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Abstract—This paper focuses on distributed data query in intermittently connected passive RFID networks, which are characterized

by extraordinarily limited communication capacity and asynchronous and opportunistic communication links. To address such unique

challenges, we propose a distributed data query framework that clusters RFID readers and establishes a 0-1 Knapsack model based

on dynamic packet appraisal to enable highly efficient data transmission. We implement a prototype by using Alien RFID gears and

carry out experiments that involve 52 volunteers for 14 days to evaluate the proposed data query framework.
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1 INTRODUCTION

AS one of the primary motivating applications of today’s
sensor networks, a diversity of wildlife studies have

employed sensors for animal tracking and monitoring [1],
[2], [3], [4]. However, a recent investigation reveals that the
weight of the sensors must be under 5 percent of the weight
of the animal; otherwise, the overweight additions often lead
to high mortality rate of the animals being studied [5].
Consequently, small animals including 81 percent of bird
species and 67 percent of mammal fauna cannot carry any
active devices (such as GPS receivers, Crossbow sensors, and
active RFID tags that are battery-powered). Despite con-
tinuous efforts to miniaturize sensors, the minimum weight
of an active device is bounded inevitably by its power source
and casing, where the former must be adequate to support
desired communication range and lifetime, while the latter
must be heavy duty for protecting power source and
powered electronic circuits under harsh environment.

Aiming to address the strict weight constraints discussed
above that limit the applicability of active sensors, the
Featherlight Information Network with Delay-Endurable
RFID Support (FINDERS) is proposed in [6], [7], by
exploiting the ultralight, durable, flexible and battery-free
passive RFID tags, for such long-lasting pervasive applica-
tions as tracking and monitoring of small wildlife.
Furthermore, the rostering problem based on the FINDERS
platform is discussed in [8], aiming to create a list of unique
IDs that appear in the network.

1.1 An Overview of FINDERS

Fig. 1 illustrates an overview of the FINDERS system,
consisting of fixed readers and mobile tags, each associated

with a unique ID. The former are powerful devices, with
large storage space, high computing power, and sufficient
battery capacity. For instance, the Alien’s ALR-9900 reader
employed in our experiments possesses of 64-MB RAM and
flash memory, plus an interface for extended computation
and storage. The readers are often deployed according to
specific applications. For example, they can be installed at
“hot spots” or “choke points,” where animals visit fre-
quently or have to move through due to significant move-
ment barriers otherwise. Experiments show that a car
battery of 12 V� 60 Ah can supply the reader for 35 hours
under a scanning frequency of 1 Hz, sufficient to sustain
continuous function of the reader in a wide range of
applications when it is coupled with a suitable solar charger.

While readers are fixed, the thin and light tags are attached
to moving targets (such as the wildlife being studied) and,
thus, become mobile. Many off-the-shelf passive tags that
meet the required weight constraint and support sufficient
reading/writing range can be employed in FINDERS. For
example, an Alien ALN-9540 tag adopted in our experiments
measures 8:15� 94:8� 0:05 mm, weights less than one gram,
and achieves a communication distance of 20 ft. Since a tag
has extremely limited storage space (e.g., the Alien tag can
hold up to 20 bytes only), a block-based scheme is adopted in
FINDERS to expand tag capacity by leveraging the aggre-
gated space of multiple passive tags, achieving a total
capacity of tens to hundreds of bytes. In this paper, we
simply refer to a tag that can be a single tag or a block of tags.

Both reader and tag can be integrated with sensing
elements for enhanced sensing capabilities [9].

1.1.1 Data Acquisition

FINDERS acquires a diversity of data depending on
applications, including meeting events, on-tag sensor data,
and on-reader sensor data. A reader periodically scans nearby
tags. When a reader detects a tag (i.e., acquires a tag ID), it
records a meeting event, including the IDs of the reader and
the tag and their meeting time. During the meeting event,
the tag is powered up by the reader. Its integrated sensing
elements (e.g., enabled by the Wireless Identification and
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Sensing Platform (WISP) [10]) make measurements and
write data into the tag’s nonvolatile memory. Such on-tag
sensor data, along with the tag ID, are subsequently
acquired by a reader upon a future meeting event. In
contrast to on-tag sensor data and meeting events that rely
on the interaction between tags and readers and, thus, are
often intermittent and unpredictable, the sensors colocated
with a reader are battery-powered, generating on-reader
sensor data periodically.

A collection of data discussed above intrinsically provide
a discrete sampling of the movement of mobile nodes and
their ambient environment. Although a FINDERS system
consists of a small set of readers only and the short
communication range further restricts opportunities to
acquire meeting events and on-tag sensor data, such
spatially sparse data samples are valuable for coarse-
grained tracking and modeling in many applications. Given
the extremely small storage space of tags, data in FINDERS
are primarily hold by readers in their local flash memory.
Each reader maintains a local database, and the readers all
together constitute a distributed database system.

1.1.2 Data Communication

FINDERS aims to support applications in remote fields,
where reliable communication infrastructures (such as
cellular, WiMAX, and telemetry systems) are unavailable.
Furthermore, due to sparse deployment in harsh wild
environment with many obstacles, the readers are usually
separated by a distance longer than the communication
range of portable wireless technologies (e.g., Wifi or
Zigbee). Thus, they cannot be connected via short-range
radio; neither can they reliably access satellites. The field
experimental setting also rules out licensed (such as UHF)
radio. Only a handful of readers at convenient locations
have stable network connections. They serve as gateways
between FINDERS and conventional network infrastructure
and are dubbed gateway readers, or GRs (see GRs 1-2 in
Fig. 1). Meanwhile, most readers are isolated. The commu-
nication between such isolated readers, or IRs (e.g., IRs 1-4),
is enabled by mobile tags that establish time-varying
opportunistic links, forming an intermittently connected
delay-tolerant network (DTN [11]) for data delivery.

Fig. 1 depicts examples of such distinctive communica-
tion paradigm for both upstream and downstream data
transportation. First, to send data to an interested user, IR 1
writes them into Tag 2. When Tag 2 passes by IR 2, the
former uploads its data to the latter. IR 2 subsequently

writes the data into Tag 3, which has a trajectory through
GR 2 and, thus, delivers the data to its destination via this
gateway. Similarly, a user may transmit downstream data
(such as commands or control packets) to IRs. Assume a
command must be sent to IR 4. It can be written by GR 2 to
Tag 5, which carries the data to IR 3. When Tag 6 passes by,
it transports the data to IR 4.

Note that FINDERS is not proposed to replace conven-
tional networks. Instead, it should be viewed as a
supplemental way to transmit data when traditional
communication networks cannot be established. As a
matter of fact, if two readers can be connected by a wireless
link, they should fully exploit such more reliable and
efficient communication mechanism. Since the delay is
extremely short in comparison with the transportation via
mobile tags, the readers can be simply considered as a
single (virtual) node in FINDERS.

1.2 Data Query in FINDERS

In this section, we introduce the problem of data query from
a distributed database point of view, followed by discus-
sions on the unique challenges and our solutions for
achieving efficient data query in FINDERS.

1.2.1 Problem Description

FINDERS is a pervasive data acquisition and communica-
tion system, providing data to users with diverse needs. A
straightforward scheme is to send all data to a server that is
fully accessible by users. However, this naive approach
which is commonly used in data acquisition systems over
traditional networks is impractical, due to continuous
updates on local databases and extremely limited commu-
nication capacity in FINDERS. In addition, the recent works
on efficient RFID tag identification [12], [13], [14], [15], [16],
missing tag detection [13], [17], [18], localization [19], [20],
[21], [22], [23], and tag authentication and privacy [24], [25],
[26], [27] are not applicable to the data query problem
either. To improve the performance of query, data must be
kept at the distributed databases of individual readers and
fetched to users only if they are requested.

A query is sent to Query Portal (see Fig. 2a), which
parses the request and instructs selected IRs to report the
desired data. APIs are provided for users to query the
databases via standard structured query language (SQL)
statements. For example, the first query of (see Fig. 2b)
requests to return the tagID, meetingTime, and temperature at
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Fig. 1. An overview of FINDERS.

Fig. 2. Query distributed databases in FINDERS.



RFID reader “id1” during a specific time period. Another
example is to check the unique number of tags that are seen
by reader “id1” or “id2” during the time window. In
general, a query can specify multiple time intervals and
multiple sets of readers. Note that the requested time can be
not only past or current but also future, which alerts readers
to initiate query during a future interval. Moreover a
request can be a “one-shot” relational query with a fixed
answer set, or an ongoing continuous query that produces
an unbounded stream of results. In addition to queries, a
user may send other commands too, for example, to modify
algorithmic parameters in data query and communication
(such as reader scanning frequency), to request readers to
report their status, or to delete obsolete database entries.

Note that although this work is related to [8] and both of
them are based on the FINDERS architecture, it differs from
[8] in several perspectives, calling for new solutions. First,
[8] focuses on rostering, i.e., the creation of a list of unique
IDs that appear in the network. It employs a dynamic space-
efficient coding algorithm to construct data packets and
relies on a unique packaging format tailored for rostering,
to fit as much ID information as possible onto an RFID tag.
On the other hand, this work introduces a general data
query framework, aiming to gather not only tag IDs but also
meeting events, on-tag sensor data, and on-reader sensor
data. Since it does not assume that data include IDs only,
the packaging format and dynamic space-efficient coding
scheme introduced in [8] are no longer applicable here.
Moreover, [8] largely deals with one-way communication,
i.e., the IRs report IDs to the GR. There are control packets
to be transmitted from GR to IRs, but they are all
broadcasted. In this work, we consider two-way commu-
nications for transmitting commands, data, and feedback. A
clustering algorithm is proposed to partition the network
for efficiently utilizing transmission opportunities and
reducing overhead.

1.2.2 Challenges

While data queries discussed above are similar to standard
database operations, the transmission of query requests,
results, and other control messages is nontrivial. The
problem stems from the unique networking challenges in
FINDERS, where communication can be established be-
tween a tag and a reader only, but not readers to readers or
tags to tags. The communication must be initiated by a
reader, which is in a sharp contrast to the symmetric
transmission in most conventional networks. The tags
serve as transportation vehicles, carrying data packets from
one reader to another. However, given the short RFID
communication range, the often uncontrolled tag mobility
with great randomness, and the extremely limited storage
space (ranging from tens to hundreds of bytes), the
communication capacity of FINDERS is extraordinarily
limited and the communication links are highly opportu-
nistic, creating a sparse network where a tag is connected
to a reader only occasionally. Whenever a communication
opportunity is available, the reader must fully exploit the
capacity of the tag. Since the tag’s capacity is fixed, the
challenge is to fit as much valuable information as possible
onto the tag. Note that tags with different mobility patterns
are suitable for carrying different packets. Moreover,

redundancy is usually created during data transmission.
Therefore, the reader must prioritize its data for efficient
utilization of the precious communication opportunity. In
general, the reader has many possible options to pack its
data onto the tag. A distributed algorithm is indispensably
needed to determine the set of data packets to be written
onto the tag, to maximize its entropy, i.e., the effective
information per bit transmitted, and consequently the
overall system performance.

1.2.3 Contributions of This Work

The above challenges are addressed in this work to achieve
efficient data query. We propose a distributed database
query framework based on several communication and
computing techniques specifically tailored for FINDERS.
First of all, the RFID readers are grouped into clusters based
on their intermittent connectivity and each tag is assigned a
home cluster. When a communication opportunity becomes
available between a reader and a tag, a dynamic appraisal is
performed to determine the values of data packets accord-
ing to information redundancy and tag mobility. A
distributed algorithm based on 0-1 Knapsack model is
devised to choose a set of packets, which together maximize
their total (redundancy-excluded) value but do not exceed
the capacity of the tag. We prototype the proposed data
query system using Alien RFID gears and conduct experi-
ments that involve 52 volunteers and last for 14 days to
demonstrate its effectiveness. We also carry out simulations
to evaluate the scalability of the proposed scheme under
large-scale FINDERS systems.

The rest of the paper is organized as follows: Section 2
presents the query framework proposed for FINDERS.
Section 3 elaborates implementation and testbed experi-
ments. Section 4 illustrates simulation results. Finally,
Section 5 concludes the paper.

2 EFFICIENT DATA QUERY IN FINDERS

In this section we first present an overview of our proposed
data query framework and then elaborate algorithmic
details in support of effective query in FINDERS.

2.1 Overview of the Data Query Framework

The basic steps to execute a query in FINDERS are outlined
below. First, the user submits the query that consists of
standard SQL statements to Query Portal. Then, the Query
Portal parses the SQL statements, creating one or multiple
query commands. Subsequently, the query commands are
transmitted to target IRs via intermediate tags and readers.
Next, the target IRs respond the query and send corre-
sponding data back to the Query Portal. Finally, the Query
Portal combines received data and returns the complete
SQL result to the user (see Fig. 2a).

Due to potentially long and divergent delays to acquire
data from different IRs, the query must be asynchronous.
The key challenge for achieving efficient data query in
FINDERS is the extraordinarily low and intermittent
communication opportunity and the extremely constrained
capacity of RFID tags. Since data communication is so
precious only possible when an RFID tag meets a reader,
every communication opportunity should be efficiently

1974 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 10, OCTOBER 2013



utilized to transmit the most valuable and deliverable data.
To this end, two key issues must be addressed, which
together determine the effectiveness and efficiency of data
query in FINDERS.

First, given a communication opportunity, the reader
needs to learn the capabilities of the tag to deliver data to
desired destinations. In FINDERS, tags are vehicles for data
transportation. Using a transportation station as an analogy,
when a vehicle arrives at a terminal, one must know where
the vehicle is heading, to determine the proper freight to
load or passengers to board. Unfortunately, the tag’s
movement is nondeterministic, and thus, it is often
impossible for the reader to learn the exact next hop(s) of
the tag. However, with few exceptions in practical applica-
tions, the movement of an RFID tag follows some patterns,
which can be modeled as nodal contact probabilities that
have been widely discussed in the context of DTN [11]. For
example, a tag may maintain a vector of contact probabil-
ities to indicate its likelihood to meet individual readers
in the future. Details of creating such a vector can be found
in [28], [29]. However, this approach is impractical in
FINDERS because a tag has such limit storage capacity
that it cannot afford to carry a long vector of contact
probabilities, one for each reader, with a total size
proportional to the number of readers. To this end, we
propose to compress the vector by grouping readers into
clusters, where the communication opportunities among
intracluster readers are high. Each tag is associated with a
home cluster, to which it has the highest contact probability.
Hence, a tag only carries a small, constant amount of
information of its home cluster ID and corresponding
contact probability. The details of clustering and home
cluster association are to be elaborated in Section 2.2.

Second, given a communication opportunity, only a small
amount of data can be written onto a tag. At the same time, a
reader always holds a large volume of data in its local
database, and therefore must prioritize its data to ascertain
which data packets are most suited for the tag when a
communication opportunity is available. As to be introduced
in Section 2.3, we propose a dynamic appraisal scheme to
estimate the values of data packets, and devise a distributed
algorithm to maximize the total value of data loaded onto the
tag. In a nutshell, our overall design principle is to shift most
storage and computation load to readers, to save the
precious tag space for maximized data transmission.

2.2 Clustering of RFID Readers and Tags

To create appropriate clusters, where the intracluster readers
are well connected, the readers first learn and report their
connectivity to the Query Portal, which in turn computes a
flow-based link state matrix for cluster formation.

2.2.1 Link State Matrix

A tag always carries the ID of the reader that it meets most
recently. Therefore, upon a meeting event, the reader can
learn the previous stop of the tag, i.e., the upstream reader
where the tag comes from. A reader maintains a list of
upstream readers and estimates the communication capa-
city from each upstream reader to itself by counting the
number of meeting events with tags coming from the
upstream reader. For example, let lwij denote such a count of

tags that travel from Reader i (the upstream reader) to
Reader j within a time window w. Note that lwij is the
unidirectional communication capacity from Reader i to
Reader j, while lwji (i.e., the capacity of the reverse link) is
unknown to Reader j and can be dramatically different
from lwij. Similarly, Reader j learns the communication
capacity from other upstream readers, forming a unidirec-
tional link state vector Lwj ¼ ½lw1j; lw2j; . . . ; lwnj�, where n is the
total number of readers. Note that the actual size of Lwj is far
less than n, because only a handful of nearby readers can be
the upstream readers of Reader j.

Each RFID reader periodically creates a LinkState Packet
to report its unidirectional link state vector to the Query
Portal. The LinkState Packet is small in size and generated
once every time window only. Therefore, it introduces very
limited overhead. The Query Portal combines LinkState
packets (i.e., Lwj ) from all readers to construct the unidirec-
tional link state matrix, LSw ¼ ½Lw1 ; Lw2 ; . . . ; Lwn �. Given the
unique constraints (especially the intermittent connectivity)
of FINDERS, it is essentially unavoidable that an IR may
become unreachable during a time window. As a result,
only partial (or even completely null) link state vector can
be updated in this window. In this case, the Query Portal
simply uses the best-known information (based on previous
data received). Since time average values are used, the error
due to temporary disconnection does not significantly affect
the formation of clusters and the communication in
FINDERS, as we observed in our experiments. The setting
of time window should be determined by the requirement
of the application and the mobility pattern of the tracking
objects. If the time window is too small, there will be
excessive overhead generated by propagating the LinkState
packets, while if the time window is too large, it may fail to
accurately reflect the mobility pattern of the tracking
objects. In our experiment that involves human users
(whose mobility naturally varies with a daily cycle), we
set the time window to be one day.

The link state matrix obtained so far depicts a weighted,
directional graph (see Fig. 3a, e.g.). It only reflects the direct
communication capacity between readers. However, data
delivery in FINDERS often involves indirect (multihop)
transmissions. For example, a data packet can not only be
transmitted by a tag from Reader i to Reader j directly,
but also be delivered by different tags from Reader i to
Reader x and subsequently from Reader x to Reader j. To
capture such indirect communication capacity, the Query
Portal creates a k-hop maximum flow link state matrix,
denoted by Fw,

Fw ¼

fw11 fw12 . . . fw1n
fw21 fw22 . . . fw2n
. . . . . . . . . . . .
fwn1 fwn2 . . . fwnn

2
664

3
775; ð1Þ

where fwij is the maximum flow from Reader i to Reader j,
under the constraint that any flow involves up to k hops of
transmissions only. The maximum flow problem has been
well studied. A modified Edmonds and Karp algorithm [30]
with the k-hop constraint is adopted here to calculate fwij , i.e.,
the k-hop maximum flow from Reader i to Reader j. Fig. 3b
illustrates an example of Fw created according to LSw.
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Fw represents the communication capacity between
readers estimated in the time window w. Fw may vary
from a time window to another due to the unpredictable
dynamics of tag mobility. Since Fw intrinsically serves as the
routing metrics, it is highly desirable to be kept stable. To
this end, we adopt Exponential Weighted Moving Average
(EWMA) [7], [28] to create a time-averaged k-hop maximum
flow link state matrix, F . When the Query Portal receives
the first Fw, it sets F ¼ Fw. Thereafter, EWMA is applied.
More specifically,

F ¼ Fw the first window
ð1� �Þ � F þ �� Fw otherwise;

�
ð2Þ

where � is constant between 0 and 1 to keep partial memory
of historic status. Our experiments show that EWMA offers
excellent stability and at the same time reacts effectively to
small shifts. Moreover, it is simple and memory efficient,
requiring only constant storage of historic data. Fig. 3c
shows an example where multiple entries in F are updated
by EWMA at the end of a time window.

2.2.2 Cluster Formation

The time-averaged k-hop maximum flow link state matrix F
effectively describes the communication capacity between
readers, based on which clusters are formed. A cluster
includes a collection of RFID readers, among which any two
readers have a mutual average maximum flow of at least !.
A simple clustering algorithm adopted in this work is
outlined below. First, an undirected connectivity matrix C is
defined according to F , where Cij signifies if Readers i and
j have a “strong” connection. More specifically, Cij is
determined as follows:

Cij ¼
0 if F ½i; j� < !kF ½j; i� < !;
1 otherwise:

�
ð3Þ

An example of the undirected connectivity matrix C is
illustrated in Fig. 3d. It represents a graph, where the
vertices are readers and edges indicate strong connections
between readers.

Second, a recursive backtracking procedure [31] is
employed to identify a set of maximal cliques in the graph
represented byC (see Fig. 3e, e.g.). A clique in the undirected

graph is a subset of its vertices such that every two vertices
in the subset are connected by an edge. A maximal clique is a
clique that cannot be extended by including another vertex,
i.e., a clique which does not exist exclusively within the
vertex set of a larger clique. Therefore, the readers
corresponding to the vertices included in a maximal clique
all have strong connections, naturally forming a cluster, as
illustrated in Fig. 3f. The communication capacity between
two clusters is the total communication capacity between
corresponding readers in the two clusters.

Once the Query Portal finalizes cluster formation, it
encapsulates cluster IDs and members into the ClusterInfo
packet and broadcasts it to all RFID readers such that each
reader has a compressed global view of the network. Note
that the ClusterInfo packet is created only when there is a
change in cluster formation. Moreover, a progressive update
scheme can be adopted to include only changes of clusters in
the ClusterInfo packet, to reduce communication overhead.

2.2.3 Home Cluster Association

Each tag is associated with a home cluster, which consists of
the reader it visits most frequently. To learn the frequency a
tag visits a specific reader, the RFID reader records every
meeting event with the tag in a time window to calculate
their average meeting interval. Similar to (2), the meeting
interval is time-averaged over windows by using EWMA. A
tag carries its current home cluster ID and corresponding
meeting interval T , which are initialized as an invalid ID
and an arbitrary large value, respectively. Upon a meeting
event, if the reader finds it has a shorter average meeting
interval with the tag than the tag’s current T , it overwrites
the home cluster ID with its own cluster ID and updates T
accordingly. Our experiments show that this distributed
process quickly converges, yielding the correct home cluster
association for tags, because a tag indeed visits its home
cluster most frequently.

2.3 Dynamical Appraisal of Data Packets

The scarce and intermittent communication opportunity is
the performance bottleneck for data query in FINDERS. With
its extremely limited storage capacity, a tag obviously cannot
carry all data at a reader upon a meeting event. Therefore, we
propose a dynamic appraisal scheme to determine the values
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of data packets, and adopt the 0-1 Knapsack algorithm to
identify a set of most valuable packets without exceeding the
tag’s capacity for transmission.

The value of a data packet depends on the packet itself
and the tag that is available for data transportation. First,
bearing the nature of DTN where the transmission of a
single copy packet is subject to high loss rate, data packets
are often duplicated in FINDERS to achieve the desired
delivery probability. For example, after a reader transmits a
packet via a tag, it still keeps a copy the packet in its
database, which can be transmitted again upon another
communication opportunity if it is necessary. Therefore,
multiple readers may have the same data packet in their
databases, creating redundancy. The more the redundancy,
the higher the chance that the packet can be delivered to its
destination. Therefore, an individual copy of the packet
depreciates its value when more redundancy is spread
across the network. However, it is exorbitantly costly to
keep tracking of such redundancy. In this work, we
estimate the redundancy by two factors. First, from the
global perspective, the longer a data packet has been
propagated, the more redundancy is often created in the
entire network. Second, each reader records the number of
times it has transmitted a data packet, which serves as a
local estimation of redundancy. Let u denote the value of
the packet being appraised. We define u ¼ P ð1� �Þðt�toÞ=m,
where P is a priority parameter (to differentiate different
query tasks), � is a depreciation factor, t is the current time,
to is the time that the data packet is generated, and m is the
number of times the reader has transmitted the packet.

Besides the estimated redundancy, the value of a data
packet also depends on the mobility of the tag. For example,
a packet is more valuable (for the given tag) if the tag’s
home cluster includes the destination of the packet or is on
the path to the destination. To this end, we introduce a
parameter �, which is the fraction of the maximum flow
from the source cluster to the destination cluster that passes
through the tag’s home cluster. � can be calculated by the
maximum flow algorithm discussed earlier [30], but based
on the graph of clusters (where each vertex is a cluster and
the edge weight represents the communication capacity
between two clusters). It indicates the likelihood that the tag
transports the data packet in the right path toward its
destination. Clearly, if the destination of the packet is in the
tag’s home cluster, � ¼ 1 because the entire maximum flow
pours into the cluster. If a packet is to be delivered to
multiple clusters, all of them are connected to a virtual
destination node. Then, � is obtained similarly as discussed
above. Consequently, � ¼ 1 for a broadcasting packet (that
is destined to all clusters). Based on �, the value of the
packet is adjusted to u ¼ �P ð1� �Þðt�toÞ=m.

Upon a meeting event, the reader first appraises its data
packets as discussed above, and then selects an optimal set
of packets for transmission. A simple approach is to sort
the packets according to their appraisals and greedily write
the data packets with the highest values to the tag until
there is no room available for the next packet. Another
approach is to employ the 0-1 knapsack algorithm for more
efficient utilization of the limited storage space of the tag.

More specifically, the 0-1 Knapsack problem is formulated
as follows:

Maximize :
Xn
i¼1

uixi

Subject to :
Xn
i¼1

wixi �W; xi 2 f0; 1g;
ð4Þ

where n is the total number of packets at the reader, W is the
total storage space of the tag, and ui and wi are the appraisal
and the size of Packet i, respectively. The 0-1 knapsack
problem is NP-complete. A dynamic programming algo-
rithm [32] is adopted here to determine 0-1 variables,
fxi j 1 � i � ng, i.e., the set of packets to be written into the
tag, which together maximize the total value of the
information being carried and at the same time do not
exceed W . The solution for the knapsack problem is not our
contribution. Most knapsack algorithms are applicable here.
We simply adopts [32] in our implementation. It achieves
close-to-optimal results with acceptable computation com-
plexity. We have found it works well in our testbed. If an
RFID reader does not support the needed computing power
for such an algorithm, an approximate or heuristic approach
[33] with less complexity can be adopted.

3 PROTOTYPE AND EXPERIMENTS

We have implemented a prototype to demonstrate dis-
tributed data query in FINDERS and to gain empirical
insights into the design tradeoffs and practical considera-
tions of the proposed query algorithm.

3.1 Implementation Issues

We have developed a prototype system by using Alien
ALR-9900 readers and ALN-9540 tags (see Fig. 5, e.g.). The
implementation closely follows the description in Section 2.
It involves no modifications on the off-the-shelf tags or
standard reader commands. Only a small amount of codes
for link state dissemination and packet candidate creation,
appraisal and selection are added to reader’s program.
Since the Alien RFID gear is Class1Gen2 (C1G2) standard
compliant, our implementation can be generally applied to
other standard passive RFID tags and readers as well.

We introduce five types of packets to support data query
and transmit control information:

. LinkState Packet. A LinkState Packet is generated
periodically by an IR or GR and transmitted to
the Query Portal. A Linkstate packet contains the
unidirectional link state vector observed by the
corresponding reader (as discussed in Section 2.2).

. ClusterInfo Packet. A ClusterInfo packet is initiated by
the Query Portal and broadcasted to the IRs and
GRs. It contains the information about cluster
formation and the connectivity among clusters. As
introduced in Section 2.2, the ClusterInfo packet is
created only when there is a change in cluster
formation. A progressive update scheme is adopted
to reduce communication overhead.

. Query Packet. A Query packet contains a query
command issued by the Query Portal. A unique
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sequence number (called Command ID) is associated
with each command.

. Reply Packet. Zero to multiple Reply packets may be
created by an IR, in response to a Query command.
A Reply packet contains the result of the query.

. Ack Packet. The Query Portal periodically creates an
Ack packet that contains a list of IDs of the
commands which have been served. The Ack packet
is broadcasted to IRs, facilitating them to eliminate
unnecessary redundant copies of query commands
and replies for efficient channel utilization.

In a nutshell, the LinkState and ClusterInfo packets are
employed for cluster formation. Query packets are dis-
persed to the appropriate clusters that contain the query
destinations or are on the paths toward to the destination
clusters. Reply packets are created by IRs and delivered to
the Query Portal. Meanwhile, Ack packets are distributed
from the Query Portal to IRs to acknowledge the fulfillment
of corresponding Query commands.

Each Alien ALN-9540-WR “Squiggle” tag has a total
storage capacity of 128 bits available for applications. To
expand tag capacity, a block-based scheme is adopted in
FINDERS by leveraging the aggregated space of multiple
passive tags, achieving a total capacity of tens to hundreds
of bytes. The idea of constructing blocks has been presented
in [7]. For the convenience of the readers, it is briefly
outlined below. A block of tags is an integral unit attached
to a mobile node. Each block includes a head tag and a
number of storage tags. The head tag contains five control
fields plus a number of packets. The control fields are Node
ID, Tag ID, average interval, home cluster ID, and previous
hop RFID reader ID, which consumes 10, 4, 10, 8, and 8 bits,
respectively. Thus, the head tag has 88 bits left for packets.
For each storage tag, besides the Node ID (10 bits) and
Tag ID (4 bits), it has 114 bits for packets. A data packet
includes four fields: a Type field of 3 bits, a Query ID field of
8 bits, a Data field with a variable length, and a packet-level
Time stamp of 20 bits. The number of packets that can be
carried by a tag depends on the available length of the Data
field. It is worth mentioning that the tags in a block are read
sequentially (but not simultaneously) by a reader. The tags
within a block share the same Block ID. The Tag ID field of
the head tag is predefined to 1111, and 1110 for the first
storage tag, 1101 for the second storage tag, so on and so

forth. To scan nearby nodes, the reader first sets its mask to
1111 for head tags only. Once a head tag is identified, the
reader uses the Block ID and the predefined Tag ID to
generate a unique mask for the next tag in the block, thus
eliminating collision among storage tags in the same block.
In our experiment, we employ a block of 3 tags or 4 tags,
with a reading/writing delay of 185/170 or 245/240 ms,
respectively. In the following discussion, we simply refer to
a tag that is in fact a block of tags.

Without suitable sensing elements at hand for integra-
tion with tags and readers, we focus on meeting events in
our prototype. It requires only minor modification on the
data collection program at the readers to incorporate other
sensing data. Each GR or IR maintains a simple database
that includes meeting events, active query commands it has
received, query replies that it has learned so far, and the
LinkState and ClusterInfo packets. Each database entry for a
data packet contains the time the packet is generated, the
time when the packet is received by the reader at the first
time, the destination of the packet, and the destination
cluster of the packet.

3.2 Testbed Setting

An experimental testbed has been set up to gain useful
empiric insights of data query in FINDERS. Our testbed
consists of five readers deployed in the Oliver Hall at the
University of Louisiana at Lafayette that houses classrooms,
research laboratories, and faculty offices for Computer
Science and Engineering programs. Reader 3 (see Fig. 4) is
deployed at the main entrance of the building on the first
floor. Readers 4 and 5 are located at the entrance of two major
classrooms (Room 116 and Room 117) on the first floor,
respectively. Two readers (i.e., Readers 1 and 2 as shown in
Fig. 4) are on the third floor, close to the doors of a small
laboratory and a faculty office. Each reader is equipped with
two side-by-side 6-dBi circular polarized antennae. Readers
2-5 serve as IRs, while Reader 1 is the GR, which connects to
the Query Portal implemented on a workstation. All readers
scan nearby tags at a frequency of once per second and the
LinkState update window is set to 1 day.

Our experiment lasted 14 days, from 3/15/2011 to 3/28/
2011. The first two days, i.e., from 3/14/2011 to 3/15/2011,
are the initialization stage, where the system learns nodal
contact probabilities and forms clusters. No data queries are
generated during the initialization. Fifty two volunteers had
participated in the experiment, including faculty members,
senior Phd students (who spend more time in research labs
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Fig. 4. Placement of RFID readers. Readers 1 and 2 are on the third
floor, and Readers 3, 4, and 5 are on the first floor. Reader 1 serves as
GR, while other readers are IRs.

Fig. 5. Our Alien passive RFID gear.



than in classrooms), graduate students at M.S. level, and
undergraduate students (who go to classrooms frequently
and regularly). Some volunteers enter the building via its
main entrance (where Reader 1 is deployed), while other do
not. Each participant carries a badge, which is a typical
conference badge with a block of tags enclosed. Among the
52 units, 32 of them contain three tags and the rest 20 units
have four tags. Data queries are generated once every
2 hours with a random destination chosen among Reader 2
to Reader 5.

3.3 Experimental Results

We evaluate the performance of the proposed data query
algorithm and compare it with three other schemes. Since
it is impossible to execute multiple different algorithms
simultaneously in an experiment, trace data are collected
to run the competing schemes for fair comparison.
“Random” is a naive approach where an IR randomly
chooses a set of packets in its database that satisfy a query
command for transmission. It often results in undesired
high redundancy and long delay. In the “SingleNodeClus-
ter” scheme, each individual IR or GR forms a single
cluster. On the other hand, the “OneCluster” scheme puts
all IRs and GRs in one cluster. “ProposedScheme” stands
for the proposed scheme.

Appropriate clustering is crucial to the system perfor-
mance. Thus, we first examine the cluster formation and
its stability under practical application settings. Note that
the cluster formation is an online process, subject to
periodic update. Since nodes are mobile, the clusters are
generally dynamic. Fig. 6 illustrates the convergence of the
cluster formation process. With total five readers, they

initially form five individual clusters. The colors indicate
different clusters. They merge to three clusters on the
second day and two clusters thereafter. In general, we
observe that clustering converges quickly within two days
and keeps stable with minor updates only after the second
day of our experiment.

Figs. 7 and 8 show the percentage of query commands
fulfilled and the average query delay (calculated based on
the fulfilled queries only). The proposed algorithm achieves
the best performance, significantly outperforming other
schemes. The “OneCluster” scheme performs worse than
“SingleNodeCluster,” because the former is completely
blind (without differentiation of destinations) and transmits
all packets in the same way that is essentially broadcasting,
thus resulting in inferior performance. “SingleNodeCluster”
treats each node as a cluster, which may lead to high
overhead in cluster maintenance. “Random” leads to the
worst performance because it frequently makes wrong
decisions to choose packets for transmission when there
comes an communication opportunity.

Fig. 9 illustrates the delay distribution of fulfilled queries.
Under“ProposedScheme,”about70percentof the queriescan
be fulfilled within 1,000 minutes, significantly outperforming
other schemes that can achieve about 10 percent at most.
Moreover, nearly all queries can be satisfied in “Propo-
sedScheme” within less than 4,000 minutes, while a large
fraction of queries experience long delay under other
schemes.

Fig. 10 presents a detailed look of data query results by
illustrating the delay of each query during the entire
experiment period. Queries generated during weekend
always exhibit longer delay than the weekdays’ queries. This
is because few packets were able to be delivered on Saturday
and Sunday due to low activity of students and faculty.
Consequently, many packets had to stay in the IRs’ queues
during the whole weekend. Moreover, the accumulated data
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Fig. 6. Cluster formation. The colors indicate different clusters. The
clusters become stable with minor updates only after the second day of
our experiment.

Fig. 7. Overall query success rate.

Fig. 8. Overall query delay.

Fig. 9. Query delay distribution.



result in further increased delay when they were transmitted
on Monday. Similar pattern is observed in Fig. 11 that shows
the average data query delay on each day of a week. The
results closely match the activity pattern of students and
faculty. During Monday through Thursday, the data query
delay is low. The queries initiated at Friday afternoon
experience a longer delay as the tag activity begins to
decrease. The queries generated on Saturday and Sundays
exhibit very long delay because no much data can be
delivered during the weekends, and the longest delay is
found for queries on Saturday because they have to wait for
about two full days before been served. Fig. 12 further zooms
in to show the delay of queries generated from the first to the
24th hour of a day. The first Tuesday of our experiment is
chosen as an example, while similar results are observed on
other weekdays as well. The query delay is low during
daytime and high at night, which again shows the perfor-
mance of query depends on the activity of mobile nodes who
carry tags.

4 SIMULATION RESULTS

Besides the experiments discussed above, extensive simula-
tions are carried out to learn the performance trend of
FINDERS under various settings with a large number of
readers and tags, which are not practical to build in labs.

The simulated field is partitioned into 5� 5 cells. A
number of tags are distributed in the field and move
according to power-law distribution, which is deemed as a
realistic mobility model for delay-tolerant mobile networks
[34]. More specifically, each mobile node has a home cell,
which is randomly assigned in our simulations. Node i
makes its decision to stay in the current cell or moves to one
of the neighboring cells in every time slot. For example, if it
is currently in Cell 0, it may move into one of four adjacent
cells (e.g., Cells 1-4) or stay in Cell 0 in the next time slot. Its
probability to be in Cell x is Piðx j 0Þ ¼ PiðxÞ=

P4
z¼0 PiðzÞ,

where x ¼ 0 to 4 and PiðxÞ ¼ ð 1
diðxÞÞ

�. � is the exponent of the
power-law distribution, which is set to 0.6 by default in our
simulations. diðxÞ denotes the distance from Cell x to Node
i’s home cell.

By default, 125 mobile nodes are randomly distributed
in the field, each with a capacity of 96 bits. There are two
GRs and eight IRs. The Query Command and Query
Response are 16-bit and 48-bit long, respectively. The
default query frequency is 6 queries per hour. We run
simulations under the same configuration for 10 times and
present the average results.

We first study the performance of data query by varying
parameters related to tags. As shown in Fig. 13a, higher
performance is achieved when the number of tags increases
from 75 to 500, because more tags result in more
communication opportunities (i.e., higher service rate).
However, the gain becomes marginal when the tag density
is higher than 200, because additional tags often carry
unnecessarily duplicated queries and query results, useless
for improving network performance. Similarly, increasing
the capacity of tags (the main transportation vehicle in
FINDERS) can improve the overall performance as shown
in Fig. 13b. The power-law factor � is the decisive factor to
the mobility pattern of tags. With a higher �, the tag has a
higher chance to stay at its home location, which means less
mobility. Therefore, the percentage of successful query is
low. On the other hand, a very low � also has detrimental
impact because it often results in a uniformly random
mobility ineffective to guide packet delivery.

Fig. 13d illustrates the results with the number of GRs
increasing from 1 to 5. It is obvious that deploying more GRs
reduces query delay and improves successful query rate.
Similarly, more IRs means a higher probability to deliver
queries and query results. Consequently a higher query rate
and lower query delay are observed in Fig. 13e when the
number of IRs increases from 2 to 16. The frequency to
initiate query commands is also an important factor. As can
be seen from Fig. 13f, with the increase of query frequency,
the percentage of successful query decreases. When the
query frequency is above 20 per hour, the query delay
becomes stable, because the network is saturated and the
query delay is measured for successful queries only.

5 CONCLUSION

We have studied the problem of data query in intermittently
connected passive RFID networks. To address the unique
challenges in such an extremely resource-constrained net-
work, we have propose a distributed data query framework
that clusters RFID readers to reduce unnecessary data
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Fig. 10. Overall delay variation.

Fig. 11. Weekly delay variation.

Fig. 12. Daily delay variation (Tue).



transmission and establishes a 0-1 Knapsack model based on

dynamic appraisal to choose the best set of packets, which

together maximize their total (redundancy-excluded) value

but do not exceed the capacity of a tag. We have carried out

experiments by using Alien RFID gears that involve 52

volunteers for 14 days and performed large-scale simula-

tions to evaluate the proposed data query framework.
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