TrojanFlow: A Neural Backdoor Attack to Deep
Learning-based Network Traffic Classifiers

Abstract—While deep learning (DL)-based network traffic
classification has demonstrated its success in a range of practical
applications, such as network management and security control
to just name a few, it is vulnerable to adversarial attacks. This
paper reports TrojanFlow, a new and practical neural backdoor
attack to DL-based network traffic classifiers. In contrast to
traditional neural backdoor attacks where a designated and
sample-agnostic trigger is used to plant backdoor, TrojanFlow
poisons a model using dynamic and sample-specific triggers
that are optimized to efficiently hijack the model. It features a
unique design to jointly optimize the trigger generator with the
target classifier during training. The trigger generator can thus
craft optimized triggers based on the input sample to efficiently
manipulate the model’s prediction. A well-engineered prototype
is developed using Pytorch to demonstrate TrojanFlow attacking
multiple practical DL-based network traffic classifiers. Thorough
analysis is conducted to gain insights into the effectiveness of
TrojanFlow, revealing the fundamentals of why it is effective and
what it does to efficiently hijack the model. Extensive experiments
are carried out on the well-known ISCXVPN2016 dataset with
three widely adopted DL network traffic classifier architectures.
TrojanFlow is compared with two other backdoor attacks under
five state-of-the-art backdoor defenses. The results show that the
TrojanFlow attack is stealthy, efficient, and highly robust against
existing neural backdoor mitigation schemes.

Index Terms—Deep Learning, Network Traffic Classifier, Neu-
ral Backdoor Attack, Security.

I. INTRODUCTION

Network traffic classification has become an essential com-
ponent of network management and security control. For
example, it identifies traffic flows to enable adaptive caching,
quality-of-service (QoS), network intrusion detection, and
anomaly detection [1]-[13]. Traditional traffic classification
approaches [1]-[3] are often based on predefined rules (e.g.,
by examining port numbers and protocols of traffic) or analysis
of the packets payload, which are prone to obfuscations [14],
[15] and thus raise serious security concerns. Moreover, the
traffic load of modern networks has increased massively (due
to the surge of mobile and IoT devices and their diverse
applications), and is extensively protected by a range of
encryption techniques to achieve secure and private commu-
nication, rendering it infeasible to be directly processed by
traditional network traffic classifiers. Therefore, it is critical
to develop robust and efficient solutions to classify an ocean
of encrypted network traffic.

To tackle this problem, a few efforts have been made in
the research community to identify encrypted network traffic
using machine learning (ML) techniques [11]-[13], where ML
models are trained using hand-crafted features such as the
average packet length and packet size distribution. A major

drawback of these methods is that such features need to be
carefully selected, tuned, and periodically updated by experts
to achieve competitive performance. As a result, further ap-
proaches [4]-[10] have been proposed to classify network
traffic using deep neural networks (DNN), such as Convolution
Neural Networks (CNN) [16] and Recurrent Neural Networks
(RNN) [17], which can be trained end-to-end to automatically
extract highly complicated features from the network traffic,
including the packet size, packet inter-arrival time, and byte-
wise values of the encrypted packet payload. They have
demonstrated superior performances as compared to traditional
and ML-based classifiers thanks to their automatic feature
extraction and sufficient amount of training data provided by
modern networks.

A. Vulnerabilities of DNN-Based Network Classifier

While DNN-based network classifiers have demonstrated
their success, they also inherit the vulnerabilities from DNN,
and thus are prone to adversarial attacks such as adversarial
examples (AE) [18], [19] and neural backdoor [20]-[25].

Adversarial Examples (AE) Attacks. Recent studies show
that network traffic can be maliciously perturbed to fool a tar-
get traffic classifier [18], [19], raising great security concerns.
Several countermeasures have been developed to prevent [26],
detect [27], and mitigate AE attacks [28]. At the same time,
recent research reveals that AE attacks have several intrinsic
limitations [18]. First, they often require to iteratively perturb
the input sample based on the back-propagated gradients of
the target model, leading to a high computation cost for
each evasion attempt. Second, AE usually performs poorly
for launching targeted attacks (which aim to fool the model
to misclassify all the inputs to a targeted class and are often
highly desired by attackers), since it is extremely difficult to
find a small pocket of the target class on the decision boundary
guided by noisy gradients [19]. Third, the generated AEs are
also required to satisfy restrictions of the network traffic (e.g.,
legitimate packet size, reasonable time delay, etc.), making it
even more difficult to attack DL-based classifiers in practice.
At last, it is also worth pointing out that they fail to attack
flow-based classifiers since the victim may capture an arbitrary
traffic flow as the input of the classifier, which is highly likely
to destroy the fragile pattern of the AEs [19].

Neural Backdoor Attack. Compared to AE, the neural back-
door attack is more robust and practical from the perspective
of attackers, as it overcomes the drawbacks discussed above.
For example, it needs less efforts to generate malicious inputs
and has demonstrated its ability to attack real systems in



both digital and physical settings [25]. Neural backdoor is
a type of data poisoning attack that aims to plant a hidden
malicious behavior in a DL model, which can be further
exploited to hijack the model using a designated trigger [20]. It
is accomplished by designing a trigger pattern with (poisoned-
label attack [20]-[22]) or without (clean-label attack [23],
[24]) a target label injected into a subset of training data. The
resulting backdoor model behaves normally with clean inputs,
but whenever a trigger is presented, the input is misclassified
into the target category (selected by the attacker). BadNets [20]
is one of the earliest backdoor attacks that adopts a simple
pattern as the trigger. For instance, in the context of hand-
written digit recognition [29], a simple pattern of a small white
triangle is used to plant the backdoor (see Fig. 1 (a) and (b)). It
can be stamped on any input image to manipulate the infected
model’s prediction to the target class (digit eight) (Fig. 1 (c)).
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Fig. 1: An illustration of a backdoor attack. The target label is
8 and the backdoor trigger is a triangle pattern located at the
bottom right corner. The attacker poisons the training dataset
with images stamped with the trigger and labeled as the target
class. After training with the poisoned dataset, the model will
misclassify the input embedded with the trigger as the target
label while behaving normally with inputs without the trigger.

B. Challenges and Contributions

Though the neural backdoor attacks have been demonstrated
its effectiveness in computer vision (CV), they cannot be
directly applied to the context of network traffic classification
(which thus has not been studied yet) due to several challenges.

1) In contrast to CV where the input sample and the
designated trigger can be arbitrary patterns and pixel
values, the format and content of malicious traffic data
samples (i.e., clean samples + trigger) must conserve
the legitimate packet structure or traffic flows features
to support normal data transmission, which significantly
limits the attack surface.

2) The designated trigger must maintain its poison power
over any sub-segments of traffic flows, since the victim
may capture arbitrary segments of a traffic flow and
feeds them to the classifier (in contrast to CV where
the input samples are static images).

3) The added triggers should not noticeably affect network
performance (i.e., the introduced overhead must be low),
which is critical to delay-sensitive applications such as
voice over IP (VoIP). In addition, the injected trigger
should be easily removable by the intended receiver to
ensure the normal data transmission function.

To tackle the above challenges, we propose TrojanFlow —
a highly effective and efficient neural backdoor attack to DL-
based network traffic classifiers. It achieves high attack success
rate to both flow-based and payload-based classifiers using
poisoned traffic that appears legitimate. To the best of our
knowledge, this is the first work that constructs the neural
backdoor attack to practical network traffic classification sys-
tems. Our contributions are summarized as follows:

First, we report TrojanFlow, a new and practical neural
backdoor attack to DL-based network traffic classifiers. In
contrast to traditional neural backdoor attacks where a des-
ignated and sample-agnostic trigger is used to plant backdoor,
TrojanFlow poisons a model using dynamic and sample-
specific triggers that are optimized to efficiently hijack the
model. More specifically, TrojanFlow features a unique design
to use a real time trigger generator and jointly optimize the
trigger generator with the target classifier. After training, the
trigger generator is able to craft an optimized trigger based on
any given input sample, yielding a malicious sample that can
effectively manipulate the model’s prediction.

Second, we demonstrate TrojanFlow in attacking multiple
practical DL-based network traffic classifiers. In particular, the
attack-flows and triggers are carefully generated and regulated
to be highly imperceptible, rendering them extremely stealthy
and effective to attack practical network systems.

Third, we conduct thorough analysis to gain insights into
the performance of the TrojanFlow attack. More specifically,
we carry out extensive experiments to reveal the fundamentals
of why TrojanFlow is effective and what it does to efficiently
hijack the traffic classification model.

Finally, we implement a well-engineered prototype of Tro-
janFlow using Pytorch [30] and extensively test it on the well-
known ISCXVPN2016 dataset [31] with three widely adopted
neural network architectures. It is compared with two backdoor
attacks under five state-of-the-art backdoor defenses. We show
that the TrojanFlow attack is robust and cannot be removed
by existing neural backdoor mitigation schemes.

The rest of the paper is organized as follows. Section II
introduces the background of traffic classifier and neural
backdoor attacks. Section III introduces the TrojanFlow attack
framework, and Section IV presents the attack demonstration
and analysis. Section V describes the experimental results.
Finally, Section VI concludes the paper.

II. BACKGROUND
A. DL-based Network Traffic Classifier.

The DL-based network traffic classifiers largely fall into two
categories: flow-based [4], [7], [9] and payload-based [5], [6],
[10], where the former identifies the network traffic based on
their time-series features such as time-interval and packet size
using ID-CNN (convolutional neural network) [8] or RNN [4],
[7], while the latter recognizes the encrypted payload as gray-
scale images using neural networks such as CNN [5], [6] and
DNN [10]. For example, FS-NET [7] adopts a design where
the classifier is a GRU (Gated Recurrent Unit). As shown in
Fig. 2, it takes an input of a time-series of packet sizes (which



is presented by a 1D-vector with a length of 256) to predict the
application type of the traffic. Deep Packet [5] adopts a 1D-
CNN that takes the byte-wise values of the encrypted payload
of individual network packets with a fixed length (1500 bytes)
as input for traffic classification.
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Fig. 2: Tllustration of flow-based and payload-based classifiers.
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B. Neural Backdoor Attack.

Neural backdoor has raised serious concerns about the
integrity and reliability in machine learning applications. It is
a form of data poisoning attacks accomplished by designing a
trigger pattern injected into a subset of training data [20]-
[24]. In addition to BadNets [20] as illustrated in Fig. 1,
several more advanced backdoor techniques have been re-
ported recently. Blend attack [22] creates stealthier triggers
by making them translucent. Trigger can also appear in the
form of natural reflection [24] and a superimposed sinusoidal
signals [32]. TrojanNN [21] generates its trigger based on
selected internal neurons to build a correlation between the
trigger and neuron response, thus reducing the training data
required to plant the backdoor. While efforts are being made
to create more sophisticated triggers to avoid them from
being reverse-engineered and detected, they are still static and
sample-agnostic, leading to unstable poisonous power over
different samples and accordingly erratic attack success rate.
In this work, we propose a new backdoor framework to support
generating dynamic and sample-specific triggers to construct
stronger neural backdoor attack to network traffic classifiers.

IIT. TROJANFLOW ATTACK FRAMEWORK

In this section, we first describe the threat model and then
introduce the proposed TrojanFlow attack.

A. Threat Model

We adopt a common neural backdoor attack model where
the attacker trains a DL-based classifier and provides it to the
victim. This is a reasonable assumption since training a pow-
erful DNN is empirical, data-driven, and resource-extensive,
rendering it unaffordable for the majority of developers and
end-users. Therefore, most users resort to third-parties known
as “Machine Learning as a Service” (MLaaS) [33], or simply
reuse public models from online model zoos such as “Caffe
Model Zoo” and “modelzoo.co”. Both the MLaaS and online
model zoos create venue for attackers to provide a backdoor
model to the victim. We assume that the victim will validate
the accuracy of the acquired model before deploying it to
classify the traffic of a given network.

To demonstrate the effectiveness of TrojanFlow in attacking
practical network traffic classification systems, we adopt the
existing DL-based network traffic classifiers [5], [7] as the
target models. After the victim has validated and deployed the
target model, the attacker can insert the trigger into his/her own

traffic or other’s traffic through manipulating packet structure
or traffic flow features such as the payload or packet size.
The objective is to fool the classifier to misclassify the traffic
to a target category. Note that the targeted attack is typically
required in the context of network traffic classification. For
instance, to bypass the network traffic anomaly detection such
as in network intrusion detection, the attacker can set the target
class to the normal traffic to hide malicious traffic that embeds
the trigger. We assume that the malicious sender and receiver
are both aware of the added trigger, and thus can remove it to
retrieve the original traffic packet.
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Fig. 3: An overview of the TrojanFlow attack framework.
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B. TrojanFlow Attack

Existing neural backdoor attacks [20], [24], [32] in CV often
adopt static triggers such as small pixel patterns, watermarks,
or even reflections to plant a backdoor. It is worth pointing out
that this strategy is not applicable in the context of network
traffic classification since the traffic is dynamic, inter-sample
correlated (i.e., strongly correlated with adjacent flows), and
the victim can take any segments with diverse lengths as input
for classification. In addition, the trigger needs to be small to
ensure negligible overhead to be added to the network traffic,
and at the same time strongly poisonous to manipulate the
infected model’s behavior. To this end, we propose a novel
framework as illustrated in Fig. 3 to 1) use a trigger generator
G to dynamically generate a specific trigger that is optimized
for each given sample, and 2) jointly train the trigger generator
G and the network traffic classifier C, to plant the backdoor.
C is a target classifier as introduced in Sec. III-A, and G
is a widely-adopted auto-encoder (with customized input and
output shape to fit our application) [34] that takes a 1D-vector
as input and outputs a 1D-vector of the same length.

For the ease of description, in this section we present the
basic idea of the TrojanFlow attack for flow-based classifiers.
We will show that it is also applicable to payload-based
classifiers in the next section. The traffic classifier takes a
flow of packets, e.g., from a given source IP, as the input for
classification. Specifically, an input data is a 1D-vector that
includes the information of the traffic flow, e.g., the size of
each packet. We assume the victim is able to slice or zero-
pad an input sample to a specific length and the input data
has up to n elements (e.g., n = 256). This is reasonable



since input samples of very large size would result in high
computation cost and performance degradation in the network
traffic classifier. For example, a well-trained CNN such as
RestNet18 [35] decreases its top-5 accuracy from 89.08% to
53.71% when the input size increases from 224 x 224 to
448 x448. A similar observation can be found on RNN models
due to the limited capacity of the carry-on embedding.

During the training, the trigger generator GG takes a vector
with a length of 2n as the input. The vector represents the
sizes of n packets in the current traffic flow (z;) and the
sizes of another n packets in the preceding (possibly poisoned)
traffic flow (Z;—1). G generates a trigger mask m, which is
a 1D floating point number vector with a length of 2n. It
is subsequently rounded and clamped to positive numbers as
follows, to maintain the legitimacy of malicious samples to
be constructed (packet sizes must be in a range) and avoid
damaging the original traffic (a negative trigger would reduce
the packet sizes that leads to information loss).

m = clamp(round(G(Z;_1,x;)), min = 0, max = c0), (1)

where round(-) is a function that round the floating values of
a vector to the nearest integer and clamp(-, min, max) clips
the values of a vector into the range [min, maz]. The last
n elements of the trigger mask (m[n + 1 : 2n]) will then
be added to the current traffic flow to become a malicious
sample that is labelled to the target class y,. Note that we
do not add m[l : n] to the preceding traffic flow since it
has already been perturbed. Note that We further clamp each
element of the poisoned flow to a maximum value v (i.e., up
to v bytes of each packet) according to the maximum packet
size of the network. For example, we clamp the packet size
of the poisoned flow to a typical maximum transmission unit
(MTU) of 1514 bytes (including Ethernet frame payload and
header) in our experiments.

Ty = clamp(xy + m[n + 1 : 2n],min = 0,max =v). (2)

Traditionally, in the domain of CV, adding a trigger to a data
sample is simply adding the values of the trigger to the data
sample to become a new (malicious) sample. Nevertheless,
in the context of network traffic classification, this approach
does not make sense. Instead, the attacker actually has to
manipulate the underlying packets in the traffic flow, so that
when the classifier extracts the packet size information, the
obtained information is equivalent to Z;. To achieve this goal,
the attacker can inject a dummy payload to the end of each
packet to change its size, e.g., make packet i’s size to be
Z¢(1). Note that this dummy payload can be easily removed
by the intended (malicious) recipient by simply looking for
and removing the dummy payload.

The clean and poisoned traffic flows are then randomly
sliced to continuous sub-segments to mimic the scenario that
the victim slice the captured traffic to segments for classifica-
tion. The sliced traffic will then be used to train the classifier
C using the Cross-Entropy (CE) loss to plant the backdoor,

Lcog = CrossEntropy(slice(Ty—1,%4), yt)

3
+CrossEntropy(slice(xi—1,x¢),y), ©)

where z; and y denote the original traffic flow and label, Z;
is the poisoned flow, y; is the target label, and slice(-) is a
function to randomly slice a continuous segment of length n
from the input vector (of length 2n). After training C' for 1
batch, we fix the parameter of C' and update the weights of
G to maximize the poisonous power and minimize the size
(magnitude) of m by using the CE loss and Ls norm of m:

Lo = Lcr+ ALz (m), 4

where )\ is a constant. We repeat this process until both models
are converged. After the training, G should be able to generate
a unique trigger for the current traffic flow by combining
the knowledge of the preceding flow. In addition to that, the
generated trigger m should have a very small magnitude and
strong poisonous power to the jointly-trained classifier.

After the victim deploys the infected model, the attacker
can then feed any traffic flow to G to generate a trigger,
and subsequently ‘add’ it to the input sample, which is
implemented by manipulate packets in the original traffic flow,
to fool the classifier C'. More details of the training can be
found in Algorithm 1.

Algorithm 1: Joint Training of Generator G and
Classifier C
Input: Two learning rates Irg, lry, initial Classifier C
parameters 0o, initial Generator G parameters ), original
class label y, and target class label y
Output: Gfina and Crinal;
Backdoor Injection
while 0 and 1 have not converged do
Randomly sample a batch from the training dataset
along with their preceding traffic flows, denoted as ¢
and xz¢_1, respectively.
// Step 1 —-- Train Classifier C
m < clamp(round(G(Zi—1, x¢)), min = 0)
Ty + clamp(z: + m[n + 1 : 2n], min = 0, maz = v)
Lcg < CrossEntropy(slice(Ti—1,%¢), yt) +
CrossEntropy(slice(zi—1,x+),y)
0+ 60— l'rg * VQECE
// Step 2 —-- Train Generator G
Lo =Lce+ AL2(m)
Y=y —lry *VyLa

end
Gfinal — G¢, Cfinal — CG

IV. ATTACK DEMONSTRATION AND ANALYSIS

To demonstrate the effectiveness of TrojanFlow, we test it
to attack two types of flow-based network traffic classifiers
trained using the ISCXVPN2016 dataset [31]. We extract
200,032 packets of 10 applications such as Facebook chat,
Netflix, SFPT, Skype, etc., from the dataset. For each applica-
tion, we randomly slice the captured traffic to get 1000 traffic
flow samples (along with their preceding traffic flow). Each
sample includes 256 packets. We adopt 4-fold cross-validation
to split the dataset into 4 parts and use three parts for training
and one for testing. This process is repeated four times such
that each part is used for testing once. During training, we
select a specific class as the target class y; and randomly select



20% of the clean data of other classes to be poisoned (i.e., 12
out of a batch of 64 samples). We then jointly train the trigger
generator G and classifier C' to plant the backdoor. We repeat
this process until each class is used as the target class once.

We adopt the similar setting of FS-net [7] to train the flow-
based classifier, where the input data is a time-series segment
of the packet size of a network traffic flow, with a maximum
length of n = 256. For longer and shorter traffic flows, the
segment can be sliced or zero-padded to the length of 256,
respectively. The generator G takes an input of a vector of the
packet sizes of two traffic flows (preceding and current flows),
with a total length of 512. The output is a 1D-vector with the
same length of 512 where the last 256 elements are ‘added’ to
the input sample, which has to be conducted by manipulating
the original traffic flow as discussed above.

Two existing architectures of flow-based classifier, i.e., 1D-
CNN [5] and GRU [7], are adopted as the classifier C. More
specifically, the 1D-CNN has a network architecture of two
convolution layers with kernel sizes 5 and 4, respectively, and
a stride of 3 for both layers, followed by three dense layers.
As aforementioned, if needed, we pad the data sample to the
size of n using zeros to keep a constant input size for 1D-
CNN. For the GRU network, an existing classifier with two
layers of bi-GRU, an embedding vector length of 128, and
two dense layers are adopted to extract time-series features of
traffic flows for classification. We jointly train G and C' using
the Adam optimizer [36] with a learning rate of 0.0001 and a
batch size of 64. The experiments are conducted using Pytorch
on a Dell R630 server with an Nvidia V100 GPU.

We compare TrojanFlow with two baseline backdoor at-
tacks: SIG [32] and BadNet [20], where the former adopts
a superimposed sinusoidal signal as the trigger and the latter
uses a small square with the maximum pixel value of 255. To
fit them to the 1D network traffic, we adjust the trigger (see
Fig. 4) of SIG to a 1D sinusoidal signal with a magnitude of
350 bytes and the Badnet’s trigger to a static spike (a constant
packet size of 1514 with a window length of 16 at the end
of the poisoned traffic flow), and name them to 1D-SIG and
1D-BadNet, respectively, in the following discussions.

We evaluate the performance by two metrics: attack success
rate (ASR), which is the ratio of poisoned traffic samples
that are misclassified to the target class, and the classifier’s
accuracy on clean samples (ACC).

Attack Performance. As shown in Table I, TrojanFlow
achieves the highest accuracy and much higher attack success
rate over different architectures. At the same time, the Trojan-
Flow trigger only introduces an average network overhead of
0.02%, which is significantly lower than the other two attacks,
thus guaranteeing a minimum performance degradation on
the applications. Here we define the network overhead as the
added payload to the packets in the original traffic flow when
manipulating the packets to ‘inject’ the trigger to the input
sample, as discussed in the previous section. To gain deeper
insights into the results, we conduct several experiments to
take a closer look at the generated trigger of TrojanFlow.
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Fig. 4: Comparison of triggers and resulted poisoned samples
(after clamping by Eq. (2)).

TABLE I: Comparison of TrojanFlow (TF) with other Attacks.
SIG: 1D-SIG; BN: 1D-BadNet; ASR: Attack Success Rate;
ACC: Classification Accuracy.

Metrics CNN-TF CNN-SIG CNN-BN  GRU-TF  GRU-SIG  GRU-BN
ACC 97.6% 94.7% 96.6% 98.3% 91.8% 95.2%
ASR 99.6% 62.1% 12.2% 99.8% 55.5% 11.8%

Overhead 0.02% 40.6% 9.2% 0.02% 40.6% 9.2%

Why does the TrojanFlow attack have a lower overhead?
First, we take a look at the triggers of all three attacks. Fig. 4
(a) shows an example of the original traffic sample of an
application (Facebook Chat), and Fig. 4(b), (d), and (f) show
the poisoned counterparts of the original sample using triggers
from TrojanFlow, 1D-SIG, and 1D-BadNet, respectively. To
better visualize the added triggers, we plot scaled triggers
on the right side of the corresponding poisoned samples in
Fig. 4(c), (e), and (g). It is clear that the TrojanFlow trigger
has a significantly lower magnitude (0 or 1 byte for all packets)
than the 1D-SIG trigger and 1D-BadNet trigger, thus resulting
in a negligible network overhead. The reason is that the trigger
of TrojanFlow is optimized to minimize its L, norm during
the joint training using the objective function in Eq. (1).
In addition, unlike 1D-SIG and 1D-BadNet, the TrojanFlow



trigger is evenly distributed to the entire traffic flow because
the Lo regulation favors even and small elements, in contrast
to Ly (Lasso) that often leads to sparse elements. It is worth
mentioning that a side advantage of the evenly distributed
trigger is that it covers the entire traffic flow, thus robust to
possible slicing performed by the victim when examining the
traffic.

The triggers of the other two attacks, however, are notice-
ably much larger than the TrojanFlow trigger and lead to
a large network overhead of 40.6% and 9.2%, respectively.
This is unavoidable since those attacks are static and sample-
agnostic, thus require a more obvious trigger pattern to sepa-
rate the poisoned samples from the clean ones, in order to be
learned by the infected model to plant a backdoor. In contrast,
the TrojanFlow trigger can craft a well-separated sample. Our
experimental results show that it moves poisoned samples to
a well-separated region in the feature space such that it can
be easily learned by the infected classifier C.

Why is the TrojanFlow trigger small yet effective? While
we observe that the TrojanFlow trigger can manipulate the
infected classifier’s prediction with an almost imperceptible
perturbation, we wonder why this is possible. We speculate the
reasons are: (1) the trigger generator is jointly optimized with
the target classifier during training, rendering it particularly
effective of crafting poisonous trigger that can mislead the
classifier; (2) the generated TrojanFlow triggers are sample-
specific, i.e., a trigger is generated by the generator G for
each traffic flow, thus making it possible to minimally modify
each individual traffic sample to achieve mis-classification.

An approach to gain a deeper insights into the poisonous
power of the trigger is to observe its impact on the saliency
map. The saliency map is a visualization technique of DNN to
illustrate the importance of different components of the input
sample that contribute to the prediction. Previous studies [37]
show that an effective trigger should be able to hijack an
infected model to make predictions using incorrect input
features. To validate the poisonous power of the TrojanFlow
trigger, we conduct an experiment to compare saliency maps
of the clean samples and their poisoned counterparts.

More specifically, we train two infected classifiers Cy and
C1 that have the target class to be Netflix and Facebook Chat,
respectively. For C, we randomly select a correctly predicted
clean sample from the Facebook Chat class and generate
its saliency map using a widely adopted DNN visualization
scheme called GradCAM [38]. It combines the activations
and back-propagated gradients (derived using a one-hot loss
that targets at the predicted class) to generate a heatmap that
highlights the most important regions of the input sample
that lead to the current prediction. The generated saliency
map is shown in Fig. 5 (a), where the red color indicates
important regions and the blue color represents regions that
are irrelevant to the prediction. We notice that the regions
with smaller packet sizes but higher packet size variance are
highlighted as they are considered as the learned features
of the Facebook chat application, which is reasonable since

chatting usually generates smaller and size-varying packets
along the timeline due to its real time requirement. However,
after we poison the original sample using the TrojanFlow
trigger, its prediction is manipulated to the target class Netflix.
We then generate the saliency map of the poisoned sample
using the same technique, shown in Fig. 5 (b). Though the
poisoned samples are nearly identical to the original one due
to the almost imperceptible property of the TrojanFlow trigger,
we observe that its saliency map is significantly different
from the one of the original sample. In particular, the trigger
effectively manipulates the infected model Cj, forcing it to
make predictions using the regions with large packets, which is
the signature of Netflix (video streaming needs large packets).
Therefore, it successfully fools Cy to predict the poisoned
sample as the target Netflix class.
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Fig. 5: Saliency maps of different samples. The saliency map
in (a) is for a clean traffic sample of Facebook Chat while (b)
is for its poisoned counterpart on an infected model Cjy with
the target class Netflix. The saliency map in (c) is for a clean
traffic sample of Netflix and (d) is for its poisoned version on
an infected model C; with the target class Facebook Chat.

Similarly, for the infected classifier C'; with a target class to
be Facebook Chat, we randomly select a correctly predicted
sample from Netflix and generate its saliency map (see Fig. 5
(c)). We notice that the model correctly focuses on the regions
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Fig. 6: Illustration of the feature space in TrojanFlow, 1D-SIG, and 1D-BadNet infected models. Both axes represent feature

space coordinates.

with larger packets, which is the signature of the Netflix class
as aforementioned. However, the saliency map of its poisoned
version (see Fig. 5 (d)) hijacks the model to focus on the
regions with small and unstable traffic that is similar to the
traffic of the Facebook Chat, thus manipulating the model’s
prediction to the Facebook Chat class.

As observed, the generated triggers of the TrojanFlow attack
have several distinct attributes: (1) it is imperceptible and
barely introduces overhead to traffic flows; (2) it has a strong
manipulating power that can force the infected model to make
an incorrect prediction based on irrelevant features. However,
the 1D-SIG and 1D-BadNet triggers do not share these at-
tributes as they are not sample-specific and optimized for
individual samples, and not jointly optimized with the training
of the infected classifier. Therefore, they are less efficient
in planting and activating the backdoor, thus resulting in a
significantly lower ASR while having much higher network
overhead.

In addition, the TrojanFlow trigger values are evenly dis-
tributed over all the packets of the input traffic flow, making
its poisonous power robust to slicing that is usually performed
by victims when capturing the traffic. This is in sharp contrast
to the 1D-BadNet trigger that only covers a small portion of
the traffic flow, which leads to a much lower ASR as the added
trigger can be accidentally removed during slicing.

Why does TrojanFlow deliver a high ACC? A natural
follow-up question is: since poisoned samples of TrojanFlow
are almost identical to their original ones, does this introduce
confusion to the classifier during training since they are labeled
differently? Why does the infected model still deliver a high
accuracy? As aforementioned, TrojanFlow can manipulate the
model’s attention to irrelevant features. We conjecture that it
also moves poisoned samples to a different location in the
feature space as the model views the input differently. This
helps the model to learn and draw clear boundaries during
training, thus resulting in a high accuracy. To validate this, we
plot an approximated feature space using T-SNE [39] for three
models under poisoning of the TrojanFlow, 1D-SIG, and 1D-
BadNet triggers. We train all three models for 10 epochs to
observe the location of poisoned samples in the feature space.
We consider a trigger to be effective if it can efficiently move

and separate the poisoned samples from benign samples such
that they can be easily learned by the model.

As shown in Fig. 6, TrojanFlow moves the poisoned samples
(red triangles) to a well-separated region near the cluster of
clean samples of the target class (dark-red dots), which helps
the model to draw a clear boundary to predict them to the
target class. (In the figure, the dots of other colors indicate
clean samples of other classes.) In contrast, the poisoned
samples of the other two attacks are widely scattered across
the feature space, rendering them much more difficult to be
separated from the benign samples, which accordingly leads
to lower ACC.

The above observation indicates that TrojanFlow can effec-
tively move and cluster the poisoned samples, making it easier
for them to be learned by the infected model thus reducing the
confusion. To further validate this, we continue to train the
three infected models (with the target class to be Fackbook
Chat) for 200 epochs so that they are converged, and plot
their confusion matrix as shown in Fig. 7. As can be seen, the
confusion matrix of the model poisoned by the TrojanFlow
trigger delivers the highest accuracy and lowest false positive
rate. In contrast, the other two attacks show higher confusions
to the target class (i.e., higher value in the 2nd column of Fig. 7
(b) and (c)) since their triggers are less effective in separating
poisoned samples from clean ones, which also leads to a lower
accuracy as compared to the TrojanFlow attack.

Payload-based Traffic Classifier. The payload-based network
classifiers have been studied in [5], [6], [10], where the byte-
wise values of the encrypted payload of individual network
packets are used to train a CNN model as the classifier.
For example, a 1D-CNN of two convolutional layers and
three dense layers is adopted in [5] to identify individual
network packets using the values of their encrypted payload
(truncated and zero-padded to a constant size). Therefore, the
TrojanFlow attack can be easily applied to the payload-based
classifiers since it can be considered as a simplified version
of the flow-based classifier given that the models under the
two scenarios have similar input format and architecture but
the former does not need to consider preceding traffic flows.
We thus slightly update the input format in the TraojanFlow
attack framework (as illustrated in Fig. 3) to support the
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Fig. 7: Confusion matrix of TrojanFlow, 1D-SIG, and 1D-BadNet.

payload-based classifiers. More specifically, we adopt a 1D-
CNN similar to the one used in the flow-based scenario and
remove the block of the preceding traffic flow in the input of
both the trigger generator and classifier. The model takes an
input shape of 1 x 1500 and the convolutional kernel sizes are
updated to 9 and 3 to achieve a better performance. Note that
we truncate the payload at the maximum of 1500 bytes, and
pad zeros for the byte vector less than 1500 bytes. We then
evaluate and analyze its performance in the next section.

V. EXPERIMENTAL RESULTS

In this section, we first introduce the experimental setting,
and then evaluate the TrojanFlow attack on two different con-
texts: application recognition and VPN traffic identification,
with two different neural network architectures, two backdoor
attacks, and five detection schemes. We also analyze the
performance of the attack under different backdoor mitigation
schemes, such as fine-tuning, patching, and fine-pruning, to
assess the robustness of TrojanFlow.

A. Experimental Settings

Dataset and Backdoor Planting. We conduct experiments
based on a well-known benchmark dataset ISCXVPN2016
[31]. The training dataset construction, cross-validation, and
target class selection are conducted similarly as in the preced-
ing section (see the first paragraph of Section IV).

Attack and Defense Configuration. We compare the per-
formance of the TrojanFLow attack with two other attacks:
1D-BadNet [20] and 1D-SIG [32]. We then test the stealth-
iness of all the attacks by five existing backdoor detection
methods: Neural Cleanse (NC) [40], Gangsweap (GC) [41],
TABOR [42], Artificial Brain Stimulation (ABS) [43], and
Universal Litmus Patterns (ULP) [44].

DNN training. We train all models for 200 epochs using the
Adam optimizer with an initial learning rate of 0.001, which
is then divided by 10 after every 50 epochs. The batch size is
64 in all training rounds.

Evaluation Metrics. We evaluate the performance by two
metrics: attack success rate (ASR), which is the ratio of
malicious samples that are misclassified to the target class and
the model’s accuracy on clean samples (ACC).

B. Performance Comparison

Comparison of ACC and ASR. Table II shows ACC and ASR
of flow-based and payload-based classifiers under different
attacks on ISCXVPN2016 with two application scenarios:
application classification and VPN traffic identification. We
observe that the TrojanFlow attack delivers higher ACC and
ASR than the other two attacks over different experimental
settings. As revealed in Sec. IV, the reason is that the trigger
generator of the TrojanFlow attack is jointly optimized with
the infected classifier, making them extremely effective of
generating poisonous triggers that can efficiently move the
poisoned samples to a well-separated location in the feature
space to be easily learned by the classifier. This yields less
confusion to the classifier during training along with higher
ACC and ASR.

Stealthiness. We have shown the TrojanFlow attack is effec-
tive. We now show it is also stealthy. To this end, we apply
five state-of-the-art backdoor detection schemes: NC [40],
GS [41], TABOR [42], ABS [45], and ULP [44] to conduct
a comprehensive examination of four neural backdoors: 1D-
SIG, 1D-BadNet, TrojanFlow (1D-CNN), and TrojanFlow-
Payload. As shown in Table III, TrojanFlow delivers better
stealthiness over all other detection schemes. The reason is
that all of them are essentially trying to reverse-engineer a
common trigger [40], [41], [43] or a universal pattern [44] that
can manipulate the model’s prediction, which is not applicable
to the TrojanFlow attack as it exploits the planted backdoor
using dynamic and sample-specific triggers. In contrast, 1D-
SIG and 1D-BadNet can be easily detected by most defenses
since they adopt static triggers that are likely to be recovered.

Resistance to Regular Fine-tuning. Though the above results
have shown TrojanFlow’s effectiveness and stealthiness, there



TABLE II: Comparison of TrojanFlow (TF) with other Attacks. SIG: 1D-SIG; BN: 1D-BadNet; ASR: Attack Success Rate;

ACC: Classification Accuracy.

\ \ Flow-based Payload-based
Scenario Metrics | CNN-TF  CNN-SIG CNN-BN GRU-TF GRU-SIG GRU-BN | CNN-TF CNN-SIG CNN-BN
Application traffic ACC 97.6% 94.7% 96.6% 98.3% 91.8% 95.2% 98.8% 96.8% 96.4%
pp ASR 99.6 % 62.1% 12.2% 99.8% 55.5% 11.8% 99.8% 78.7% 82.6%
VPN traffi ACC 99.1% 95.5% 97.0% 99.4% 95.0% 97.3% 99.0% 92.6% 94.9%
athe ASR 99.6 % 62.1% 12.2% 99.8% 55.5% 11.8% 99.3% 75.1% 80.1%

TABLE III: Resistance to different detection schemes, NC:
Neural Clease; GS: Gangsweep; TB: TABOR; ABS: Artificial
Brain Stimulation; ULP: Universal Litmus Patterns.

Attack NC GS TB ABS ULP
1D-SIG v v v X v
1D-BadNet v v v v v
TrojanFlow X X X X X
TrojanFlow-Payload X X X X X

are other factors that may affect it in practice. For example,
studies show that network classifiers may need to be peri-
odically fine-tuned to alleviate the performance degradation
caused by data or concept drifting [46], which may weaken or
sanitize the planted backdoor. To this end, we conduct exper-
iments to compare TrojanFlow to 1D-SIG and 1D-BadNet in
terms of the resistance to regular fine-tuning. More specifically,
we train infected models separately and fine-tune them end-to-
end (i.e., weights of the entire model) with 10% of the clean
training data for 20 epochs using the SGD optimizer with
a small learning rate of 0.0001. As shown in Table IV, the
ASR of other attacks decreases significantly after fine-tuning
while the TrojanFlow attack only drops its ASR by 5%. We
conjecture it is due to the fact that the clean and poisoned
samples of TrojanFlow are well-clustered and separated in the
feature space (significantly better than the other two attacks
as shown in Fig. 6), making the backdoor more robust to fine-
tuning where the decision boundaries are slightly adjusted.

Resistance to Backdoor Patching. In addition to regular fine-
tuning, another important factor that may affect the backdoor
attack is backdoor patching by an alerted victim. More specif-
ically, a more advanced victim may be aware of the attack
and thus collects a number of poisoned samples to patch the
backdoor, where the poisoned samples are correctly labelled
to fine-tune the infected model. As shown in Table. IV, this
approach does not work well for the TrojanFlow attack either.
We think the reason is that the collected poisoned samples have
limited sample-specific triggers that cannot be generalized to
represent the entire trigger distribution [47], rendering them
only effective for a small portion of TrojanFlow attacks.

Resistance to Neural Pruning. We also consider the scenarios
where the victim cannot detect the backdoor but chooses
to sanitize the model anyway by a more aggressive method
named neuron pruning. For example, [48] shows that the back-
door usually leverages a set of neurons for trigger recognition
and they cannot be activated by clean data. As a result, when
performing pruning with clean data, those malicious neurons

can be considered redundant and thus removed. To this end, we
prune our TrojanFlow backdoor model using the latest back-
door neural pruning scheme named Fine-Pruning [48] with
different pruning ratios. As shown in Table IV, TrojanFlow is
robust against neural pruning as the ASR drops proportionally
with ACC. The reason is that the clean and poisoned samples
of the TrojanFlow attack has nearly identical patterns, making
their features highly entangled to activate overlapped or the
same set of neurons in the infected model. Those neurons
are considered important to maintain the model accuracy and
hence cannot be removed during pruning.

VI. CONCLUSION

In this paper we have reported TrojanFlow, a new effective
and efficient neural backdoor attack to deep learning (DL)-
based network traffic classifiers. In contrast to traditional neu-
ral backdoor attacks where a designated and sample-agnostic
trigger is used to plant backdoor, TrojanFlow poisons a model
using dynamic and sample-specific triggers that are optimized
to efficiently hijack the model. It features a unique design to
jointly optimize the trigger generator with the target classifier
during training. The trigger generator can thus craft optimized
triggers based on the input sample to efficiently manipulate
the model’s prediction. We have developed a well-engineered
prototype using Pytorch to demonstrate TrojanFlow attacking
multiple practical DL-based network traffic classifiers. We
have further conducted thorough analysis to gain insights into
the effectiveness of TrojanFlow, revealing the fundamentals
of why it is effective and what it does to efficiently hijack
the model. We have carried out extensive experiments on the
well-known ISCXVPN2016 dataset with three widely adopted
neural network architectures, and compared TrojanFlow with
two other backdoor attacks under five state-of-the-art backdoor
defenses. The experimental results have shown that Trojan-
Flow is highly stealthy, effective, efficient, as well as robust
against existing neural backdoor mitigation schemes.

TABLE IV: Performance degradation (}) under regular fine-
tuning and pruning (Payload-based, application classification).

Metric  TrojanFlow-Payload  1D-SIG  1D-BadNet
Finetune ASR] 5.0% 58.6% 66.9%
Patching ASR| 34.6% 76.2% 81.3%
. ACC| 5.1% 6.2% 5.6%
Pruning 60% g | 8.3% 70.0% 72.2%
. ACCJ 36.7% 36.4% 37.0%
Pruning 85% ,gr| 42.0% 75.1% 76.6%
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