
CapJack: Capture In-Browser Crypto-jacking by
Deep Capsule Network through Behavioral Analysis

Rui Ning, Cong Wang, ChunSheng Xin, Jiang Li, Liuwan Zhu, and Hongyi Wu
Center for Cybersecurity Education and Research

Old Dominion University, Norfolk, VA 23529, USA

Abstract—This work proposes an innovative approach, named
CapJack, to detect in-browser malicious cryptocurrency mining
activities by using the latest CapsNet technology. To the best
of our knowledge, this is the first work to introduce CapsNet
to the field of malware detection through system behavioral
analysis. It is particularly effective to detect malicious miners
under multitasking environments where multiple applications run
simultaneously. Experimental data show appealing performance
of CapJack, with a detection rate of as high as 87% instantly
and 99% within a window of 11 seconds.

I. INTRODUCTION

Cryptocurrencies have gained global attention since 2017
due to the sharp surge in their exchange prices. Amid a debate
on whether it is a “tulip bubble” [1] or “future economy” [2],
the price of bitcoin peaked at $20,000 in Jan. 2018 [3], a
stunning 20-fold increase within 12 months. The fever also
spreads to other alternative coins (i.e., altcoins). According to
[3], the market valuation of cryptocurrency hit 1 trillion USD
in 2018. As a critical link of the value chain, transactions
rely on the underlying blockchain technology called mining.
It defines a series of processes to add transaction records to
the public ledger, confirm transactions in a trustful manner
and reward the participants (called miners) some “tips” for
their efforts [4]. For example, bitcoin adopts the proof-of-work
principle to ensure the information was difficult to make by
solving a series of hash functions [4]. Due to the high cost
of hardware and maintenance, businesses have been investing
in cloud mining to concentrate hashpower (CPU/GPU/ASIC
miners) and lease them through contracts [5].

As opposed to those centralized hashpower, if one could dis-
tribute the mining computation through hundreds of thousands
devices (including datacenters, PCs, laptops, smartphones, and
IoTs), it would be a lucrative business opportunity. As nefari-
ous as it sounds, cybercriminals also think along the same line
to hijack the victims’ devices for mining via crypto-malwares.
Different from bitcoin, which requires GPU/ASIC for mining,
many altcoins such as Monero can be mined effectively by
CPU [3]. The growing number of devices (both computers
and embedded devices) connected to the Internet have been
turned into their preys. The damage would have significant
financial impact on personal and business infrastructure by
causing system slowdown, reducing hardware lifespan and
driving up the electric bill. Due to the anonymous nature of
cryptocurrency, these malicious activities are difficult to trace.
As demonstrated in Fig. 1, hackers can implant a segment of

javascript to use the victim’s device to mine cyrptocurrency
without being noticed by the victim. Due to their stealthy and
immediately lucrative nature, mining malware had spiked by
629% in the first quarter of 2018 as reported by McAfee [6].

Fig. 1. Procedure of crypto-jacking and profit chain.

Malware detection relies on the analysis of static signatures
and dynamic behaviors [7]. Static analysis usually reverses
the program to discover malicious pieces in the binaries such
as API calls, file manifest, domain name and permissions.
To block cryptominers, browser extensions like No Coin
[8] and MinerBlock [9] use static method to detect mining
scripts and blacklist the malicious sites. However, as those
signature scripts can be easily obfuscated or changed, static
analysis falls short to detect new/emerging patterns of crypto-
malware. Dynamic analysis monitors system behaviors such
as network activities because malware tends to use specialized
procedures for communication. Since crypto-malware should
intermittently connect to the mining pool, security analyst has
been trying to find these network signatures through protocols,
packets, traffic intervals, domain names, etc. However, it is
challenging to differentiate the crypto-malware traffic among
other types of communications since the messages are short
and the malware writers can adopt a variety of obfuscation
methods to blend them into normal traffic. Thus, it is rather
difficult to create firewall rules to block those miners.

Although scripts and network signatures alone can be
obfuscated, mining malware cannot escape from using a
combination of computational and communication resources.
To this end, this research aims to develop effective solutions
to detecting mining malware based on system behaviors. We
focus on a popular javascript offered by Coinhive [3], which
mines a cryptocurrency called Monero using CPU hashpower
and can be implanted into any website. Coinhive is the most
prevalent malware online today, which holds the 1st place in
Check Point’s Top 10 Most Wanted Malware Index, with a
global reach of 16 percent in April 2018 [3].

Our quest begins at a few naive approaches and ends
with a highly efficient and accurate scheme based on the

latest Capsule Network technology. First, we perform basic
static and dynamic analysis to detect crypto mining using
online virus/malicious scripts scanner and abnormal resource
utilization. However, it turns out that these methods have high
miss detection rate. A recent study [10] introduces a method to
detect mining malware by analyzing websites’ source code and
monitoring their behavior concurrently. However, this scheme
is for web-miner only and requires user to monitor the be-
havior of each individual webpage. Our exploration also leads
to a more sophisticated mechanism based on Convolutional
Neural Network (CNN) [11], which is a state-of-the-art deep
learning algorithm to extract features from data. While it yields
high detection rate for a single program, the performance
deteriorates sharply when multiple programs are mixed – a
scenario that is very common in practice since users tend to
multitask by launching different programs.

The observations and lessons learnt from the preliminary
exploration motivate us to adopt the latest Capsule Network
(CapsNet). It is a machine learning system proposed recently
by Hinton et. al. [12] to more closely mimic biological neural
organization. The design is motivated by the importance of
preserving hierarchical pose relationships between object parts
in order to achieve correct classification and object recogni-
tion. To this end, CapsNet adds structures called capsules to
a convolutional neural network and employs dynamic routing
to connect capsules such that relative relationships between
objects can be represented numerically as a pose matrix.
Among other benefits, it can effectively recognize multiple
objects even if they overlap. As demonstrated in the seminal
work [12], the overlapping digits (see Fig. 2 for example) can
now be recognized, which is unattainable by CNN.

(a) (b)
Fig. 2. CapsNet can effectively recognize overlapping digits. (a) 0 overlaps
with 1; CapsNet output: (0,1). (b) 7 overlaps with 8; CapsNet output: (7,8).

Thus, we extend the original architecture of Capsule Net-
work to detect crypto-jacking in a multi-task environment. The
main contribution of this paper is summarized as follows:
• This research proposes an innovative approach to detect

malicious cryptocurrency mining activities by using the
latest CapsNet technology. To the best of our knowledge,
this is the first work to introduce CapsNet to the field
of malware detection. It is particularly effective to detect
malicious miners under multitasking environments.

• Built upon the success of the CapsNet-based approach,
we further develop a two-layer classification system,
named CapJack, which can effectively transform a pre-
trained model to detect miners on new devices. This is
intrinsically important to achieve practical usability given
the wide variety of devices used by victims.

• The work delivers a well engineered prototype. The
experiments reveal valuable empirical insights into the

design space for miner detection and the application
of CapsNet for detecting malicious mining activities.
Experimental data show the appealing performance of
CapJack, with a detection rate of as high as 87% instantly
and 99% within a window of 11 seconds.

The rest of the paper is organized as follows. Sec. II
summarizes the preliminary explorations. Sec. III introduces
the proposed scheme based on CapsNet. Sec. IV presents the
experimental results. Finally, Sec. V concludes the paper.

II. PRELIMINARY

A. Threat Model

Web browsers are vulnerable to malicious mining scripts
and their presence is difficult to detect. A hacker can create
a mining instance within 10 lines of javascript with his
CoinHive site key. Like many third-party scripts, they perform
tasks in the background threads without user knowledge or
permission by creating a Worker object. The hacker can also
define the number of CPU threads (number of cores on the
victim’s machine) and throttle (fraction of time that threads
are idle), or set threads and throttle to a smaller number to
avoid detection of system slowdown. Even after the user close
the browser, the attacker can still launch a hidden window
under the windows taskbar to continue mining. Miners rely
on WebSockets to open an interactive communication session
between the user’s browser and a server. The hacker could set
up several WebSocket servers to connect their miners through
the standard Stratum protocol [13] or even encrypted traffic
with SSL support (from Monero v9.7), that makes the network
signature difficult to be detected. In this paper, the threat model
assumes the hacker has all these capabilities to achieve stealthy
and effective crypto-jacking of the victim’s machine.

B. System Features

Feature selection is critical to malware behavioral analysis.
Since in-browser mining scripts do not attempt to inject
malicious code or infect system files, it would be ineffective to
use traditional features such as API calls, DLL access, and file
system registry activities. Nevertheless, we discover mining is
associated with a few essential features as outlined below.
• CPU Utilization. It indicates the sum of work handled

by the CPU. Monero mining uses AES-based hash called
Cryptonight algorithm [14] that efficiently utilize CPU
but not GPU/FPGA/ASIC.

• Memory. It adopts a scratchpad with a size of the per-core
L3 cache on CPUs. Therefore, the memory consumption
is typically the number of threads times the L3 cache
(about 2 MB on Intel CPUs).

• Disk Read/Write. It may take intensive disk read/write
during blockchain synchronization process, which hap-
pens periodically during the mining process.

• Network Interface. Monero uses the Stratum protocol to
communicate with the server for authorization, job sub-
mission, transactions, etc. The activities on the network
interface result in subtle patterns although they are usually
not obvious to be observed and recognized directly.

Coinhive hide in

browser processes

High CPU
High Memory

High Disk

(a)

0 100 200 300

Time (second)

0

20

40

60

80

100

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Game

Miner

Video

(b)

20 40 60 80 100 120 140

Time(second)

50

60

70

80

C
P

U
 U

ti
liz

a
ti
o

n
(%

)

Miner Music

Miner Music Video

Music Video Game

(c)
Fig. 3. (a) Miner hiding in browser processes. (b) CPU usage of three individual applications: Game, Miner, and Video. (c) CPU usage of mixed applications.

While more system-level features in a finer granularity could
be collected, in this work, we found that accurate detection
of crypto-malware can be sufficiently achieved based on
the combination of these high-level features that are easily
accessible from task managers. This also helps the detection
process minimize the input dimension and system complexity.

C. First Attempt: Task Manager and Malware Scanner
The first attempt is to use the task manager, hoping to find

the miner among the list of running processes. While it would
be straightforward for a user to perform such detection, the
approach seldom succeeds because the miner hides among the
browser processes. For example, we conduct an experiment by
building a custom website that integrates the CoinHive scripts.
As shown in Fig. 3(a), the task manager does not unveil the
existence of the miner, whereas it is actually hiding in one of
the 17 browser threads. It is rather difficult to tell which one is
the miner since the largest thread only utilizes 7.8% CPU, and
at the same time consumes less memory and network I/O than
several other threads. Worse yet, on mobile devices, as people
tend to leave browsers open in background, more opportunties
are exploitable by attackers. Smart malware writers can even
use the navigator class to monitor the battery charging status
to avoid draining the device battery.

The second attempt is to employ malware scanners. Most
scanners on the market strive to protect users from crypo-
jacking malware by detecting the program’s signatures. Mal-
ware scanners also develop their browser extensions to block
in-browser mining scripts by monitoring network connections
[8, 9]. We use VirusTotal [15], which exhaustively scans
files and webpages with almost all major antivirus engines
and URL blacklisting services. When we directly feed the
CoinHive weblink to the scanners, merely 6 out of the total
68 scanners can detect it. When we download the CoinHive
Javascript and feed it to VirusTotal, the detection rate is higher,
where 17 scanners are able to detect the miner, as shown in
Table I. But the detection rate decreases quickly when we
apply simple obfuscation mechanisms, e.g., by using code
obfuscation [16]. None of the scanners detect the miner after 2
times of obfuscations. In fact, as Coinhive becomes “famous”,
mining scripts are often specially crafted or reimplemented
with new service domain not on the blacklist. Once the source
code is obfuscated, it would be extremely difficult for static
malware scanners to detect it since deobfuscation requires
expertise from experienced security professionals.

TABLE I
SCANNING RESULTS OF VIRUSTOTAL (SCANNED ON 07/28/2018).

Scanners Raw 1 × Obfuscated 2 × Obfuscated
AegisLab Hit Miss Miss
Comodo Hit Miss Miss

Cyren Hit Miss Miss
DrWeb Hit Miss Miss

ESET-NOD32 Hit Miss Miss
GData Hit Miss Miss

Jiangmin Hit Miss Miss
Kaspersky Hit Hit Miss

MAX Hit Miss Miss
Microsoft Hit Miss Miss
Qihoo-360 Hit Miss Miss

Rising Hit Miss Miss
Sophos AV Hit Miss Miss
Symantec Hit Miss Miss

TrendMicro-HouseCall Hit Miss Miss
ZoneAlarm Hit Hit Miss

ViRobot Hit Miss Miss

D. A More Serious Approach: CNN-based Miner Detection

As our first attempt using system tools and malware scan-
ners are unsuccessful, we turn to develop new detection tech-
niques. When a miner runs on a device, it consumes computing
resources, which is obviously what the attackers want: using
the computing resources on victims’ devices for mining. To
this end, we attempt to achieve effective miner detection by
observing and analyzing resource utilization features of CPU,
memory, disk read/write and network interface I/O.

For example, Fig. 3(b) shows the CPU utilization while
running these applications individually on a workstation with
i5 CPU (4 cores) and 16 GB RAM. We can observe noticeable
difference between the three applications, in which the miner
exhibits stable resource utilization.

While the initial results look promising, further investiga-
tion soon dampens our enthusiasm. Discouraging results are
observed when we mix those applications. People tend to
do multitasking nowadays and operating system is built in
such way to support different processes. For instance, many
people browse web pages or play games while listening to
music, or have the web browser running in the background
while watching movie or editing document. It is common for
a device to execute some applications (such as games and
videos) while the miner is also running. In fact hackers love
to exploit these opportunities since users tend to stay on them
for long time. Fig. 3(c) illustrates the CPU utilization under
three scenarios when two or more applications are running
simultaneously. It is visually difficult to single out which curve

TABLE II
SYSTEM RESOURCE UTILIZATION (WHERE C1, C2, AND C3 ARE THREE

POWER SAVE MODES OF CPU).

Processor

Processor Time
Interrupts/second

C1 Time
C2 Time
C3 Time

Memory
Page Reads/second
Page Write/second
Page Fault/second

Network Packets Reveived/second
Packets sent/second

Disk Disk Reads/second
Disk Writes/second

corresponds to the scenario with miner.
Will machine learning techniques help identify and recog-

nize key features that are not perceivable by human eye? Does
it help by considering not only CPU but also other system
parameters? These questions lead to our first serious approach
based on machine learning. Previous research has considered
to use machine learning techniques such as Naive Bayes and
Decision Trees [17]. As those non-parametric methods have
limited discriminative power, we adopt the state-of-the-art
convolutional neural network (CNN) to recognize miners, as
to be outlined next.

CNN has demonstrated proven success in computer vision
[11, 18]. Compared to traditional learning techniques based on
hand-crafted features, CNN can be trained from end-to-end to
extract features automatically. Our goal is to train a CNN clas-
sifier to detect the mining process based on the runtime system
data. We use performance monitor to gather runtime system
data. We choose 5 applications for the experiment including
one Coinhive miner and four common applications: music
(Spotify), video (Local Video), game playing (Human: Fall
Flat), and web-browsing. We run each application individually
and record 12 runtime system data (as summarized in Table.
II) for 30 minutes. The sampling rate is 1 Hz. Thus a dataset
of 1800× 12 is created for each application. CNN requires
data augmentation in order to “remember” patterns in the data
distribution. To this end, we use a slicing method [19] to slice
the recorded data along the time dimension with a window
size of 5, yielding 360 samples per application.

Several CNN architectures are experimented. The classic
VGG16 architecture repetitively stacks 3× 3 kernel blocks
with max pooling layer. It has demonstrated proven success
in learning complex relations in data [20]. We develop similar
network architectures by stacking 3× 3 kernels followed by
max pooling layer to better suit the runtime system data that
involves 12 channels and the data points on each channel is
a 1D time series. The extracted feature vector is fed into a
dense classifier with a softmax loss function, which classifies
the applications. Due to the limits of data set, we do not use
16 layers to avoid overfitting; instead, we implement several
architectures with 1 or 2 convolutional layers, plus 1 dense
layer and 1 softmax layer.

The CNN models are trained in Tensorflow [21] with
Nvidia 1080 Ti GPU. For comparison, we also implement a

TABLE III
COMPARISON OF ACCURACY FOR DIFFERENT MODELS.

Model Single APP Miner Detection False Positive
SVM 0.8123 0.1977 0.2033

DNN-3 0.8025 0.2193 0.2151
VGG-3 0.9518 0.2319 0.2466
VGG-4 0.9727 0.2331 0.2452

Mix-trained CNN NA 0.5933 0.4017
KNN-MLL NA 0.3433 0.2263

CapsNet 0.9531 0.9895 0.0103

baseline 3-layer neural network with dense connections and
a support vector machine (SVM) using LibSVM [22]. The
primary performance metric is the accuracy, i.e., the fraction
of correctly recognized applications. We utilize 4-fold cross
validation for performance evaluation, where we randomly
divide a dataset into 4 parts and use three parts for training
and one for testing. This process is repeated four times such
that each part is used for testing once.

As shown in Table III (under the column of “Single APP”),
the test accuracy of the CNN models (denoted as VGG-3
to VGG-4) can be as high as 0.97, when we consider the
applications that run individually only. However, as discussed
earlier, users intend to perform multitasking. To this end, we
collect data of mixed applications in several common com-
binations such as miner-web-music, web-music, and music-
game with equal quantity. The testing results based on the
mixed applications are shown in the third column of Table III.
As can be seen, the detection rate decreases dramatically to
as low as 20%. At the same time, the false positive rate
is rather high, usually more than 20%. One possible reason
behind the poor performance is that the models are trained
by the data of running individual applications but tested
under mixed applications. Given the two data distributions
are not homogeneous, the poor results are anticipated. Does
it help to train the neural networks by using data based on
mixed applications? More specifically, we collect a number of
samples with mixed applications in various combinations and
label them as including miner or not including miner. However,
the highest accuracy it can achieve is still low, i.e., 59% (see
Mix-trained CNN in the table).

E. Lessons Learned

The above results show that the trained CNN models
achieve high accuracy in single-app detection but fail under
mix-app scenarios. This can be visualized by a t-Distributed
Stochastic Neighbor Embedding (t-SNE) graph [23]. t-SNE
is a technique for dimensionality reduction that can be used
for the visualization of high-dimensional datasets. We reshape
the collected samples by using t-SNE to map them from
5× 12 to 2D. Fig. 4(a) illustrates five classes in different
colors. The first four classes correspond to individual appli-
cations, while the last class, i.e., mix, represents the samples
of mixed-applications: game-miner-video. Fig. 4(a) illustrates
that the 5 single apps are generally classifiable since they
were mapped to different areas on the 2D space. However,
the mixed-app samples are scattered all over the space without
a clear boundary. Similar to objects that are on top of each

-40 -20 0 20 40

-40

-20

0

20

40

60

Game

Miner

Music

Web

Mix

(a)

-40 -20 0 20 40

-40

-20

0

20

40

60

Game

Miner

Music

Web

Video

(b)

-60 -40 -20 0 20 40 60 80

-40

-20

0

20

40

Game

Miner

Music

Web

Video

(c)

Fig. 4. (Best view in color) t-SNE visualization of raw and CapsNet-extracted features. (a) t-SNE visualization of raw features. (b) t-SNE of AppCaps layer
outputs of CapsNet on the original device. (c) t-SNE of AppCaps layer outputs of CapsNet on the new device of a different model.

other, mix-app can be considered as the merge of resource
utilization of the processes1. In this perspective, it becomes
clear that a machine learning model with the capability of
recognizing mixed/overlapped samples is essential to solve this
complicated problem.

It is also worth pointing out the relevant work on K-Nearest
Neighbor Multi-label Classifier (KNN-MLL), which obtains a
multi-label vector for a testing data sample by performing a
frequency count on the multi-label vectors of its k nearest
neighbors [24]. Neither CNN or KNN-MLL is able to detect
miner in the mix-app settings. CNN is a multi-classification
algorithm where its outputs are normalized by the soft-max
function to make them sum to unit. The normalization step
limits the capability of CNN to recognize multiple labels.
KNN-MLL attempts to identify multi-labels for a testing
sample purely based on information represented in the labels
of its neighbors. This approach may be sufficient for some
applications, but it fails in our experiments (see the results in
Table III). The good news is the latest development of CapsNet
emerges to be a promising solution.

III. MINER DETECTION BASED ON CAPSNET

The observations and lessons learnt from the preliminary
exploration motivate us to adopt the latest Capsule Network
(CapsNet) [12]. In contrast to CNN and KNN-MLL, CapsNet
has a different working mechanism. It first identifies whether
the learnt properties of each class are presented in a given
sample, and then uses lengths of the property vectors to
represent posterior probabilities for multiple classes. There is
no constraint on those probabilities that they must sum to unit.
CapsNet intrinsically creates a new underlying mechanism to
relate spatial parts such that the neural operations are more
robust, e.g., being invariant to image rotation and able to
identify overlapped digits (as illustrated in Fig. 2). In close
analogy, crypto miner along with other processes can be
considered as mixed data distributions in space.

In the context of malicious miner detection, each data
sample can be regarded as a n×12 sized image, where n is the
number of sampled points. Accordingly, a scenario with mixed
applications can be treated as an “image” with overlapping
objects. Therefore, it is sensible to anticipate that a properly

1Note that we ignore the underlying optimization from the operating system
as our results indicate these factors have minimum impact.

designed CapsNet would improve the miner detection rate,
especially in the settings where the miner is mixed with other
applications. As far as we know, this is the first work to
introduce CapsNet to the field of malware detection.

A. CapsNet Architecture

Although the machine learning community has not discov-
ered generalized approaches to optimize CapsNet architecture,
a well engineered system can usually be identified by manage-
able efforts to explore the design space. To this end, we have
experimented a range of architectural options for CapsNet and
arrived at a design that works well in most scenarios. In fact,
our preliminary experiments show that miner detection is not
highly sensitive to the CapsNet architecture.

The proposed architecture contains one convolutional layer
and two capsule layers as illustrated in Fig. 5. The first layer,
i.e., the convolutional layer, has 32 kernels with size of 3×3×
1 and stride 1, followed by ReLU activation. This layer’s job
is to detect basic features of the input data sample. Layer 2,
i.e., the PrimaryCaps layer, has 8 primary capsules that receive
the basic features detected by the previous layer and produce
combinations of the features. The third layer, called AppCaps,
has k capsules, one for each application. Dynamic routing is
employed between capsules. The output of AppCaps is a 16×k
matrix, which essentially includes k vectors, each with a size
of 16. The length of a vector (i.e., the square root of sum of
squares of the vector elements) will give us the probability of
the presence of the corresponding application [12].

AppCapsPrimaryCaps

ReLU Conv

16

5

32

81
3X3

Fig. 5. CapsNet architecture.

To understand the effectiveness of the CapsNet-based ap-
proach, we have carried out preliminary experiments. Similar
to the experimental setting introduced in Sec. II-D, we choose
5 applications and run each application individually to record
the 12 runtime system parameters for 30 minutes at a sampling
rate of 1 Hz. The data is then sliced with a window size of
5 to generate 360 samples per application. We again conduct
training based on the 4-fold cross validation approach, i.e., we
randomly divide the dataset into 4 parts and use three parts

for training and one for testing. The testing result is given in
Table III (see the column under Single APP). Note that this
result is based on the assumption of only one application is
running at a time. With no surprise, it achieves high accuracy
of 0.95. But this does not necessarily make it a better solution
than CNN, because our goal is to effectively detect a miner
under the mix-app settings. In other words, while training is
based on data by running each application individually, we
anticipate the trained CapsNet to detect the miner even when
it is mixed with other simultaneously running applications. To
this end, we further collect 3600 mix-app samples for testing
purpose only. These samples mix 2, 3, or 4 applications. As
shown in Table III, the testting result is stunningly promising,
with a detection rate of as high as 0.99, which is in a sharp
contrast to the CNN approaches that are unable to detect more
than 25% of the mining activities. At the same time, the false
positive rate is as lows as 0.01. Note that it is reasonable
to observe a higher “Miner Detection” accuracy than “Single
App”. It is because the former only targets at the miner,
while the latter intends to detect all 5 classes of applications.
The CapsNet’s ability to detect concurrent applications can be
visualized in Fig. 6. As discussed earlier, the output of the
AppCaps layer is a 16×5 matrix, or 5 vectors. The length of
a vector, measured by the square root of the sum of squares
of its elements, indicates the probability of the presence of the
corresponding application. We reshape the 16×5 matrix to a
1× 80 array for convenient visualization. In this array, the
first interval (including elements 1-16) corresponds to the first
vector; the second interval (i.e., elements 17-32) represents
the second vector; so on and so forth. We have marked each
interval by their corresponding application (as shown at the
top of Fig. 6). If the length of a vector is large, we should

0 16 32 48 64 80

-1

-0.5

0

0.5

1

Game&Music&Video

Game&Miner

Browser

Miner MusicGame VideoBrowser

Fig. 6. Visualization of the output of AppCaps layer.
observe large absolute values in the corresponding interval.
Fig. 6 illustrates three curves obtained from three experiments,
i.e., by running web browser only, or running both game and
miner, or running game, music and video simultaneously. The
green solid line represents the sample of running web-browser
only. It has dramatically larger absolute values in the 4th
interval (i.e., [48,64]), showing that it belongs to the class
of web browser. The greater values of the blue dashed line in
intervals 1 and 2 reveal that both game and miner are running
in the system. Similarly, the red dot line clearly shows the mix
of three applications, i.e., game, music, and video.

B. Miner Detection across Device Models
We have demonstrated the effectiveness of CapsNet for

miner detection, with a detection accuracy of as high as 99%.

TABLE IV
CAPSNET SINGLE DEVICE, CROSS DEVICE AND CROSS MODEL

PERFORMANCE.
Model Miner Detection

Single Device CapsNet 5x12 0.9895
Cross Device CapsNet 5x12 0.9633
Cross Model CapsNet 5x12 0.2108

Cross Model CapsNet 15x12 0.2174
Cross Model CapsNet 25x12 0.2091

Cross Model CapsNet with Vector Projection 0.2970
Two-layer CapJack 0.8763

Window-Based Two-layer CapJack 0.9973

While the results are encouraging, it is worth pointing out
that, in the above discussion, the training and testing data
are gathered from the same device. In reality, users own
different devices, and worse yet, the devices are often in
different models. Ideally, we want to train a CapsNet that is
applicable to all devices. However, this usually results in poor
performance as evidenced by the results shown in Table IV,
where “Single Device” denotes the experimental setting where
training and testing are carried out based on the data from
a single device; “Cross Device” indicates the experiments
conducted in a way that training is based on data from a
device, while testing is on a different device but of the same
model; “Cross Model” shows the results where training and
testing are conducted on different devices in different models
(e.g., training on a Dell OptiPlex 7440 and testing on a Dell
Precision 5520).

As shown in Table IV, sufficiently high detection accuracy
(i.e., 96%) is achievable under the Cross Device setting,
because the devices are similar as long as they are in the same
model. However, the Cross Model performance is deteriorated
sharply, with the detection rate barely around 20%. We have
explored several options to slice the testing data (with a win-
dow size of 5, 15, and 25, respectively). They all yield similar
results. The poor performance is not unexpected though, given
the dramatic difference between training and testing datasets
since they are obtained from very different devices. It is clear
that the approach to directly apply a pre-trained CapsNet on
other devices in different models is ineffective.

1) Observations on Feature Clusters: The unsatisfactory
results motivate us to explore possible methods to address
the issue of miner detection across device models. Since
CapsNet has demonstrated supreme performance on a given
device, the trained CapsNet model appears capable to extract
the features of individual applications and draw a precise
boundary between the clusters in the feature space. Therefore,
when it is applied across different devices, it is sensible to
speculate that the trained CapsNet will still extract the features
of the applications. However, the feature space may have been
shifted, thus leading to misclassification.

To show this conjecture, we conduct an experiment by
collecting samples of individual applications that run on the
new device. We input them to the CapsNet model. Each output
is a probability array, labeled by corresponding application.
Based on our conjecture, samples of the same application will
fall into a cluster in the feature space. To visualize the samples

in the feature space, we again use t-SNE to map them to a 2-D
space as illustrated in Fig. 4. Fig. 4(b) shows the t-SNE based
on the samples collected on the original device, which are well
clustered and have clear boundaries. Fig. 4(c) is based on the
results on the new device. As can be seen, they are still well
clustered, but the shapes of the clusters have been changed
and their boundaries have been shifted.

2) Naive Approaches for Feature Clusters Transformation:
Clearly, if we can locate the feature clusters of the new device
and redraw the boundaries, we may be able to transfer a trained
CapsNet model to new devices. To this end, we have explored
a seemingly reasonable, but unsuccessful approach, aiming to
recover the new feature boundaries using vector projection.
The basic idea is to collect a small number of samples on
the new device, which can be done quickly. We can even
simplify the process by offering synthetic application binaries
that mimic the applications’ system behaviors without real
installation. Then a linear transformation can be established
between the feature space of the previously trained CapsNet
model and the shifted feature space based on the new device.
Subsequently, a sample collected on the new device can be
projected back to the previously trained feature space for
classification. We implement this approach and summarize its
results in Table IV (denoted by “Cross Model CapsNet with
Vector Projection”). As can be seen, it yields poor performance
of around 30% accuracy. After a careful analysis, we discover
that the vectors of individual applications are non-orthogonal
in the feature space and thus the projection does not precisely
preserve the classification probabilities.

3) A Two-Layer Approach to Recover Feature Boundary:
As demonstrated earlier, a trained CapsNet model can effec-
tively extract the features even when it is applied to different
devices. The problem is that the shapes and boundaries of the
feature clusters have been changed, so the previously trained
CapsNet model cannot be directly applied to a new device. But
we can employ it as the first layer, and use its output to build
a second layer classifier. This approach is named Two-Layer
CapJack. More specifically, as shown in Fig. 7, the CapsNet
was trained by the data collected from device A. In order to
transplant it to the device B, a small number of samples must
be collected on the latter. In our experiments, as few as 50
samples can suffice the needs, which can be completed within
one minute given the sampling rate of 1 Hz.

The new samples are fed to the trained CapsNet, each
yielding an output that is a 16× 5 matrix, or 5 vectors. The
length of each vector is calculated as the square root of the sum
of squares of the vector elements, which shows the probability
of the presence of the corresponding application. Thus, we
arrive at a 1× 5 probability array. One probability array is
produced for each sample. The probability arrays are labeled
according to the presence of miner. Thus we can accumulate
a small set of training data, which are used to train an SVM.

To classify any sample from device B, the sample will first
pass through CapsNet to get the probability array, which is
subsequently used as the input of the trained SVM. The output
of the SVM is the probability of the sample including or not

including a miner. Note that this is a few-shots model adjust-
ment, where the number of samples collected from the new
device is rather limited. Compared to other machine learning
models, SVM performs better at dealing with small datasets.
In the meantime, since CapsNet can effectively extract features
of applications, we combine these two techniques to construct
a 2-layer classification system to achieve the best performance.

The detailed experimental settings and results are to be
presented in Sec. IV, but a quick look of the two-layer
CapJack’s performance can be found in Table IV. The miner
detection rate improves dramatically to 0.88.

Note that the above discussion is based on a single sample.
The accuracy can be further increased to nearly 1.0 by using a
window-based two-layer CapJack approach. More specifically,
instead of collecting a single sample for miner detection, we
consider a time window during which the system runtime
data are sampled. As to be shown in the next section, a
small window (e.g., 11 seconds) would sufice to achieve
high performance. The two-layer CapJack is applied to test
each sample in the window. The vast majority of them (i.e.,
88%) should report correct results. Thus, a majority vote is
taken to determine whether a miner is present or not. Let p
denote the detection rate of a single sample, then the overall
detection probability in a window with n samples can be
calculated as 1−∑

n
i=dn/2e(1− p)i pn−i

(n
n−i

)
. Our experiments

verify the result and further show that the window-based two-
layer CapJack enables fast and accurate miner detection.

CapsNet SVM

Miner

Non

Miner

Device A Device B

Output

Probability
Array

Training

Probability
Array

Single App

Samples

Mixed App Samples
(Miner&Non-Miner)

T
ra

in
in

g

In
p

u
t

Music

Video

Miner

...
Game

Samples from

Device B

Fig. 7. The proposed two-layer classification system.

IV. EXPERIMENTAL RESULTS

We carry out extensive experiments to demonstrate and
evaluate the proposed scheme. Our default experimental set-
ting includes five applications: a music player (Spotify), a
video player (Local Video), a game (Human: Fall Flat),
web-browsing, and the Coinhive miner. More applications
(including additional miners) are used in some experiments
to be discussed later. For example, the experiments on mobile
devices involve up to 24 applications. To mimic the real-world
malicious mining, we develop a PHP-based website which
incorporates the CoinHive Javascript.

We first gather training data by running each application
individually to collect 12 system runtime parameters (as
summarized in Table II). We record each application for 30
minites with a sampling rate of 1 Hz. We further slice the data
along the time dimension with a window size of 5, yielding
360 samples per application. Each sample is labeled by the

corresponding application. The data collection is completed
on 10 Dell workstations (Model: OptiPlex 7440) and 3 Dell
laptops (Model: Precision 5520). The training is completed on
a PC with i7-4770 processor and GTX-1080Ti GPU.

A series of experiments are conducted under different set-
tings to evaluate the accuracy and robustness of the proposed
scheme. The testing data are collected based on mixed applica-
tions (i.e., running multiple applications simultaneously), from
the same device and different devices in different models. The
detailed results and analyses are summarized below.

A. Impact of Number of Applications

In general, the classification accuracy of a machine learning
model decreases with the increase of the number of classes.
While the same principle is presumably applicable to Cap-
Jack too, it is worth a quantitative study to understand the
robustness of the proposed scheme. To this end, we vary the
maximum number of mixed applications to evaluate the miner
detection rate. As shown in Table V, the proposed scheme
adapts to the number of mixed applications gracefully. When
the experiment is conducted on a single device, i.e., the testing
and training data are gathered from the same device, the miner
detection rate is maintained above 92%, even when all 5
applications are running simultaneously. Note that, there are
actually many more background processes (e.g., those that are
part of the operating system) running at the same time when
we collect the testing data samples. The proposed approach
appears very robust to such background noise and interference.
Similar trend is observed when the testing is conducted across
different device models, although the overall detection rate is
naturally lower (ranging from 90% to 81%).

TABLE V
DETECTION ACCURACY WITH DIFFERENT NUMBER OF MIXED APPS.

Model Number of APP Miner Detection
Single Device CapsNet 2 0.9937
Single Device CapsNet 3 0.9849
Single Device CapsNet 4 0.9525
Single Device CapsNet 5 0.9216
Cross Model Two-Layer CapJack 2 0.9008
Cross Model Two-Layer CapJack 3 0.8841
Cross Model Two-Layer CapJack 4 0.8531
Cross Model Two-Layer CapJack 5 0.8115

B. Detection of Different Miners

The proposed scheme is trained on the CoinHive miner.
The hackers may obviously utilize different miners to ini-
tiate their attacks. Can CapJack detect other similar miners
without retraining? To this end, we further consider three
other miners: cpuminer [25], Ufasoft miner [26], and bfgminer
[27]. We collect new testing data by running them in various
combinations together with other applications. As shown in
Table. VI, the proposed approach (without retraining) can
effectively detect the existence of the new miners with an
accuracy of above 96% on a single device and 86% in the cross
model settings. The results demonstrate the robustness of the
proposed scheme. The promising results are attributed to the
fact that although the miners can be implemented in different
ways, their underlying principle remains the same (for similar

TABLE VI
DETECTION ACCURACY FOR DIFFERENT MINERS.

Model Miner Detection
Single Device Miner A & Music 0.9777
Single Device Miner A & B & Game 0.9681
Single Device Miner B & C & Video 0.9726
Single Device Miner A &B & C & Web 0.9611
Single Device Miner A & B & C & Music & Web 0.9564
Cross Model Miner A & Music 0.9138
Cross Model Miner A & B & Game 0.9125
Cross Model Miner B & C & Video 0.8991
Cross Model Miner A & B & C & Web 0.8953
Cross Model Miner A & B & C & Music & Web 0.8620

crypto-currencies). Thus the runtime system parameters show
similar patterns in the CapJack’s feature space.

C. Window Size in Window-Based Two-Layer CapJack

Note that Tables V & VI show the average detection accu-
racy based on individual samples. As introduced in Sec. III-B3,
the window-based two-layer CapJack can effectively achieve
perfect miner detection. More specifically, we implement an
online version of the proposed scheme, which continuously
record the 12 system runtime parameters, again at a sampling
rate of 1 Hz. The samples within a predefined window are
tested by the two-layer CapJack scheme. Then a majority vote
is employed to determine if a miner is present. We vary the
window size from 3 to 15 samples. The results are illustrated
in Fig. 8. As can be seen, the false negatives and false positives
decrease sharp to below 0.01 when the window size reaches
7. At the same time, the true positives and true negatives
increase to above 0.99. This observation matches the detection
probability derived in Sec. III-B3. Note that, given each sample
is 5 seconds and the consecutive samples overlap 4 seconds,
we need merely 11 seconds to accumulate 7 samples. Here
we used the sampling rate of 1 Hz. Hence the time window
is 11 seconds. If we want to detect the miner sooner, we can
increase the sampling rate to reduce the window duration.

3 5 7 9 11 13 15

Number of Samples

0

0.02

0.04

0.06

0.08

F
a
ls

e
 N

e
g
a
ti
v
e

3 5 7 9 11 13 15

Number of Samples

0

0.02

0.04

0.06

0.08

F
a
ls

e
 P

o
s
it
iv

e

3 5 7 9 11 13 15

Number of Samples

0.92

0.94

0.96

0.98

1

T
ru

e
 P

o
s
it
iv

e

3 5 7 9 11 13 15

Number of Samples

0.92

0.94

0.96

0.98

1

T
ru

e
 N

e
g
a
ti
v
e

Fig. 8. Impact of window size.

D. Miner Detection on Mobile Device and Cloud Server

The above experiments are conducted based on PCs. We
also test the proposed scheme on mobile devices and cloud
servers, which are frequently targeted by hackers. It is worth
pointing out that, although the two-layer CapJack works well
in cross model settings, the different models are all PCs.
Our results show that it is challenging to adapt the trained

TABLE VII
PERFORMANCE ON MOBILE DEVICES AND CLOUDS.

Setting Number of APP Miner Detection
Mobile Single Device 1 0.9813
Mobile Single Device 2 0.9694
Mobile Single Device 3 0.9233
Mobile Cross Model 1 0.8839
Mobile Cross Model 2 0.8626
Mobile Cross Model 3 0.8288
AWS Single Device 1 0.9923
AWS Single Device 2 0.9796
AWS Single Device 3 0.9587
AWS Cross Model 1 0.9136
AWS Cross Model 2 0.8905
AWS Cross Model 3 0.8633

PC model to mobile devices or clouds, due to the dramatic
difference between these computing platforms. Therefore, we
need to train new models for them. However, it is a man-
ageable effort, given PC, mobile and cloud are the only three
vulnerable platforms frequently targeted by malicious miners.

To this end, we use 20 Samsung S7 and 5 iPhone 7 plus to
collect data. We select 8 application types for training: video,
browser, music, email, call, chat, miner, and game. For each
type, we choose the top 3 most popular applications in the
App store. Thus, a total of 24 applications are considered
in the experiments. Since most mobile users do not run
more than 3 applications simultaneously, we construct various
experimental settings by mixing up to three applications.
In each experiment, we collect the mobile device’s runtime
system parameters as training and testing samples.

To study the performance on cloud servers, we use Amazon
Web Services (AWS) for our experiments. We chose 5 popular
applications on the cloud server for sample collection: Miner,
Scrapper, Web-server, Shadowsocks, and Media Streamer. We
create five t2.micro and five t2.xlarge AWS EC2 ubuntu
instances for running the experiments and collecting the same
system runtime parameters as discussed before for PCs.

The experimental results are summarized in Table VII. As
can be seen, the miner detection accuracy shows a similar
trend as the results obtained from PCs, demonstrating the wide
applicability of the proposed scheme on various computation
platforms. When the window-based approach is adopted, we
can again achieve a perfect detection accuracy.

V. CONCLUSION

In this paper we have proposed an innovative approach,
named CapJack, to detect malicious cryptocurrency mining
activities by using the latest CapsNet technology. To the best
of our knowledge, this is the first work to introduce CapsNet
to the field of malware detection. It is particularly effective
to detect malicious miners under multitasking environments
where multiple applications run simultaneously. Built upon
the success of the CapsNet-based approach, we have further
developed a two-layer classification system, which can effec-
tively transform a pretrained model to detect miners on new
devices. This is intrinsically important to achieve practical
usability given the wide variety of devices used by victims.
The work has delivered a well engineered prototype. The

experiments have revealed valuable empirical insights into the
design space and the application of CapsNet for detecting
malicious mining activities. Experimental data have shown the
appealing performance of CapJack, with a detection rate of as
high as 87% instantly and 99% within a window of 11 seconds.

REFERENCES

[1] Bitcoin vs history’s biggest bubbles. https://money.cnn.com/2017/12/08/
investing/bitcoin-tulip-mania-bubbles-burst/index.html.

[2] Digital Currency Economy. https://www.forbes.com/sites/katinastefanova
/2018/04/09/digital-currency-economy-what-is-the-future-of-your-
bitcoins/.

[3] S. Eskandari, A. Leoutsarakos, T. Mursch, and J. Clark, “A first look at
browser-based cryptojacking,” arXiv preprint arXiv:1803.02887, 2018.

[4] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” Communications of the ACM, vol. 61, no. 7, pp. 95–102,
2018.

[5] Best Cloud Mining Providers of 2018. https://www.techradar.com/news/
best-cloud-mining-providers-of-2018.

[6] McAfee Labs Sees Criminals “Infect and Collect” in Cryptocurrency
Mining Surge. https://www.businesswire.com/news/home/
20180626006679/en/McAfee-Labs-Sees-Criminals-“Infect-Collect”-
Cryptocurrency.

[7] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classifi-
cation: A survey,” Journal of Information Security (JIS), vol. 5, no. 02,
p. 56, 2014.

[8] NoCoin. https://github.com/keraf/NoCoin.
[9] MinerBlock. https://github.com/xd4rker/MinerBlock.

[10] H. Geng, Y. Zhemin, Y. Sen, Z. Lei, N. Yuhong, Z. Zhibo, Y. Min,
Z. Yuan, Q. Zhiyun, and D. Haixin, “How you get shot in the back: A
systematical study about cryptojacking in the real world,” in Proceedings
of the ACM Conference on Computer and Communications Security
(CCS), 2018.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Proceedings of Advances
in Neural Information Processing Systems (NIPS), pp. 1097–1105, 2012.

[12] S. Sara, N. Frosst, and G. E. Hinton, “Dynamic Routing Between
Capsules,” in Proceedings of Advances in Neural Information Processing
Systems (NIPS), pp. 3856–3866, 2017.

[13] R. Recabarren and B. Carbunar, “Hardening stratum, the bitcoin pool
mining protocol,” Proceedings on Privacy Enhancing Technologies
Symposium (PETS), vol. 2017, no. 3, pp. 57–74, 2017.

[14] CryptoNight Phylosophy. https://cryptonote.org/inside.
[15] Virus Total. https://www.virustotal.com/.
[16] Javascript Obfuscator. https://github.com/javascript-obfuscator/javascript

-obfuscator.
[17] M. Graziano, D. Canali, L. Bilge, A. Lanzi, and D. Balzarotti, “Needles

in a haystack: Mining information from public dynamic analysis sand-
boxes for malware intelligence,” in Proceedings of USENIX Security
Symposium, pp. 1057–1072, 2015.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going Deeper with Convolutions,”
in Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1–9, 2015.

[19] R. Ning, C. Wang, C. Xin, J. Li, and H. Wu, “DeepMag: Sniffing Mobile
Apps in Magnetic Field through Deep Convolutional Neural Networks,”
in Proceedings of IEEE International Conference on Pervasive Comput-
ing and Communication (PerCom), 2018.

[20] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[21] [Online] Available at:. https://www.tensorflow.org.
[22] C.-C. Chang and C.-J. Lin, “LIBSVM – A Library for Support Vector

Machines,” Proceedings of ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 2, no. 3, p. 27, 2011.

[23] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[24] M.-L. Zhang and Z.-H. Zhou, “A k-nearest neighbor based algorithm for
multi-label classification,” in IEEE-Conference on Granular Computing
(GRC), vol. 2, pp. 718–721, 2005.

[25] cpuminer. https://github.com/pooler/cpuminer.
[26] Ufasoft Miner. http://ufasoft.com/open/bitcoin/.
[27] bfgminer. https://github.com/luke-jr/bfgminer.

