Incentive-Aware Data Dissemination in Delay-Tolerant Mobile Networks

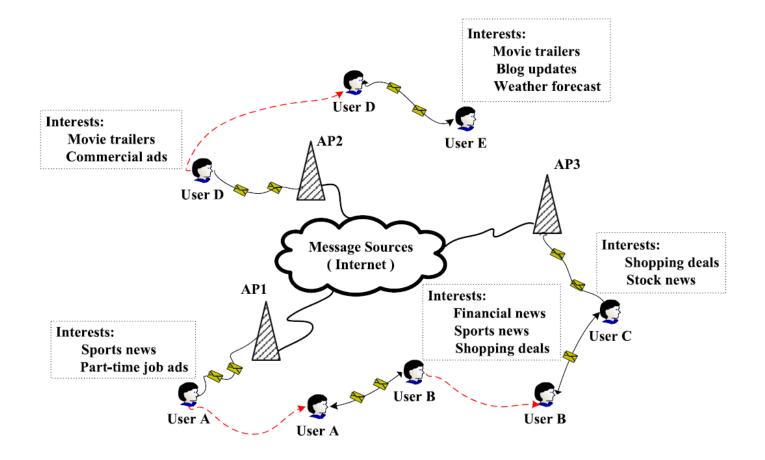
Ting Ning, Zhipeng Yang, Xiaojuan Xie, Hongyi Wu

The Center for Advanced Computer Studies (CACS) University of Louisiana at Lafayette

Outline

- Introduction & Motivations
- > Challenges
- > Design Basics
- > Proposed Incentive-Aware Scheme
- Simulations
- Conclusions

Introduction


- This work centers on data dissemination in a mobile wireless network.
 - Portable devices establish an intermittently connected mobile network ,using short range radios.
 - cell phones
 - PDAs
 - laptops

> Data to be disseminated fall into a range of interest types.

- local weather forecast
- community event alerts
- commercial advertisement

Introduction

> An example of data dissemination scenario

Motivations

Behaviors of nodes

- > Cooperative
 - voluntarily carry others' messages
- > Selfish
 - refuse to forward others' messages
 - only carry its own interested messages
 - save its own resources
- How to stimulate selfish nodes to participate into message forwarding and improve network performance?
- An incentive scheme is imperative to enhance nodal cooperation.

Challenges

- Poor end-to-end connections in delay tolerant network.
- A given message may be desired by multiple interested users.
- > Multiple copies are created for a message.
- A receiver may receive multiple copies but only reward the first deliverer.
- How to evaluate the possible value of a message and maximize its benefit.

Contributions

- An incentive mechanism was proposed to promote nodal cooperation.
 - > Credit is adopted for rewarding.
 - Intermediate nodes messages exchange based on the estimated values of data messages.
 - Game theory model is developed to solve the exchange process.

Design Basics

Definitions

- > An interest
- Source of messages of an interest type
- Sink of messages of an interest type
- ➤ Credit
- Effective interest contact probability (EICP)-- EICP of Node n in Interest i represents the likelihood that Node n contacts a sink of Interest i directly or indirectly.

Design Basics (cont')

- How to calculate EICP
 - > Direct contact probability of Node n in Interest i $\vartheta_n(i) = \begin{cases} (1-\alpha)\vartheta_n(i) + \alpha & \text{Contact} \\ (1-\alpha)\vartheta_n(i) & \text{Timeout.} \end{cases}$
 - Indirect contact probability of Node n in Interest i

$$\xi_n(i) = \begin{cases} (1-\beta)\xi_n(i) + \beta\vartheta_k(i) & \text{Contact} \\ (1-\beta)\xi_n(i) & \text{Timeout} \end{cases}$$

> EICP

$$\chi_n(i) = 1 - (1 - \vartheta_n(i))(1 - \xi_n(i))$$

Design Basics (cont')

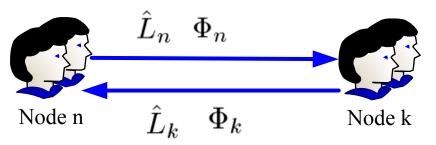
▷ C^m(i) -- duplication degree of Message m in Interest i

- Indicates the number of copies a message has. Split-based approach is adopted to estimate this value.
- > A^m(i) -- message appraisal of Message m in Interest i
 - > Indicates the number of potential receivers of that message.
- Rewarding policy
 - If Node n receives a message that matches its interests from Node m, the former rewards one credit to the latter.

Design Basics (cont')

R_n^m(i) -- expected credit reward of Message m in Interest i at Node n.

$$R_n^m(i) = A^m(i) \times \chi_n(i) / C^m(i)$$

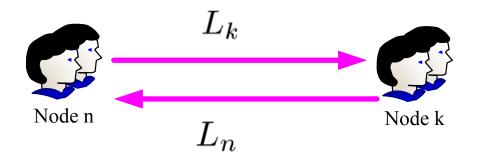

$$U_{i} - Utility function of Node n.$$

$$Max \quad U_{n} = \sum_{i=1}^{I} \left(\sum_{m \in \phi(i)} R_{n}^{m}(i) - \sum_{m \in \varphi(i)} R_{n}^{m}(i)\right)$$

$$Maximize its own$$
Expected rewards

Proposed Incentive Scheme

> 1. Exchange control information, including message list and EICP.


> 2. Generate message candidate list.

$$\tilde{L}_n = \hat{L}_k - (\hat{L}_n \cap \hat{L}_k)$$
 Node k
$$\tilde{L}_k = \hat{L}_n - (\hat{L}_k \cap \hat{L}_n)$$

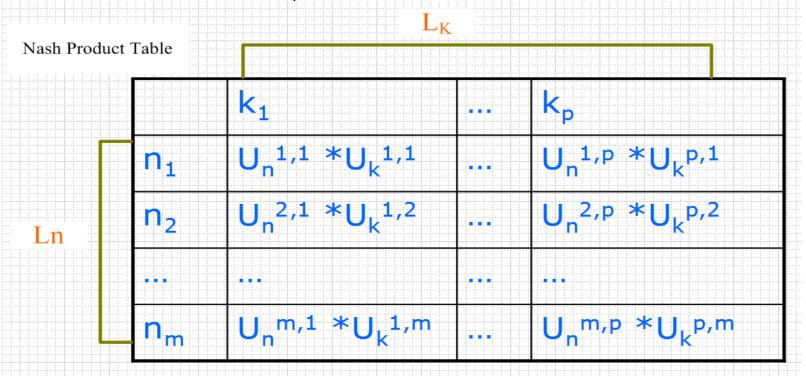
> 3. Check matched messages and update credits.

Proposed Incentive Scheme

4. Exchange process is formulated as a two-person cooperative game, the final solution is determined by Nash Theorem.

> 5. Nodes n and k trade messages, pair by pair.

Nash Theorem


The solution for two-person cooperative game, which allows players to reach a binding agreement and benefit both of them, is given by

$$(\hat{U}_n, \hat{U}_k) = \arg \max(U_n - D_n) \times (U_k - D_k)$$

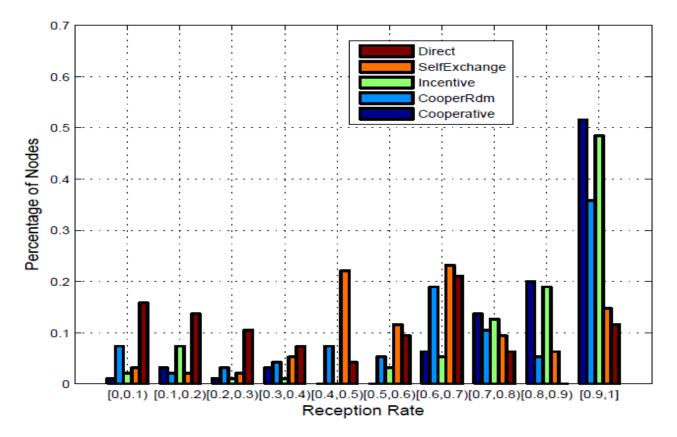
-- (D_n, D_k) is the status quo point;
-- (U_n, U_k) are the utility gains.
-- optimal solution yields an optimal set of messages that should be exchanged.

Nash Solution

- A simple heuristic approach is adopted by considering one pair of message at a time.
 - Corresponding Nash product is calculated by assuming Messages n_m and k_p were exchanged.

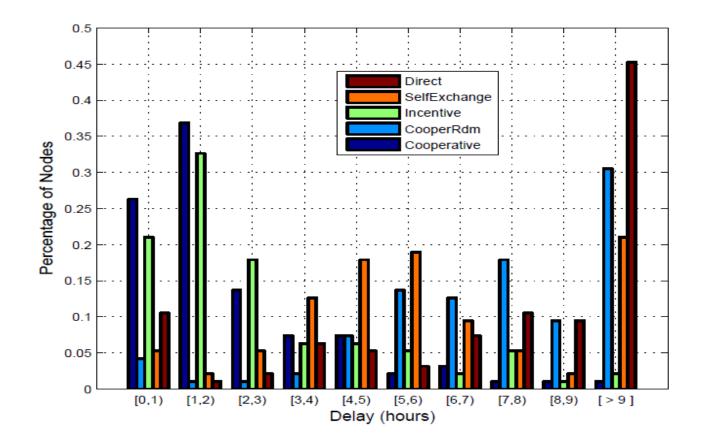
Simulations

- Our simulations are based on real mobility traces available at CRAWDAT.
 - Cambridge Haggle Project
 - > UMass DieseNet Project
- Performance Metrics
 - Network-wide reception rate
 - Distribution of nodal performance
 - > Average delivery delay
 - Message forwarding overhead
- We compare our work with "Direct" scheme, "SelfExchange" scheme, "CooperRdm" scheme and "Cooperative" scheme.


Overall performance of all schemes based on the Haggle trace.

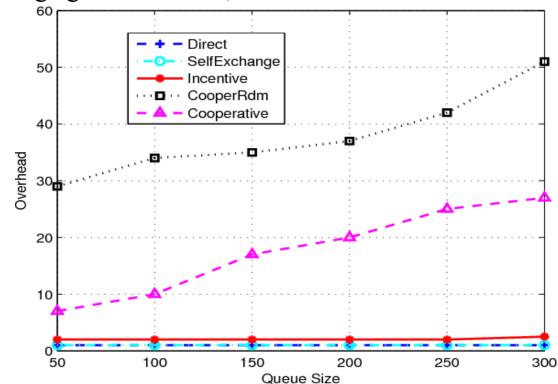
OVERALL PERFORMANCE COMPARISON BASED ON HAGGLE TRACE.

	Data Delivery Rate	Delay	Overhead
Direct	0.42	36109s (10.1h)	1
SelfExchange	0.58	22510s (6.25h)	1
CooperRdm	0.67	27653s (7.68h)	34
Incentive	0.82	10238s (2.84h)	2
Cooperative	0.86	8764s (2.43h)	10


Distribution of nodal reception rate.

> 48% of nodes under proposed scheme receive more than 90% of their interested messages.

Distribution of nodal delay.


> 56% of nodes receive message in less than 2 hours.

> We evaluate all the schemes by varying

- > queue size
- number of APs

data message generation rate, etc.

Conclusions

- A novel credit-based stimulation mechanism was proposed to address the data dissemination problem in selfish delay-tolerant mobile network.
- > An effective way to track the value of a message that estimates potential rewards a node may gain.
- The final message exchange is formulated as a twoperson cooperative game.
- The results show that our proposed incentive scheme is stable and has convincing performances.

