmodels embeddedwith one,
two, four, and polymorphic triggers.

datasets, the computing time of GangSweep and NC is at the same
level. For example, under CIFAR10, GangSweep takes an average of
913 seconds to evaluate a model, which is comparable to NC that
takes 653 seconds. However, GangSweep shows higher computing
efficiency in large and high-resolution datasets. For instance, in the
VGG-FACE benchmark, GangSweep achieve 8.3x speedup over NC.

5.2 Backdoor Mitigation
For all infected backdoor models, we patch them through finetuning
the model for 3 epochs with a new data set that includes a small
set (10%) of clean validation data and (10%) adversarial data. The
adversarial data are clean images stamped with the perturbation
mask produced by the generator network in the detection phase
and with the same labels as the original images. Since VGG-FACE
and ImageNet benchmark only has a small validation dataset with
2622 and 1000 samples, respectively, we finetune the model with
the entire validation dataset and their adversarial data.

Table 5 shows the classification accuracy and backdoor attack
success rate for malicious models before and after patching. For the
MNIST, GTSRB, and CIFAR10 benchmarks, after model patching,
the attack success rate drops dramatically to less than 0.5%. For the
VGG-FACE and ImageNet benchmarks, the mitigation also reduces
the backdoor attack success rate to be under 10%.

Next, we carry out experiments on the CIFAR10 benchmark
with four scenarios: (a) inject one 4 × 4 square white trigger; (b)
inject two triggers with the same shape and color located at the
two corners of the bottom of an image; (c) inject four triggers,
also with the same shape and color located at the four corners of
an image; (d) inject a polymorphic/dynamic multi-trigger where a
trigger is randomly placed at either the left or the right bottom of
an image. Fig. 11 illustrates the attack success rates of the trojaned
models and the patched models by GangSweep and Neural Cleanse.
The readers are referred to Fig. 7 for some reverse-engineered
triggers generated by GangSweep and Neural Cleanse. Compared
with Neural Cleanse, GangSweep can always find the triggers, while
Neural Cleanse can only find part of the trigger or even cannot
find any. For example, for the polymorphic multi-trigger, Neural
Cleanse generates a mask with a low 𝐿1 norm but not relevant to

Table 6: Mitigation performance under spatial transforma-
tion (CIFAR10 benchmark).

Benchmark
GangSweep Neural Cleanse

Clean
Classification
Accuracy

Poisoned
Attack Success

Rate

Clean
Classification
Accuracy

Poisoned
Attack Success

Rate

Standard 91.4% 0.44% 91.1% 7.80%
Shrink(0.2) 91.2% 1.60% 90.5% 18.8%

Horizontal Flip 93.3% 0.60% 93.8% 74.9%

the original trigger. This is because Neural Cleanse penalizes the L1
norm of the mask while maximizing the universal misclassification
fraction. Thus it would likely stick to local minima and find a
different universal perturbation. Therefore, as illustrated in Fig. 11,
after patching with the generated mask, Neural Cleanse cannot
effectively remove the backdoor. In contrast, GangSweep not only
successfully detects the backdoor, but also mitigates it and reduces
the attack success rate to lower than 1% in all four scenarios.

We further consider attacks with spatial transformations, such
as horizontal flipping or shrinking with padding. We run the test on
the CIFAR10 benchmark, by applying two transformations on ran-
domly selected images: (1) shrinking an image 20% of the original
size, and then zero-padding the shrunk image to the original size;
(2) horizontal flipping. These transformations are similar to adding
polymorphic multi-triggers to an image, by moving the trigger to-
ward the center of the image, or randomly flipping the trigger hori-
zontally on the image. Table 6 illustrates the backdoor mitigation
performance, showing the clean data classification accuracy and
backdoor attack success rate after model patching. GangSweep can
reduce the attack success rate to less than 2% after model patching,
while Neural Cleanse cannot eliminate the backdoor well, especially
when the attacker applies the flipping transformation. This again
demonstrates that the gradient descent method that depends on
the image pixel may fail to find the correct trigger representing the
backdoor feature.

6 CONCLUSION
This paper has introduced a new backdoor detection framework,
GangSweep, based on generative networks. It has been motivated
by a series of intriguing empirical investigations, revealing that a
carefully designed generative network can tap into the fundamen-
tal weakness of neural backdoors by effectively reconstructing the
manifold around the target class and exposing all artifacts planted
by the attacker. An efficient outlier detection mechanism has been
devised to identify backdoor according to distinct statistical proper-
ties. Extensive experiments have shown that GangSweep is effective
against state-of-the-art backdoor attacks across different datasets
and various numbers, patterns, and sizes of triggers.
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