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Abstract—This research focuses on distributed and localized al-
gorithms for precise boundary detection in 3-D wireless networks.
Our objectives are twofold. First, we aim to identify the nodes on
the boundaries of a 3-D network, which serve as a key attribute
that characterizes the network, especially in such geographic ex-
ploration tasks as terrain and underwater reconnaissance. Second,
we construct locally planarized 2-manifold surfaces for inner and
outer boundaries in order to enable available graph theory tools to
be applied on 3-D surfaces, such as embedding, localization, parti-
tion, and greedy routing among many others. To achieve the first
objective, we propose a Unit Ball Fitting (UBF) algorithm that dis-
covers a majority of boundary nodes, followed by a refinement
algorithm, named Isolated Fragment Filtering (IFF), to remove
isolated nodes that are misinterpreted as boundary nodes. Based
on the identified boundary nodes, we develop an algorithm that
constructs a locally planarized triangular mesh surface for each
3-D boundary. Our proposed scheme is localized, requiring infor-
mation within 1-hop neighborhood only. We further extend the
schemes for online boundary detection in mobile sensor networks
aiming to achieve low overhead. Our simulation and experimental
results demonstrate that the proposed algorithms can effectively
identify boundary nodes and surfaces, even under high measure-
ment errors.

Index Terms—Boundary detection, triangulation, wireless
sensor networks.

I. INTRODUCTION

M ANY wireless networks exhibit substantial random-
ness, due to the lack of precise nodal deployment and

the nondeterministic failures and channel dynamics. Therefore,
the final formation of a wireless network heavily depends on
its underlying environment. Consequently, there is a primary
interest to discover the unknown geometry and topology of a
wireless network formation (or a subnetwork formation), which
provide salient information for understanding its environment
and for efficient operation of the network itself. In particular,
boundary is one of the key attributes that characterize the net-
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work in two- (2-D) or three-dimensional (3-D) space, especially
in such geographic exploration tasks as terrain and underwater
reconnaissance.

A. Related Work

The quest for efficient boundary detection in wireless net-
works has led to two research thrusts outlined here.
Detection of Event Boundary: The investigation on boundary

detection started from the estimation and localization of events
in sensor networks. The spatially distributed sensors usually
report different measurements in respond to an event. For ex-
ample, upon a fire, the sensors located in the fire are likely de-
stroyed (and thus resulting a void area of failed nodes), while
the sensors close to the fire region measure higher temperature
and smoke density than the faraway sensors do. Boundary de-
tection is to delineate the regions of distinct behavior in a sensor
network [1].
Achieving accurate detection of event boundary is chal-

lenging because the sampling density is limited, the sensor
readings are noisy, the delivery of sensor data is unreliable,
and the computation power of individual sensors is extremely
low [1], [2]. To this end, a series of studies has been carried
out to explore efficient information processing and modeling
techniques to analyze sensor data in order to estimate the
boundary of events [1]–[5].
Due to inevitable errors in raw sensor data, these ap-

proaches do not yield precise boundary. Instead, they aim at
a close-enough estimation that correctly identifies the events
frontier, based on either global or local data collected from a
set of sensors.
Detection of Network Boundary: Besides the research

discussed above that is mainly from the data processing per-
spective, interests are also developed to precisely locate the
boundary of the network based on geometric or topology infor-
mation of a wireless network. Noise in sensor data is no longer
a concern here because such boundary detection is not based
on sensor measurement. However, new challenges arise due
to the required accuracy of the identified boundary, especially
in networks with complex inner boundary (i.e., “holes”) or in
high-dimensional space.
Most proposed network boundary detection algorithms are

based on 2-D graphic tools. For example, Voronoi diagrams are
employed in [6] and [7] to discover coverage holes in sensor
networks. Delaunay triangulation is adopted in [8] to identify
communication voids. In contrast to [6]–[8] that exploit sensor
positions, two distributed algorithms are proposed in [9] by uti-
lizing distance and/or angle information between nodes to dis-
cover coverage boundary.
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In [10], an algebraic topological invariant called homology
is computed to detect holes. The algorithm is generally appli-
cable to networks in any dimensional space. However, it is a
centralized approach, and there is significant challenge to de-
centralize its computation as pointed out in [10]. In [11], the
isosets (each of which consists of nodes with the same hop dis-
tance to a beacon node) are identified. The disconnection in an
isoset indicates the boundary nodes of holes. Multiple beacons
can be employed to locate the boundary nodes at different di-
rections of a hole. This approach does not guarantee to discover
the complete boundary of every hole. Higher accuracy can be
achieved if more beacons are employed or when the network
is denser. Reference [12] introduces a deterministic algorithm
for boundary detection. It searches for a special subgraph struc-
ture, called m-flower, which is bounded by a circle. Once an
m-flower is identified, the algorithm can subsequently find the
boundary nodes through a number of iterations of augmenta-
tion of the circle. However, not every graph has an m-flower
structure. Therefore, the algorithm may fail especially when the
nodal density is low. In [13], a shortest path tree is built to find
the shortest circle, which is then refined to discover the tight
boundaries of the inner holes.
All of the network boundary detection approaches discussed

above are developed for networks in 2-D space. Except for [10],
which is centralized, none of them can be readily applied to
3-D networks since higher-dimension space introduces signifi-
cant complexity in searching for boundaries, and many topolog-
ical and geometrical tools cannot be extended from 2-D to 3-D.
Note that if global coordinates are available, boundary detec-
tion would become straightforward. However, this approach is
often overkilling because the process of establishing global co-
ordinates itself results in significant computation and commu-
nication overhead [14]. In addition, while boundary extraction
has been extensively studied in 3-D imaging, the algorithms de-
veloped therein always assume grid-like 3-D pixels as inputs,
which are in sharp contrast to network settings where nodes are
randomly distributed, and thus are not applicable in 3-D wire-
less networks.
This work (partially presented in [15]) proposes the first

algorithms for efficiently discovering boundary nodes and
constructing boundary surface in 3-D wireless sensor networks.
Following [15], several relevant research works have been
carried out recently. For example, an effective algorithm is
proposed in [16] to timely track dynamic network boundaries.
It transforms a notched surface into a convex one to support
of fast online boundary detection. However, the performance
of the algorithm is determined by two important parameters
required by the transformation. Unfortunately, both of them
are model-dependent. Different models have different optimal
parameters for achieving the best results. More discussion
and comparison will be presented in Section V. It deals with
boundary nodes only, but not surface. References [17] and [18]
aim to address the 3-D wireless boundary detection problem
based on connectivity only. In [17], an algorithm called CABET
is proposed. It first identifies a set of boundary nodes based on
the assumption that a boundary node has less neighbors than
its internal counterpart. Then, three types of critical boundary
nodes (i.e., convex, concave, and saddle nodes) are selected to

depict the geometric features of the 3-D sensor network, based
on which closed boundary surfaces are constructed. CABET is
effective when the sensors are uniformly distributed, yielding
accurate boundary nodes and boundary surfaces. When it
comes to nonuniform networks, CABET often becomes
error-prone. An algorithm dubbed “Cococut” is introduced in
[18]. It overcomes this problem by constructing a tetrahedral
structure to delineate the approximate geometry of the 3-D
sensor network, which is independent to nodal distribution. A
set of sealed triangular boundary surfaces is produced based
on this structure to separate nonboundary nodes and boundary
node candidates. The former are hollowed out immediately,
while the latter are further refined to yield the final boundary
nodes and fine-grained boundary surfaces. However, the con-
nectivity-based approaches cannot differentiate nodes within 1
hop, and thus are less accurate compared to the performance of
methods based on distance or coordinates.

B. Our Contribution

There are increasing interests in 3-D wireless networks, with
several areas such as routing [19]–[24], localization [14], [25],
nodal placement [26], [27], physical-layer investigation [28],
and applications [28], [29] being explored recently. This re-
search aims to develop distributed and localized algorithms for
precise boundary detection in 3-D wireless networks. Our ob-
jectives are twofold.
1) First, we aim to identify the nodes on the boundaries of a
3-D network based on local information [see Fig. 1(b) for
example].

2) Second, we construct locally planarized 2-manifold sur-
faces for inner and outer boundaries [as shown in Fig. 1(f)].

To achieve the first objective, we propose a Unit Ball Fit-
ting (UBF) algorithm that discovers a set of boundary nodes,
followed by a refinement algorithms, named Isolated Fragment
Filtering (IFF), which removes isolated nodes that are misin-
terpreted as boundary nodes by UBF. Our proposed scheme
is localized, requiring information within 1-hop neighborhood
only. This quality is highly desired to enable fast and low-cost
boundary detection.
The boundary nodes are discrete. They serve as sample points

that depict the network boundaries. However, many applications
desire not only such discrete points, but also closed boundary
surfaces, especially locally planarized 2-manifold in order to
apply available graph theory tools on 3-D surfaces, such as
embedding, localization, partition, and greedy routing among
many others. In this research, we develop an algorithm that
constructs locally planarized triangular meshes on the identified
3-D boundaries. We adopt the method proposed in [30] that pro-
duces a planar subgraph in 2-D, and extend it to 3-D surfaces to
achieve complete triangulation without degenerated edges. The
algorithm is localized and based on connectivity only.
We further extend the proposed methods for dynamic sensor

networks where sensors are mobile. We propose an efficient
updating scheme to reduces the number of nodes running UBF
without degrading the performance of the online boundary
detection and to maintain the surface triangle mesh after it is
constructed initially, with high efficiency in terms of time and
energy.
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Fig. 1. Illustration of the proposed boundary detection algorithm (based on a 3-D wireless network of 4210 nodes with an average nodal degree of 18.8). (a) 3-D
network. (b) Boundary nodes. (c) Landmarks. (d) CDG. (e) CDM. (f) Triangular mesh. (g) Algorithm efficiency. (h) Mistaken distribution. (i) Missing distribution.
(j) 20% distance measurement errors. (k) 30% distance measurement errors. (l) 40% distance measurement errors.

The rest of this paper is organized as follows. Sections II and
III introduce our proposed algorithms for boundary node identi-
fication and boundary surface updating, respectively. Section IV
discusses online boundary detection and triangle mesh updating
in mobile wireless sensor networks. Section V presents simula-
tion results. Finally, Section VI concludes the paper.

II. BOUNDARY NODE IDENTIFICATION

The proposed boundary node identification algorithm in-
volves two phases. The first phase is the Unit Ball Fitting,
which aims to discover a set of boundary nodes. The second

phase is Isolated Fragment Filtering, which removes isolated
nodes that are misinterpreted as boundary nodes in Phase 1.

A. Phase 1: UBF

We present the UBF algorithm in this section. The related
definitions, theories, and algorithm description are elaborated
sequentially.
1) Definitions: To facilitate our exposition, we first introduce

several basic definitions.
Definition 1: The nodal radio transmission range is assumed

a constant. Without loss of generality, we normalize it to be 1.
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Definition 2: The nodal density, denoted by , is the average
number of nodes in a unit volume.
Definition 3: A well-connected network is a network where:

1) no nodes are isolated; and 2) there are no degenerated line
segments. In other words, given a line segment between two
nodes, e.g., Nodes and , there must be at least one node whose
distances to Nodes and are less than , where
denotes the distance between Nodes and .
We consider well-connected networks only in this work

because the isolated nodes and degenerated line segments
are swingable, causing ambiguity in boundary definition and
detection.
Definition 4: A unit ball is a ball with a radius of ,

where is an arbitrarily small constant.
Definition 5: An empty unit ball is a unit ball with no nodes

located inside.
Definition 6: We say a unit ball touches a node if the node is

on the surface of the ball.
Definition 7: A hole is an empty space that is greater than a

unit ball. The space outside the network is treated as a special
hole.
With the above definitions, we next discuss the motivations

to develop the UBF algorithm and the theories that prove its
correctness and computing complexity. Subsequently, we give
the formal algorithm description.
2) Motivations and Theoretic Insights: The proposed UBF

algorithm is motivated by the fact that a hole can always contain
an empty unit ball. Therefore, we can search for empty unit balls
in order to identify holes and boundary nodes.More specifically,
a node can test if it is on a boundary by constructing a unit ball
with itself on the ball’s surface. If at least one such ball can
be found that no nodes are located inside, a hole is identified,
and the node is a boundary node [see Node in Fig. 2(a) for
example].
The above process is called unit ball fitting. It can be applied

to identify both inner and outer boundaries. However, it is ob-
viously infeasible for a node to perform a complete test of unit
ball fitting via brute-force search because there are infinite pos-
sible orientations to place the unit ball. Next, we will show that
a localized algorithm with a polynomial computing complexity
can be employed to test if such an empty unit ball exists.
Lemma 1: Node can construct an empty unit ball that

touches itself if and only if there exists an empty unit ball
touching Node and two neighbors of Node (within ).

Proof: We first show the sufficient condition, which is
straightforward. If a unit ball touched by Node and two
neighbors of Node is empty, i.e., there is an empty unit ball
with Node and two neighbors of Node on its surface,
Node has constructed such an empty unit ball touching itself.
Consequently, a hole is identified and Node is a boundary
node.
Now, we prove the necessary condition. If there exists an

empty unit ball with Node on its surface, we can always fix
Node and rotate the ball until it touches another node within
, denoted by Node [see Fig. 2(b)]. Note that if Node

does not exist, Node must be isolated, which conflicts with
our assumption of well-connected networks (see Definition 3).
Then, we can further rotate the ball with Line as an axis,

Fig. 2. Principles for UBF. (a) Empty unit ball touching Node . (b) Ball
rotation.

until it touches another node, denoted by Node . Similarly,
Node must exist because otherwise Line is degenerated
and thus against Definition 3. Therefore, if Node can con-
struct an empty unit ball that touches itself, we can always find
an empty unit ball with Node and two neighbors of Node
on its surface.
Based on the sufficient condition and the necessary condition

discussed above, the lemma is thus proven.
According to Lemma 1, we can show that a node can deter-

mine if it can construct an empty unit ball that touches itself by
a localized algorithm with a computing complexity of . If
such an empty unit ball can be constructed, the node must be a
boundary node. Formally, we have the following theorem.
Theorem 1: Node can determine if it can construct an

empty unit ball that touches itself by testing unit balls
and nodes for each ball.

Proof: According to Lemma 1, Node can exhaustively
test all unit balls determined byNode and its neighbors. Given
Node and any two neighbors (whose distances to Node are
less than ), zero or one or two unit balls can be formed such
that the three nodes are on the surface(s). Fig. 3 illustrates an ex-
ample where two unit balls are determined by three nodes. Since
Node has about , or , neighboring nodes within
the distance of , it needs to test up to unit
balls. For each unit ball, about , or , nodes must be
tested to judge if it is empty. Therefore, the overall computing
complexity is .
3) Algorithm Description: Theorem 1 provides a clear guid-

ance for our algorithm development. It suggests a distributed
and localized algorithm where each node tests unit balls
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Fig. 3. Up to two unit balls determined by Node and two of its neighbors.

to judge if any one of them is empty. To this end, we propose
the UBF algorithm as outlined in Algorithm 1 and elaborated as
follows.
The proposed UBF algorithm largely follows the discussions

in Section II-A.2. The sole difference is that each node considers
its 1-hop neighbors only to realize a truly localized algorithm. It
consists of the following three steps and outputs a boolean value

indicating if Node is on a boundary or not.
I) Local coordinates establishment (Lines 2 and 3): If all
nodes have known their coordinates, this step can be
skipped. Otherwise, each node employs a 3-D embed-
ding algorithm to establish a local coordinates system.
More specifically, Node collects the distances between
all pairs of nodes within 1 hop. The distance between
two nodes can be estimated by such ranging techniques
as received signal strength indicator (RSSI) or time
difference of arrival (TDOA) [31]. The measured dis-
tances are inaccurate in general, and the errors will be
discussed in Section V. Based on the pairwise distances,
multiple schemes [32]–[36] are available to create a
local coordinates system for Node and its neighbors.
Among them, [36] is adopted in our implementation.
Once the coordinates system is established, Node keeps
a set of neighboring nodes and their coordinates, i.e.,

, where denotes
the set of nodes that includes Node itself and its 1-hop
neighbors.

II) Unit ball identification (Lines 4 and 5): For every two
distinct nodes, e.g., and , calculate the center(s)
of the unit ball(s) determined by Nodes , and . This
is done by solving a set of standard equations as follows,
where are the coordinates of the center:

(1)

Depending on the coordinates of Nodes and , (1)
may yield no solution, or one solution, or two solutions
for .

III) Empty unit ball check (Lines 6–9): If there is no solution,
i.e., Nodes , and do not determine a unit ball, no
action is taken. Otherwise, for each solution of
identified above, check if any node in is located inside
the corresponding unit ball, i.e., if it is an empty unit ball.
If an empty unit ball is found, Node declares that it is
on a boundary.

Steps II and III check all unit balls determined by Node
and its neighbors. If no empty unit ball is found, Node reports
that it is not a boundary node. As revealed by Theorem 1, only

unit balls need to be examined by each node. Moreover,
it requires local information only, i.e., merely the coordinates
of the neighboring nodes are needed, and a local coordinates
system (without global alignment) is sufficient.
In addition, the size of holes to be detected is adjustable by

varying (or ). By default, one can set close to 1 in order to
identify the holes of any size. However, if one is interested in
the boundary nodes of large holes only, a larger can be chosen.
As a result, a node on the boundary of a small hole cannot find
an empty unit ball that can fit in according to Algorithm 1 and
thus deems itself a nonboundary node.

B. Phase 2: IFF

A small number of interior nodes may be interpreted by UBF
as boundary nodes due to inaccurate nodal coordinates or un-
expected low nodal density areas randomly distributed in the
network, resulting in some isolated fragments that should be fil-
tered out. Generally, the nodes on a boundary form a well-con-
nected closed surface. Therefore, we can set a threshold . Any
fragment that consists of less than nodes is not considered as
a boundary. To this end, each boundary node simply initiates
a local flooding packet with a time-to-live (TTL) of , which
will be forwarded by other boundary nodes but not nonboundary
nodes. By counting the number of such flooding packets re-
ceived, a boundary node learns the size of its fragment. If less
than flooding packets are received, the node deems itself a
nonboundary node. Appropriate and are chosen according
to the minimum size of the holes to be detected. For example,
given the default value of (i.e., for an arbitrary
small ), a minimum hole will have at least 20 nodes on its sur-
face, forming an icosahedron, where the maximum hop distance
between two boundary nodes is 3. Thus, we set and

. Since IFF is based on a simple local flooding, it has a
complexity of .
In addition, the boundary nodes can be easily grouped when

there are multiple boundaries. Note that the nodes on a boundary
are connected via boundary nodes. In other words, there must
exist a path between two nodes on the same boundary, which in-
volves boundary nodes only. For two nodes on different bound-
aries, such a path does not exist, and their connection must go
through at least one nonboundary node. Therefore, a straightfor-
ward scheme (similar to the local flooding approach discussed
above) can be employed to group the boundary nodes.
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C. Summary of Boundary Node Identification

By following the two phases outlined above, a node deter-
mines whether it is on a boundary based on local information
only. Its performance depends on the accuracy of distance
measurement. As will be discussed in Section V, our simula-
tions demonstrate that the proposed algorithms are effective,
able to identify almost all boundary nodes with low missing
and mistaken rates, when the distance errors are moderate
[as shown in Fig. 1(g)]. Under high measurement errors, the
mistaken and missing rates naturally increase. However, the
mistakenly identified boundary nodes are all close to the true
boundary, mostly within 1 or 2 hops [see Fig. 1(h)]. At the
same time, the missed boundary nodes are uniformly scattered.
Over 95% of such missed boundary nodes can find at least one
correctly identified boundary node within their 1-hop neigh-
borhood [as illustrated in Fig. 1(i)]. Therefore, the identified
boundary nodes well represent the network boundary shapes.
The complexity of the algorithm is dominated by Phase 1,
i.e., UBF. Therefore, the overall computing complexity for
boundary node detection is . While the nodal density
may vary arbitrarily in theory, it is often bounded by a small
constant in practical sensor network settings, where the radio
range is chosen properly by individual nodes to maintain the
desired nodal degree. Numeric results of computing complexity
will be presented in Section V.

III. TRIANGULAR BOUNDARY SURFACE CONSTRUCTION

The boundary nodes identified so far are discrete. They
largely depict the network boundaries. However, many applica-
tions require not only discrete boundary nodes, but also closed
boundary surfaces. Moreover, it is highly desirable that such
surfaces are locally planarized 2-manifold in order to apply
available 2-D graphic tools on 3-D surfaces.
In this research, we implement an algorithm that constructs

locally planarized triangular meshes on the identified 3-D
boundaries. We adopt the method proposed in [30] that can
produce a 2-D planar subgraph (which, however, is not a trian-
gular mesh) and extend it to 3-D surfaces to achieve complete
triangulation without degenerated edges. The algorithm is
localized and based on connectivity only. It consists of the
following five steps.
I) Landmark selection: The boundary nodes employ a dis-
tributed algorithm (e.g., [37]) to elect a subset of nodes
as “landmarks.” Any two landmarks must be hops
apart. determines the fineness of the mesh. It is usually
set between 3–5 in our implementation. A nonlandmark
boundary node is associated with the closest landmark.
If it has the same distance (in hop counts) to multiple
landmarks, it chooses the one with the smallest ID as a
tiebreaker. This step creates a set of approximate Voronoi
cells on each boundary [as shown in Fig. 1(c)].

II) Construction of Combinatorial Delaunay Graph (CDG):
Each nonlandmark boundary node checks if it has a
neighboring boundary node that is associated with a
different landmark. If it has, a message is sent to both
landmarks to indicate that they are neighboring land-
marks. If we simply connect all neighboring landmarks,

we arrive at a CDG as illustrated in Fig. 1(d), which is
the respective dual of the Voronoi cells on a boundary
found in Step I. However, such a CDG is not planar [see
the crossing edges highlighted in Fig. 1(d)].

III) Construction of Combinatorial Delaunay Map (CDM):
Each landmark node decides whether it connects to a
neighboring landmark as follows. It sends a packet to a
neighboring landmark through the shortest path (based on
the identified boundary nodes only). The packet records
the nodes along the path. The two landmarks are said to
be connected if and only if the following two conditions
are satisfied. First, all nodes visited by the packet are as-
sociated to these two landmarks only. Second, assume the
packet is sent from Landmark to Landmark . Then,
the packet must visit the nodes associated with Land-
mark first, and then followed by the nodes associated
with Landmark , without interleaving. If the above two
conditions are satisfied, Landmark sends an ACK to
Landmark , and a virtual edge is added between them.
The boundary nodes that receive such ACK records that
they are on the shortest path between two connected land-
marks. This step yields a CDM. It is proven that CDM is
a planar graph [30].

IV) Construction of triangular mesh: The CDM obtained so
far is planar, but not always a triangular mesh. Polygons
with more than three edges may exist [see the polygon
highlighted in Fig. 1(e)]. To achieve complete triangula-
tion, appropriate edges should be added between some
neighboring landmarks. If a landmark, e.g., Landmark ,
has a nonconnected neighboring landmark (e.g., Land-
mark ), it sends a connection packet to the latter (via
the shortest path based on the identified boundary nodes).
The packet will be dropped if it reaches an intermediate
node that is already on the shortest path between two con-
nected landmarks in order to avoid crossing edges. If the
connection packet arrives at Landmark , a virtual edge
can be safely added, and an ACK is sent back to Land-
mark . Similarly, the boundary nodes that receive the
ACK records that they are on the shortest path between
two connected landmarks. This step adds all possible vir-
tual edges to divide polygons into triangles.

V) Edge flip: To ensure themesh to be a 2-manifold, each vir-
tual edge must be associated with two triangles. After the
above step, there still possibly exist edges [like Edge
in Fig. 4(a)] with three triangular faces, formed with three
corresponding nodes (i.e., , and ). Such edges can
be detected by trivial local signaling. For each such edge,
a transformation is done as follows. First, Edge is
removed. Second, two shortest edges are added between
the corresponding nodes, i.e., Nodes , and . For
example, assume is longer than and . Then,
two virtual edges and are added, resulting in
Fig. 4(b), where no edge has more than two faces. Note
that the polygon is not a face on the surface. Until
now, we arrive at a planar triangular mesh for each 3-D
boundary surface, as illustrated in Fig. 1(f).

The above algorithm ensures to form a closed triangular mesh
surface for each boundary. The established triangular mesh is a
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Fig. 4. Illustration of edge flip. Edge has three faces before edge flip. It is
removed and replaced by Edges and . (a) Before edge flip. (b) After
edge flip.

locally planarized 2-manifold, although the whole 3-D surface
is not planar. A virtual edge on a mesh surface has exactly two
triangular faces. Such salient properties enable application of
many useful graph theory tools on 3-D boundary surfaces, in-
cluding embedding, localization, partition, and greedy routing
among many others.
Note that since the triangular mesh is established based on

landmarks only, a small number of nodes (that are on or close to
the boundaries) may be located outside the mesh surfaces. The
number of such nodes is determined by and the curvature of
the boundary. The larger the , the coarser the mesh surfaces,
resulting in more nodes left outside. An appropriate can be
chosen according to the needs of specific applications. For ex-
ample, Fig. 1(f) shows the results with .
In addition, we observed that the triangular mesh is not

seriously deformed under distance measurement errors. As
discussed in Section II-C, the mistakenly identified boundary
nodes are close to the true boundary, and the missing boundary
nodes are uniformly distributed. Therefore, the identified
boundary nodes can still well represent the network boundaries,
even under distance measurement errors. This is verified by
our simulations. For example, Fig. 1(j)–(l) shows results under
20%, 30%, and 40% distance measurement errors, respectively.
Fig. 1(j)–(l) exhibits similar triangular mesh as Fig. 1(j), which
is free of distance measurement errors.

IV. BOUNDARY DETECTION IN DYNAMIC WIRELESS SENSOR
NETWORKS

In many application scenarios, the network topology changes
over time due to environment dynamics (such as, water flow,
wind, and animal movement) or the evolvement of the network
itself (as links break or nodes run out of batteries). Topology
dynamics often cause the change of network boundary, calling
for an effective online boundary detection algorithm, with low
overhead and high energy efficiency.
In this section, we will introduce effective algorithms that not

only identify boundary nodes, but alsomaintain a closed triangle
mesh surface in dynamic wireless sensor networks.

A. Online Boundary Nodes Detection

In this work, we consider a general random mobility model,
where a node moves for a distance of that is (less than trans-
mission range ) to any direction in a time unit. Note that we
do not consider any special radio model constraints here, except

Fig. 5. Example of the random mobility model. The node is highlighted by
green crosses, when it moves to the boundary.

Fig. 6. Three layers of nodes in online boundary detection. Red nodes are the
boundary nodes , blue nodes are the candidates nodes , and the
rest of the nodes with aqua color will not be involved in the UBF algorithm.

the maximum radio transmission range . The sensors’ mo-
bility is constrained by their container (e.g., seabed and shore).
Fig. 5 illustrates how a node moves according to the above mo-
bility model. As can be seen, sometimes it moves to the surface,
becoming a boundary node (highlighted as green crosses), and
sometimes it moves inside.
The UBF algorithm is localized only involving 1-hop

neighbor nodes. Although sensors are mobile, the current
boundary nodes give valuable clues to find the boundary nodes
in the near future. More specifically, even though some old
boundary nodes might have moved inside and not be boundary
nodes anymore, they should still be located near the boundary
and thus help to narrow down the boundary candidates. As a
matter of fact, the previous boundary nodes and their neighbor
nodes are good candidates for identifying the new boundary
nodes. The UBF algorithm can be applied only to these candi-
date nodes instead of all nodes in the network in order to reduce
energy consumption. The online boundary detection algorithm
is outlined as follows.
Since there is no clue about the boundary nodes at the be-

ginning, we have no choice but to let all sensor nodes to run
the UBF algorithm to identify the boundary nodes ; see
Lines 1–6 in Algorithm 2. After that, in each iteration , we
can always find a Boundary Candidate , which includes
the previous boundary nodes set and their neighbors

, as shown in Lines 8–11. New boundary nodes
will be found by applying the UBF algorithm to the can-

didate set as shown in Lines 12–16. Fig. 6 shows the
distribution of , and the rest of the nodes.
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B. Online Triangle Mesh Updating

While we can simply reconstruct the triangle mesh based
on the newly identified boundary nodes, a more effective ap-
proach is to maintain the triangle mesh constructed previously
and update it according to the new boundary. We observe that
the Voronoi cells are more stable than boundary nodes, and the
triangle mesh is only determined by the Voronoi cells, more
specifically the landmarks of the cells. How to update the land-
marks forming the triangle mesh is the key to solve this problem
efficiently.
However, the selection of new landmark is not trivial be-

cause new triangle mesh must satisfy two properties. First, all
of the landmarks must be boundary nodes. Second, there are no
crossing edges between landmarks. Some landmarks in the pre-
vious round might not be boundary nodes in this round due to
mobility, and thus are not eligible for new landmarks. Therefore,
we have to find a new boundary node as a new landmark to re-
place the old one, if the old landmark is not on the boundary any
more. Picking the boundary node closest to the old landmark is
a straightforward way to fulfill the mission.
It is much more challenging to preserve the second property,

i.e., the planarizedmesh. Simply replacing an old landmark with
the closest boundary node does not ensure planar mesh. How-
ever, we notice that if we can keep every landmark at the center
of the polygon formed by its adjacent landmarks and edges be-
tween them (see Fig. 7), this property often holds. A landmark
can build a set of shortest paths from its neighbor landmarks
to itself. The length difference between these paths gives us
an idea about the landmark’s position. If the landmark is lo-
cated in the center of the polygon, the length difference of paths
should be very small. A better estimation can be made if the
shortest paths between a landmark to surrounding landmarks
edges (e.g., middle node of the edges) are taken into account
as well. After the triangle mesh is updated, the method intro-
duced in Section III is employed to test if it is planarized.
Fig. 7 illustrates an example of the adjustment of landmark

(marked as a black circle). Its neighbors, , which are also
boundary nodes, are marked as green squares. The adjacent
landmarks of are marked as red dots. Every node

will try to established shortest paths to these

Fig. 7. Example of landmark adjustment. A new boundary node replaces the
previous landmark node because is
the smallest among the neighbor boundary nodes of v.

adjacent landmarks. Among them, (marked as a red dot) is the
best choice to replace landmark as a new landmark because
the difference between the longest path and
the shortest path is the smallest.
Note that the online algorithms for boundary node detection

and triangular mesh construction discussed above are developed
to reduce (on a best-effort basis) the computation and commu-
nication overhead for boundary detection in dynamic wireless
sensor networks. They naturally become less effective when the
network experiences more dramatic changes that require most
nodes to be involved in the detection of boundaries and the re-
construction of triangle meshes.

V. SIMULATIONS AND EXPERIMENTS

To evaluate the effectiveness of our proposed boundary de-
tection algorithms, we have carried out extensive simulations
under various 3-D wireless networks and studied the impact of
a wide range of distance measurement errors. The algorithm is
also implemented in real sensor motes. In this section, we will
first introduce our simulation setup. Then, we present the simu-
lation and experiment results and discuss our observations.

A. Simulation Setup

The 3-D networks used in our simulations are constructed by
using a set of 3-D graphic tools (including TetGen [38]). First,
a 3-D model is developed to represent a given network scenario
(e.g., an underwater network, a 3-D network in space, and gen-
eral 3-D networks with arbitrary shapes of our interest). A set
of nodes are randomly uniformly distributed on the surface of
the 3-D model. They are marked as boundary nodes, serving
as ground truth to evaluate our algorithm. A cloud of nodes is
then deployed inside the 3-D model. Again, the nodes are ran-
domly uniformly distributed. Once the nodes are determined,
an appropriate radio transmission range is chosen according to
nodal density, such that the network is connected. Each node
connects to its neighbors within its radio transmission range. In
our simulated networks, nodal degree ranges from 5 to 45, with
an average of 18.5. A node also estimates its distance to each
neighbor. While our simulations do not involve physical-layer
modeling, we introduce a wide range of random errors, from
0% to 100% of the radio transmission radius, in the distance
measurement.
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Fig. 8. Example of underwater network. (a) Network model. In contrast to Figs. 9(a), 10(a), 11(a), and 12(a), where the network model shows a set of wireless
nodes deployed, the network model in this figure gives the actual 3-D model for better visualization. (b) Boundary nodes. (c) Triangular mesh.

Fig. 9. Example of a 3-D space network with an internal hole. (a) Network model. (b) Boundary nodes. (c) Triangular mesh.

Fig. 10. Example of a 3-D space network with two internal holes. (a) Network model. (b) Boundary nodes. (c) Triangular mesh.

Fig. 11. Example of a 3-D network in a bended pipe. (a) Network model.
(b) Boundary nodes. (c) Triangular mesh.

For each simulated network, the input includes a set of the
nodes (both interior and boundary nodes), the local 1-hop con-
nectivity of each node, and the distance measurement (with var-
ious errors) within 1-hop neighborhood.

B. Simulation Results

We run our proposed distributed and localized algorithms
for boundary node detection and surface construction. First,
each node establishes a local coordinates system by using dis-
tributed multidimensional scaling [36] based on local distance
measurement. Then, boundary node identification is performed,
followed by the triangular mesh algorithm.
Several examples of our simulated networks are given in

Figs. 8–12. Figs. 8 illustrates an underwater network, where
nodes are distributed from the surface to the bottom of the

ocean. As shown in Fig. 8(b) and (c), our algorithms effectively
identify the boundaries of both smooth water surface and the
bumpy bottom. Figs. 9 and 10 depict a 3-D network deployed
in the space (e.g., for chemical dispersion sampling in 3-D
space). They have one and two internal holes, respectively, due
to uncontrolled drift of sensor nodes. These examples demon-
strate that our algorithm works for not only outer boundary, but
also the boundaries of interior holes. Figs. 11 and 12 show 3-D
networks deployed in a bended pipe and a sphere, respectively.
Fig. 13 demonstrates a nonuniform distributed 3-D network.
The node density is increasing from top to bottom, and node
degree ranges from 7 up to 92. As can be seen, boundary nodes
are accurately identified, and the triangular mesh surfaces are
well constructed in the all networks.
We have also simulated nodal mobility and run the online

boundary detection and triangle mesh updating algorithms in-
troduced in Section IV. Two examples are given in Figs. 14 and
15. As can be seen, landmarks change overtime, but the triangle
mesh remains nicely distributed. They clearly demonstrate that
the online boundary detection algorithm and boundary mesh up-
dating algorithm are adaptive to the dynamics of network. Only
43% and 57% of nodes on average involve UBF in Figs. 14 and
15, respectively. All the boundary nodes are successfully iden-
tified. Larger-scale networks will benefit more from our algo-
rithm because only nodes within one hop layer from the surface
run the algorithms.
Fig. 16 illustrates the performance statistics obtained from

our simulations. The results are based on over 10 000 sample
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Fig. 12. Example of a 3-D network in a sphere. (a) Network model. (b) Boundary nodes. (c) Triangular mesh.

Fig. 13. Example of a nonuniform distributed 3-D network in a lake. Node degree is increasing from top to bottom and ranges from 7 to 92. (a) Network model.
(b) Boundary nodes. (c) Triangular mesh.

Fig. 14. Example of a dynamic 3-D sensor network in atmosphere. Only about 43% of nodes involved UBF algorithm in each iteration. (a) Initial boundary nodes
and triangle mesh. (b) After 20 iterations. (c) After 40 iterations.

Fig. 15. Example of a dynamic 3-D sensor network deployment in lake. Only about 57% of nodes involved UBF algorithm in each iteration. (a) Initial boundary
nodes and triangle mesh. (b) After 20 iterations. (c) After 40 iterations.

boundary nodes. As can be seen in Fig. 16(a), our algorithm
performs almost perfectly to identify boundary nodes when the
distance measurement error is less than 30%. With more er-
rors introduced in distance measurement, noticeable errors are
yielded in local coordinates establishment, which naturally lead
to missing and mistaken boundary nodes. More specifically,
when the coordinates errors exceed a certain level, an original
boundary node may become an interior node inside the net-
work under the established coordinates, and thus is missed by
our boundary detection algorithm. At the same time, an orig-
inal interior node may appear on the boundary due to the defor-
mation of the coordinates of the node itself and its neighbors,
leading to a mistakenly identified boundary node. However, as

we have demonstrated in Fig. 1 and discussed in Section II, such
missing and mistaken boundary nodes do not seriously affect
our boundary identification because they are well distributed.
For example, Fig. 16(b) illustrates the distribution of mistaken
boundary nodes. Specifically, we measure the shortest distance
(in hops) from a mistaken boundary node to a correctly identi-
fied boundary node. As can be seen in Fig. 16(b), such distance
is always less than 3 hops, with a majority of them in 1 (over
60%) and 2 hops (over 30%). These results clearly show that the
mistakenly identified nodes are very close to the true boundary.
Therefore, the triangular mesh surface does not deviate signifi-
cantly from the true boundary surface. Similarly, the distribution
of missing boundary nodes is given in Fig. 16(c). It is observed
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Fig. 16. Performance statistics. (a) Algorithm efficiency. (b) Mistaken distribution. (c) Missing distribution.

Fig. 17. Spherical mirror mapping used in UNFOLD.

Fig. 18. UNFOLD performance with different parameters for three models.

that almost 100% of the missing boundary nodes are within
1-hop neighborhood of correctly identified boundary nodes. In
other words, the missing boundary nodes are uniformly dis-
tributed on the boundary surfaces (without forming “holes”) and
thus do not affect the election of landmarks significantly. As a
result, triangular mesh can be well constructed based on the set
of landmark nodes sampled from identified boundary nodes.
Among the related work discussed in Section I, the UNFOLD

algorithm [16] is most relevant. Therefore, we have quantita-
tively studied it for comparison. The basic idea behind UN-
FOLD is to use a spherical mirror to map a Node and its 1-hop

Fig. 19. Experiment setting. (a) Small 3-D sensor network with 44 sensor
notes. (b) Snapshot of network topology. Dashed lines denote asymmetric
links. Blue circles are identified boundary nodes.

neighbors to a convex image. Since the image nodes are convex,
a simple boundary detection algorithm can be applied to identify
the boundary nodes. It has the same complexity as fit-ball algo-
rithm, however it relies on two important parameters inmapping
that are model-dependent, i.e., the spherical mirror radius and
the distance between the mirror surface to a Node . The two pa-
rameters together determine the view point and the image po-
sition of Node and its 1-hop neighbors as illustrated in Fig. 17.
The viewpoint is also the center of the spherical mirror.
We applied UNFOLD algorithm to three different models

with different parameters, and , ranging from to ,
where is the maximum radio range of nodes. As shown
in Fig. 18, boundary identification errors (mistaken rate plus
missing rate) vary widely when the parameters change. There
are optimal parameters for each individual model to yield
the lowest error, but they vary from one model to another.
In a sharp contrast, our proposed algorithm employs a fixed
parameter (i.e., the radius of the ball) for all models to yield
results as good as or better than the UNFOLD optimal results,
as shown in Table I.

C. Experiments

To further evaluate the proposed algorithm, we implement it
in Tiny OS and run on 44 Crossbow sensor nodes. All nodes are
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Fig. 20. Asymmetric links problem and solution. (a) Asymmetric Link . (b) Limited broadcast. (c) Number of mistaken nodes comparison between with and
without limited broadcasting.

TABLE I
BOUNDARY IDENTIFICATION ERRORS COMPARISON

configured to use close to minimum radio transmission power
(Level 2), with a communication range between 25–25 cm.
They are tied onto a rack to form a small 3-D sensor network
shown in Fig. 19(a).
Every sensor periodically broadcasts a beacon message with

its node ID. Based on the beacon message, a node builds a
neighbor list with the RSSI of corresponding links. RSSI is used
to estimate the length of links by lookup up an RSSI-distance
table established by experimental training data. The preliminary
test shows that, under low transmission power, such estimation
has an error rate about 20%. With neighbor nodes and their es-
timated distance, every node can determine itself as a boundary
node or not based on the proposed algorithm individually.
The asymmetric links are common in real 3-D wireless

sensor networks [see the dashed line in Fig. 19(b) for example].
They often cause false positive boundary nodes. For instance,
Link is asymmetric in Fig. 20(a) because Node cannot
receive messages from Node , but Node can receive
Node ’s messages. In Node ’s point of view, there is no
Node at all. Therefore, it will mark itself as a boundary node.
In this work, we adopt a simple approach based on limited
broadcasting to solve the problem. For example, if Node
has established its neighbor list, it will broadcast a message
containing its neighbor list and set TTL of the message as three
(neighbor nodes number). A node will discard this message if
the TTL turns to zero or there is no common node between its
neighbor lists and the sender’s list. Finally, Node will receive
this message from its neighbors, e.g., Node , and learn that
Node should be its neighbor as well, shown in Fig. 20(b).
The limited broadcasting helps to reduce the false positive as
shown in Fig. 20(c).

VI. CONCLUSION

We have proposed distributed and localized algorithms for
precise boundary detection in 3-D wireless networks. Our

objectives have been twofold. First, we have aimed to identify
the nodes on the boundaries of a 3-D network, which serve
as a key attribute that characterizes the network, especially in
such geographic exploration tasks as terrain and underwater
reconnaissance. Second, we have intended to construct locally
planarized 2-manifold surfaces for inner and outer boundaries
in order to enable available graph theory tools to be applied
on 3-D surfaces, such as embedding, localization, partition,
and greedy routing among many others. To achieve the first
objective, we have proposed a Unit Ball Fitting algorithm
that discovers a set of potential boundary nodes, followed by
a refinement algorithm, named Isolated Fragment Filtering,
which removes isolated nodes that are misinterpreted as
boundary nodes by UBF. Based on the identified boundary
nodes, we have developed an algorithm that constructs a locally
planarized triangular mesh surface for each 3-D boundary.
Our proposed scheme is localized, requiring information
within 1-hop neighborhood only. We have further extended
the schemes for online boundary detection in mobile sensor
networks aiming to achieve low overhead. Our simulation and
experimental results have shown that the proposed algorithms
can effectively identify boundary nodes and surfaces, even
under high measurement errors.
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