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AUTONOMOUS LOCALIZATION 
IN WIRELESS SENSOR NETWORKS

Location awareness is of significant importance 
Sensor deployment 
Position-aware sensing  
Geometric routing 
In-network data storage and retrieval 

Global Navigation Systems 
Unaffordable due to high cost and lavish energy consumption 
Unavailable without line-of-sight satellite signals 

Autonomous localization 
GPS-less 
GPS-free



2D PLANE, 3D VOLUME, AND 3D 
SURFACE SENSOR NETWORKS

Sensor network settings 
2D plane: crop sensing in fields or wildlife tracking on plains 
3D volume: underwater or space reconnaissance 
3D surface: seismic monitoring on ocean floors or in 
mountainous regions
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AUTONOMOUS LOCALIZATION 
ON 2D PLANE

Input: Euclidean distance 
Principle: search the solution space to discover optimal sensor 
coordinates that minimize the average distance error  
Methodology: multidimensional scaling, neural networks, 
nonlinear optimization, differential geometry 
Bottom line: distance information is sufficient to localize sensor 
nodes on a 2D plane (except for non-rigid shapes)



AUTONOMOUS LOCALIZATION 
IN 3D VOLUME

Introducing the third dimension does not substantially increase 
the hardness of the problem 
It is straightforward to extend most 2D localization algorithms to 
3D volume



CHALLENGES IN 3D SURFACE 
LOCALIZATION

First glance: a 3D surface appears to be a special case of 3D 
volume or a generalization of 2D plane 
Surprising challenges: existing algorithms not applicable 

Hardness: lack of correct Euclidean distance estimation 
between remote nodes



CHALLENGES IN 3D SURFACE 
LOCALIZATION

Proven result: a general 3D surface network is not localizable, 
given surface distance constraints only 

Y. Zhao, H. Wu, M. Jin, and S. Xia, "Localization in 3D Surface Sensor Networks: Challenges and Solutions", in IEEE INFOCOM'12.



CHALLENGES IN 3D SURFACE 
LOCALIZATION

Practical problem formulation:  
Inputs: local distances and nodal height measurements 

First glimpse: the problem seems to become trivially easy 
Height: Z-coordinate 
Project sensors to X- Y plane and then apply 2D algorithms 

This naive approach often fails 
Projection of a general 3D surface is non-planar 
2D localization algorithms either fail or result in 
extraordinarily large errors in a significantly non-planar graph



PROPOSED APPROACH

Observation:  
Sensor network on single-value (SV) 3D surface is localizable 

Proposed approach: divide-and-conquer 
Partition a general 3D surface network into SV patches 
Localize individual patches 
Merge them into unified coordinates system



OPTIMIZATION GOAL

Observation:  
Many options to partition a network 
Theoretically infinite solution space to be explored 

Optimization goal: discover the minimum SV partition  
All patches must be SV to ensure their localizability 
The number of patches should be minimized to avoid 
unnecessary partitioning and merging, which are subject to 
linear transformation errors 

How to achieve minimum SV partition?    
Identify Non-Single-Value (NSV) edges 
Partition the network according to NSV edges 
Proven to be minimum SV partition



NSV EDGES

Establish a triangular mesh structure (or triangulation) based on 
local connectivity and distance information [27]



NSV EDGES

If an edge in the triangular mesh is not on the boundary, it must 
be shared by two and only two triangles.

In the triangulation of a 3D surface network, an edge 
is locally NSV (or NSV for short) if the projection of its 
two associated triangles overlap on the X-Y plane.

LEMMA 1. Given an edge in the triangular mesh of a 3D surface 
sensor network, its associated local distance information is 
sufficient to determine whether it is a NSV edge.



NSV EDGES

Identified NSV edges 

A 3D surface sensor network is called a NSV (or SV) 
network if it contains (or does not contain) NSV edges.



NSV EDGES

LEMMA 2. A NSV edge must connect to other NSV edges or 
boundary edges. 



NSV EDGES
THEOREM 1. The minimum SV partition is achieved by dividing 
the network along NSV edges. 

Follow a partitioning strategy: 
Start from any node on an arbitrary NSV edge and cut the 
network along all of its connected NSV edges 
NSV edges must connect to each other or to boundary, the 
cutting process will either form a loop or stop at the 
boundaries of the network. In either case, the network is 
partitioned into two or more separated patches. 
Repeats until no NSV edges exist in the entire network 

The network is partitioned into patches 
Patches are SV: none of them contain a NSV edge 
Partition is minimum: all NSV edges must be cut open, 
otherwise a patch containing NSV edges must be NSV patch



LOCALIZATION AND 
COMBINATION

For each SV patch 
Project to X-Y plane 
Apply 2D planar localization to obtain X-Y coordinates 
Add Z to yield 3D coordinates 

Use distributed least square to “sew” the patches



PRACTICAL SOLUTION WITH 
NOISY INPUTS

Distance and height measurements can be noisy 
Inaccurate inputs directly affect identification of NSV edges 

NSV edges become isolated, deviating from true NSV edges 
Impossible to partition the network directly



PRACTICAL SOLUTION WITH 
NOISY INPUTS

Coalescence of isolated NSV edges 
If a triangle contains a NSV edge, the triangle marked NSV 
If two NSV triangles are one-hop away, the edges between 
them are marked as NSV 
Two closest clusters are connected by their shortest path



PRACTICAL SOLUTION WITH 
NOISY INPUTS

Formation of NSV band 
Marks the edges within 1-hop of existing NSV edges as NSV 

Partition along medial axises of NSV band 
Two closest clusters are connected by their shortest path



COMPLEXITY AND OVERHEAD

Overall observation 
NSV edge identification, network partitioning and 
projection are all done locally by the individual nodes 
Complexity and overhead are dominated by localization 
in each patch and the merge of patches 

Computation complexity: O(Max{m3,n}) 
n is the number of nodes in the network 
m is the maximum number of nodes in a patch. 

Overall communication overhead: O(n)



PROTOTYPING
Built indoor testbed models 
Forty eight Crossbow MICAz motes are attached to its surface 
Sensors use close to minimum radio transmission power 
RSSI is used to estimate the length of links (about 20% errors) 
Ground truth is manually measured



EXPERIMENTAL RESULTS

NSV edges are identified correctly 
Network is thus partitioned into two SV patches 
MDS is applied to localize each of them 
Combined patches largely restore the original 3D surface network 
Average location error around 14%



SIMULATIONS

Three network models, each simulated with 1k, 2k and 4k nodes 
NSV edge detection error 

Average minimum hop-distance between true NSV edges 
and identified NSV edges 
Increases dramatically with higher measurement errors



SIMULATIONS
Network partition error 

Defined as the maximum deviation between the ideal 
partition and the identified medial axis of NSV band 
Insensitive to measurement errors 
A higher sensor density helps reduce localization errors in 
stadium model. The effect is not observed in other models.



SIMULATIONS

Average location error 
The localization result is not significantly affected by 
inaccurate distance and height measurements



SIMULATIONS

Comparison with a slice-based approach [25] 
Cut the network into layers 
No guarantee to localize all nodes in the network



CONCLUSIONS

Unique challenge in 3D surface localization 
A divide-and-conquer approach, named cut-and-sew 

Achieve minimum SV partition 
Localization individual patches 
Merge patches 

Introduce a practically-viable solution for real-world sensor 
network settings where the inputs are noisy 
Implement and evaluate via simulations and indoor testbed 
experiments


