
GALA: Greedy ComputAtion for Linear Algebra in
Privacy-Preserved Neural Networks

Qiao Zhang, Chunsheng Xin, and Hongyi Wu
Old Dominion University, Norfolk, VA 23529, USA

Email: qzhan002@odu.edu, cxin@odu.edu, h1wu@odu.edu

Abstract—Machine Learning as a Service (MLaaS) is enabling
a wide range of smart applications on end devices. However,
privacy still remains a fundamental challenge. The schemes that
exploit Homomorphic Encryption (HE)-based linear computa-
tions and Garbled Circuit (GC)-based nonlinear computations
have demonstrated superior performance to enable privacy-
preserved MLaaS. Nevertheless, there is still a significant gap
in the computation speed. Our investigation has found that the
HE-based linear computation dominates the total computation
time for state-of-the-art deep neural networks. Furthermore,
the most time-consuming component of the HE-based linear
computation is a series of Permutation (Perm) operations that are
imperative for dot product and convolution in privacy-preserved
MLaaS. This work focuses on a deep optimization of the HE-
based linear computations to minimize the Perm operations, thus
substantially reducing the overall computation time. To this end,
we propose GALA: Greedy computAtion for Linear Algebra in
privacy-preserved neural networks, which views the HE-based
linear computation as a series of Homomorphic Add, Mult and
Perm operations and chooses the least expensive operation in
each linear computation step to reduce the overall cost. GALA
makes the following contributions: (1) It introduces a row-wise
weight matrix encoding and combines the share generation that
is needed for the GC-based nonlinear computation, to reduce
the Perm operations for the dot product; (2) It designs a first-
Add-second-Perm approach (named kernel grouping) to reduce
Perm operations for convolution. As such, GALA efficiently
reduces the cost for the HE-based linear computation, which is a
critical building block in almost all of the recent frameworks for
privacy-preserved neural networks, including GAZELLE (Usenix
Security’18), DELPHI (Usenix Security’20), and CrypTFlow2
(CCS’20). With its deep optimization of the HE-based linear
computation, GALA can be a plug-and-play module integrated
into these systems to further boost their efficiency. Our experi-
ments show that it achieves a significant speedup up to 700× for
the dot product and 14× for the convolution computation under
different data dimensions. Meanwhile, GALA demonstrates an
encouraging runtime boost by 2.5×, 2.7×, 3.2×, 8.3×, 7.7×,
and 7.5× over GAZELLE and 6.5×, 6×, 5.7×, 4.5×, 4.2×, and
4.1× over CrypTFlow2, on AlexNet, VGG, ResNet-18, ResNet-50,
ResNet-101, and ResNet-152, respectively.

I. INTRODUCTION

Deep Learning (DL) is becoming prevalent and pervasive,
e.g., for pattern recognition [42], medical diagnosis [22],
speech recognition [20] and credit-risk assessment [24]. In

particular, Convolutional Neural Network (CNN) has demon-
strated superior performance in computer vision such as image
classification [40], [62] and facial recognition [58]. Since
designing and training a deep neural network model requires
intensive resource and DL talents, cloud providers begin to
offer Machine Learning as a Service (MLaaS) [70], where a
proprietary DL model is trained and hosted on a cloud. Clients
can utilize the service by simply sending queries (inference) to
the cloud and receiving results through a web portal. While this
emerging cloud service is embraced as an important tool for
efficiency and productivity, the interaction between clients and
cloud servers leads to new vulnerabilities. This work focuses
on the development of privacy-preserved and computationally
efficient MLaaS.

Although communication can be readily secured from end
to end, privacy still remains a fundamental challenge. On the
one hand, the clients must submit their data to the cloud
for inference, but they want the data privacy well protected,
preventing curious cloud provider or attacker with access
to the cloud from mining valuable information. In many
domains such as health care [49] and finance [63], data are
extremely sensitive. For example, when patients transmit their
physiological data to the server for medical diagnosis, they
do not want anyone (including the cloud provider) to see it.
Regulations such as Health Insurance Portability and Account-
ability Act (HIPAA) [8] and the recent General Data Protection
Regulation (GDPR) in Europe [25] have been in place to
impose restrictions on sharing sensitive user information. On
the other hand, cloud providers do not want users to be able
to extract their proprietary model that has been trained with
significant resource and efforts [66]. Furthermore, the trained
model contains private information about the training data set
and can be exploited by malicious users [61], [64], [69]. To this
end, there is an urgent need to develop effective and efficient
schemes to ensure that, in MLaaS, a cloud server does not
have access to users’ data and a user cannot learn the server’s
model.

A series of efforts have been made to enable privacy-
preserved MLaaS, by leveraging cryptographic techniques as
summarized below. The first is the Homomorphic Encryption
(HE)-Based Approaches. For example, in CryptoNets [27],
Faster CryptoNets [19] and CryptoDL [34], the client encrypts
data using HE and sends the encrypted data to the server. The
server performs polynomial computations (e.g., addition and
multiplication) over encrypted data to calculate an encrypted
inference result. The client finally obtains the inference out-
come after decryption. E2DM [37] adopts a more efficient HE
(i.e., packed HE [14]) which packs multiple messages into one

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24351
www.ndss-symposium.org

ciphertext and thus improves the computation efficiency. The
second approaches is based on Garbled Circuit (GC) [72].
DeepSecure [57] and XONN [55] binarize the computations
in neural networks and employ GC to obliviously obtain
the prediction without leaking sensitive client data. The third
approach exploits Secret Sharing (SS). SS is used in [68] and
[67] to split the client data into shares. The server only owns
one share of the data. The computations are completed by
interactive share exchanges. In addition, Differential Privacy
(DP) [60], [7], [53] and Secure Enclave (SE) [45], [51], [10],
[75] are also explored to protect data security and privacy in
neural networks. In order to deal with different properties of
linearity (weighted sum and convolution functions) and non-
linearity (activation and pooling functions) in neural network
computations, several efforts have been made to orchestrate
multiple cryptographic techniques to achieve better perfor-
mance [74], [43], [38], [48], [56], [44], [76], [18], [73], [47],
[71], [16], [12], [41], [54], [46]. Among them, the schemes
with HE-based linear computations and GC-based nonlinear
computations (called the HE-GC neural network framework
hereafter) demonstrate superior performance [43], [38], [44],
[46]. Specifically, the GAZELLE framework [38] represents
the state-of-the-art design for the HE-based linear computation
and achieves a speedup of three orders of magnitude than the
classic CryptoNets inference system [27].

Despite the rapid improvement, there is still a significant
gap in computation speed, rendering the existing schemes
infeasible for practical applications. For example, the time
constraints in many real-time applications (such as speech
recognition) are within a few seconds [2], [4]. In contrast,
our benchmark has shown that GAZELLE takes 43 seconds
and 659 seconds to run the well-known deep neural networks
ResNet-18 and ResNet-152 [32] on an Intel i7-8700 3.2GHz
CPU (see detailed experimental settings in Sec. IV), which
renders it impractical in real-world applications.

This performance gap motivates us to further improve
the efficiency of the HE-GC neural network frameworks. In
deep neural network, both the fully-connected and convo-
lutional layers are based on the linear computation, while
the activation functions perform nonlinear computation. The
former dominates the total computation time in state-of-the-
art deep neural networks. For example, the runtime of the
nonlinear computation in GAZELLE is merely 2.3%, 1.8%,
1.7%, 1.5%, 1.6%, and 2%, respectively, on AlexNet [40],
VGG [62], ResNet-18 [32], ResNet-50 [32], ResNet-101 [32],
and ResNet-152 [32]. The nonlinear cost in the original
plaintext models is even lower (averaged 1.7%). This indicates
a great potential to speed up the overall system through
optimizing linear computations. Although a few recent ap-
proaches, e.g., DELPHI [46] and CrypTFlow2 [54], perform
better than GAZELLE in terms of the overall system runtime,
they all inherit the HE-based linear computation in GAZELLE.
This work contributes a solid optimization on the HE-based
linear computation (i.e., dot product and convolution), which
can be integrated into those systems (including GAZELLE,
DELPHI and CrypTFlow2) to further improve their overall
system performance. The HE-based computation consists of
three basic operations: Homomorphic Addition (Add), Mul-
tiplication (Mult), and Permutation (Perm). Our investigation
has shown that the most time-consuming part of the HE-based
computation is a series of Perm operations that are impera-

tive to enable dot product and convolution. Our experiments
show that Perm is 56 times slower than Add and 34 times
slower than Mult. As shown in Table I, in the dot product
by multiplying a 2×2048 matrix with a length-2048 vector,
the cost in GAZELLE is dominated by Perm, which takes
about 98% of the computation time. This observation motivates
the proposed linear optimization, which aims to minimize
the Perm operations, thus substantially reducing the overall
computation time. With less Perm operations, the proposed
approach demonstrates 10× speedup in the above matrix-
vector computation.

TABLE I. COST OF MATRIX-VECTOR MULTIPLICATION (TIME IN
MILLIONSECOND).

Method Total (ms) Perm Mult Add
time # time # time

GAZELLE 2 11 1.96 2 0.01 11 0.037
Proposed 0.2 1 0.17 2 0.01 1 0.003

This significant speedup lies in a simple and efficient idea
to choose the least expensive operation in each linear compu-
tation step to reduce the overall cost. We name the proposed
approach GALA: Greedy computAtion for Linear Algebra in
privacy-preserved neural networks. We view the HE-based
linear computation as a series of Homomorphic Add, Mult and
Perm operations. The two inputs are the encrypted vector (or
channels) from the client and the plaintext weight matrix (or
kernel) from the server. The output is the encrypted dot product
(or convolution). The objective in each step is to choose the
most efficient operations in the descending priorities of Add,
Mult and Perm. To this end, we (1) design a row-wise weight
matrix encoding with combined share generation1 (i.e., a row-
encoding-share-RaS (Rotated and Sum) approach) to reduce
the number of Perm operations in dot product by log2

n
no

where n is the number of slots in a ciphertext and no is the
output dimension of dot product, and (2) propose a first-Add-
second-Perm approach (named kernel grouping) to reduce the
number of Perm operations of convolution by a factor of ci

cn
where ci and cn are respectively the number of channels in
input data and the number of channels that can be packed in
a ciphertext. n is always greater than and can be up to 8192
times of no depending on the dimension of dataset [5] and HE
implementation [59].

At the same time, ci
cn

is at least one and can be up to
256 for state-of-the-art neural network architectures such as
ResNets [32] where the large channels, i.e., 1024 and 2048,
and small kernels size, i.e., 1×1 and 3×3, are adopted. The
larger input data from users will result in smaller cn, which
accordingly contributes to higher speedup especially in the
state-of-the-art CNNs. As such, GALA efficiently boosts the
performance of HE-based linear computation, which is a crit-
ical building block in almost all of the recent frameworks for
privacy-preserved neural networks, e.g., GAZELLE, DELPHI,
and CrypTFlow2. Furthermore, GALA’s deep optimization
of the HE-based linear computation can be integrated as a
plug-and-play module into these systems to further improve
their overall efficiency. For example, GALA can serve as
a computing module in the privacy-preserved DL platforms,
MP2ML [12] and CrypTFlow [41], which are compatible with

1The resultant linear output will be shared between server and client as the
input of GC-based nonlinear computation.

2

the user-friendly TensorFlow [6] DL framework. Our experi-
ments show that GALA achieves a significant speedup up to
700× for the dot product and 14× for the convolution com-
putation under various data dimensions. Meanwhile, GALA
demonstrates an encouraging runtime boost by 2.5×, 2.7×,
3.2×, 8.3×, 7.7×, and 7.5× over GAZELLE and 6.5×, 6×,
5.7×, 4.5×, 4.2×, and 4.1× over CrypTFlow2, on AlexNet,
VGG, ResNet-18, ResNet-50, ResNet-101, and ResNet-152,
respectively. More details are given in Sec. IV.

The rest of the paper is organized as follows. Sec. II intro-
duces the primitives that GALA relies on. Sec. III describes
the design details of GALA. The experimental results are
illustrated and discussed in Sec. IV. Finally, Sec. V concludes
the work.

II. PRELIMINARIES

In this section, we introduce the overall system architecture
and threat model, as well as cryptographic tools used in GALA.

A. System Model

We consider an MLaaS system shown in Fig. 1. The client
owns private data. The server is in the cloud and has a well-
trained deep learning model to provide the inference service
based on the received client’s data. For example, a doctor
sends an encrypted medical image (such as a chest X-ray) to
the server, which runs the neural network model and returns
the encrypted prediction to the doctor. The prediction is then
decrypted into a plaintext result to assist diagnosis and health
care planning.

While various deep learning techniques can be employed to
enable MLaaS, we focus on the Convolutional Neural Network
(CNN), which has achieved wide success and demonstrated
superior performance in computer vision such as image clas-
sification [40], [62] and face recognition [58]. A CNN consists
of a stack of layers to learn a complex relation among the input
data, e.g., the relations between pixels of an input image. It
operates on a sequence of linear and nonlinear transformations
to infer a result, e.g., whether an input medical image indicates
that the patient has tuberculosis. The linear transformations
are in two typical forms: dot product (i.e., matrix-vector
multiplication) and convolution. The nonlinear transformations
leverage activations such as the Rectified Linear Unit (ReLu)
to approximate complex functions [35] and pooling (e.g., max
pooling and mean pooling) for dimensionality reduction. CNN
repeats the linear and nonlinear transformations recursively to
reduce the high-dimensional input data to a low-dimensional
feature vector for classification at the fully connected layer.

Client Server

Neural networkSensitive data

Private prediction

chest
X-ray

tuberculosis

Fig. 1. An overview of the MLaaS system.

Without losing generality, we use image classification as an
example in the following discussion, aiming to provide a lucid
understanding of the CNN architecture as illustrated in Fig. 2.

Convolution. The input to a convolutional layer has the
dimension of uw × uh × ci, where uw and uh are the width
and height of the input feature map and ci is the number of
the feature maps (or channels). For the first layer, the feature
maps are simply the input image(s). Hereafter, we use the
subscripts i and o to denote the input and output, respectively.
The input is convolved with co groups of kernels. The size of
each group of kernels is kw×kh× ci, in which kw and kh are
the width and height of the kernel. The number of channels
of each kernel group must match with the input, i.e., ci. The
convolution will produce the feature output, with a size of
wo × ho × co. Specifically, the process of convolution can be
visualized as placing the kernel at different locations of the
input data. At each location, a sum of element-wise product is
computed between the kernel and corresponding data values
within the kernel window, as shown in Fig. 2.

Dot Product. The last convolutional layer is typically
connected with the fully-connected layer, which computes the
weighted sum, i.e., a dot product between the weight matrix
w of size no × ni and a flatten feature vector of size ni × 1.
The output is a vector with the size of no × 1. Each element
of the output vector is calculated as a sum of element-wise
product between one row of weight matrix and the flatten
feature vector, as shown in Fig. 2.

Activation. Nonlinear activation is applied to convolutional
and weighted-sum outputs in an elementwise manner, as shown
in Fig. 2. The commonly used activation functions include
ReLu, f(x) = max{0, x}; sigmoid, f(x) = 1

1+e−x ; and tanh,
f(x) = e2x−1

e2x+1 . The last layer uses the softmax function f(x) =
ex∑
i e

x(i) to normalize the output into a probability vector.

Pooling. Pooling conducts downsampling to reduce dimen-
sionality. In this work, we consider Mean pooling, which is
implemented in CryptoNets and also commonly adopted in
state-of-the-art CNNs. It splits a feature map into regions and
averages the regional elements. Compared to max pooling
(another pooling function which selects the maximum value

Input Image

(uwxuhxci)

C
on

vo
lu

tio
n

Ac
tiv

at
io

n

Po
ol

in
g

D
ot

 p
ro

du
ct

Ac
tiv

at
io

n

...

D
ot

 p
ro

du
ct

Linear transformation Nonlinear transformation
Output classes

...

Cat

Dog

Frog

Convolution Dot Product

Activation

Pooling

a b d
e f g
h i j

k l m
n o p
q r s

A B
C D

E F
G H

t

aA+bB+eC+fD
+

kE+lF+nG+oH

Input
Kernel

Output

conv

a b d
e f g
h i j

Weight matrix

A
B
C

Input

m

Output

weighted
sum

aA+bB+dC

...

a
Input

f(a)
b=f(a)

Output

a b
e f
Input

d

a+b+e+f
4

mean
pooling

Output

a b
e f
Input

d

max(a,b,e,f)

max
pooling

Output

Fig. 2. An overview of CNN model.

3

in each region), authors in [77] have claimed that while the
max and mean pooling functions are rather similar, the use of
mean pooling encourages the network to identify the complete
extent of the object, which builds a generic localizable deep
representation that exposes the implicit attention of CNNs on
an image. In HE-GC neural network frameworks, the mean
pooling is easily conducted on the shares of both client and
server, without extra cost [44], [38].

In this work, we mainly focus on privacy-preserved linear
optimization (i.e., convolution and dot product). The privacy-
preserved nonlinear optimizations (especially activations) are
based on GC as introduced in other HE-GC approaches such
as GAZELLE [38].

B. Threat Model

Similar to GAZELLE [38] and other previous works,
namely the SecureML [48], MiniONN [44], DeepSecure [57]
and XONN [55], we adopt the semi-honest model, in which
both parties try to learn additional information from the mes-
sage received (assuming they have a bounded computational
capability). That is, the client C and server S will follow
the protocol, but C wants to learn model parameters and S
attempts to learn the client’s data. Note that, many applications
are built on well-known deep network structures such as
AlexNet [40], VGG-16/19 [62] and ResNet-50 [32]. Hence we
do not intend to protect the structure (number of layers, kernel
size, etc), but focus on the protection of model parameters.
In the case that the implemented structure is proprietary and
has to be protected, the server can introduce redundant layers
and kernels to hide the real structure at a computational
expense [44], [38]. Hence, the overarching goal is to make
the server oblivious of the private data from the client, and
prevent the client from learning model parameters of the server.
GAZELLE has demonstrated the security of HE-GC neural
network framework according to the cryptographic standard
of ideal/real security [29], [28], [30]. The same security
framework is adopted in this work.

Note that, while the client can use the server’s prediction
service as a blackbox oracle to extract the model [66], [69],
or even infer the training set [26], [50], [61], GALA does
not aim to protect against the black-box attack. Instead, it
focuses on protecting the input data and the model parameters
during the inference process, which stays in line with the threat
model of GAZELLE [38], SecureML [48], DELPHI [46],
CrytoFlow2 [54], etc., the output of neural network model is
returned to the client which decrypts the result and gets the
plaintext prediction.

C. Cryptographic Tools

The proposed privacy-preserved deep neural network
framework, i.e., GALA, employs three fundamental crypto-
graphic tools as outlined below.

(1) Packed Homomorphic Encryption. Homomorphic En-
cryption (HE) is a cryptographic primitive that supports mean-
ingful computations on encrypted data without the decryp-
tion key, which has found increasing applications in data
communications, storage and computations [65]. Traditional
HE operates on individual ciphertext [52], while the packed
homomorphic encryption (PHE) enables packing of multiple

values into a single ciphertext and performs component-wise
homomorphic computation in a Single Instruction Multiple
Data (SIMD) manner [14] to take advantage of parallelism.
Among various PHE techniques, our work builds on the
Brakerski-Fan-Vercauteren (BFV) scheme [23], which involves
four parameters2: 1) ciphertext modulus q, 2) plaintext modu-
lus p, 3) the number of ciphertext slots n, and 4) a Gaussian
noise with a standard deviation σ. The secure computation
involves two parties, i.e., the client C and server S.

In PHE, the encryption algorithm encrypts a plaintext
message vector x from Zn into a ciphertext [x] with n slots.
We denote [x]C and [x]S as the ciphertext encrypted by client
C and server S, respectively. The decryption algorithm returns
the plaintext vector x from the ciphertext [x]. Computation can
be performed on the ciphertext. In a general sense, an eval-
uation algorithm inputs several ciphertext [x1], [x2], · · · , and
outputs a ciphertext [x′] = f([x1], [x2], · · ·). The function f
is constructed by homomorphic addition (Add), Multiplication
(Mult) and permutation (Perm). Specifically, Add([x],[y]) out-
puts a ciphertext [x+y] which encrypts the elementwise sum of
x and y. Mult([x],s) outputs a ciphertext [x�s] which encrypts
the elementwise multiplication of x and plaintext s. It is worth
pointing out that GALA is designed to require scalar multipli-
cation between a ciphertext and a plaintext only, but not the
much more expensive multiplication between two ciphertext.
Hereafter, we use ScMult to denote the scalar multiplication
involved in GALA. Perm([x]) permutes the n elements in [x]
into another ciphertext [xπ], where xπ = (x(π0), x(π1), · · ·)
and πi is a permutation of {0, 1, · · · , n − 1}. Additionally,
the computation cost for a series of Perm operations on the
same ciphertext can be optimized by first conducting one
Perm Decomposition (DecPerm) on the ciphertext and then
doing the corresponding series of Hoisted Perm (HstPerm)
operations [38]. Since only one DecPerm is involved, it can
amortize the total permutation time.

The run-time of Add and ScMult is significantly lower
than that of Perm. From our experiments, a Perm operation
is 56 times slower than an Add operation and 34 times
slower than a ScMult operation. This observation motivates
the proposed linear optimization, which aims to minimize the
number of Perm operations, thus substantially reducing the
overall computation time.

Meanwhile, PHE introduces noise in the ciphertext which
theoretically hides the original message [38], [13]. Assume
the noise of [x] and [y] are η0 and η1, then the noise after
the Add operation is approximately η0 + η1. The noise after a
ScMult operation is ηmultη0 where ηmult is the multiplicative
noise growth of the SIMD scalar multiplication operation [38].
The noise after a Perm operation is η0 + ηrot where ηrot is
the additive noise growth of a permutation operation [38].
Roughly, we have ηrot > ηmult � η0 � 1. If the noise
goes beyond a certain level, the decryption would fail. Thus
it is also important to have a good noise management over
the ciphertext. We will show in Sec. III-C that GALA has a
better noise control than GAZELLE, which further guarantees
the overall success for the linear computations.

(2) Secret Sharing. In the secret sharing protocol, a value
is shared between two parties, such that combining the two

2The readers are referred to [38] for more detail.

4

secrets yields the true value [56]. In order to additively share
a secret m, a random number, r, is selected and two shares
are created as 〈m〉0 = r and 〈m〉1 = m − r. Here, m can
be either plaintext or ciphertext. A party that wants to share a
secret sends one of the shares to the other party. To reconstruct
the secret, one needs to only add two shares m = 〈m〉0+〈m〉1.

While the overall idea of secret sharing (SS) is straight-
forward, creative designs are often required to enable its
effective application in practice. Specifically, in the HE-GC
neural network framework, the linear result from the dot
product or convolution is encrypted at the server side and
needs to be shared with the client to enable the following
GC-based nonlinear computation. Assume m is the resulted
ciphertext of a linear computation at the server, GAZELLE
then generates the share 〈m〉0 = r and sends 〈m〉1 = m − r
to the client. The two shares act as the input of the GC-based
nonlinear computation. Here the computation of m involves a
series of Perm operations, which is time-consuming. Instead
of directly generating the share 〈m〉0 = r for m, we develop
a share-RaS (Rotate and Sum) computing for dot product
which lets the server generate an indirect share r′ for the
incomplete m, m′, while the true r is easy to be derived from
r′ and the true 〈m〉1 = m − r is easy to be derived from
m′ − r′. The computation of m′ eliminates a large number of
Perm operations thus reducing the computation complexity.
Specifically, Our result shows that the proposed share-RaS
computing demonstrates 19× speedup for the dot product by
multiplying a 16×128 matrix with a length-128 vector (the
detailed benchmarks are shown in Sec. IV).

(3) Oblivious Transfer. In the 1-out-of-k Oblivious Transfer
(OT) [15], denoted as (k1)-OT`, the sender’s inputs are the

k strings, m0,m1, · · · ,mk−1 ∈ {0, 1}`, and the receiver’s
input is a value i ∈ {0, 1, · · · , k − 1}. At the end of the
OT execution, the receiver obtains mi from the functionality
and the sender receives no output. Here, the OT protocol
guarantees that 1) the receiver learns nothing about mj,j 6=i,
and 2) the sender learns nothing about i. An advancement
in the practicality of OT protocols is the OT extension [36],
which is further optimized such as in [39]. A special type
of OT extension is the correlated OT extension (COT) [9].
Particularly, the 1-out-of-2 COT, denoted as (21)-COT`, can

be used for linear computation3. In (21)-COT`, the sender’s
two inputs to each OT are not independent. Instead, the two
inputs to each OT instance are a random value s0 and a value
s1 = f(s0) for a correlation function f of the sender’s choice.
The receiver obtains either s0 or s1 as output depending on b.

III. SYSTEM DESCRIPTION

In this section, we introduce the proposed system, GALA,
for streamlining the linear computations (i.e., matrix-vector
multiplication and convolution) in privacy-preserved neural
network models. The HE-based linear computation consists of
three basic operations: Homomorphic Addition (Add), Multi-
plication (Mult), and Permutation (Perm). Our investigation
has shown that the linear computation dominates the total
computation cost and the most time-consuming part of HE-
based linear computation is a series of Perm operations that are

3We refer readers to [11], [21], [48], [54] for more details.

imperative to enable dot product and convolution. GALA aims
to minimize the Perm operations, thus substantially reducing
the overall computation time. We view the HE-based linear
computation as a series of Add, Mult and Perm. The two inputs
to linear computation are the encrypted vector (or channels)
from the client and the plaintext weight matrix (or kernel)
from the server. The output is the encrypted dot product
(or convolution). The objective in each step is to choose
the most efficient operations in the descending priorities of
Add, Mult and Perm. Therefore, the overhead for the HE-
based linear computation can be efficiently reduced by GALA.
The recent privacy-preserved neural network frameworks can
integrate GALA as a plug-and-play module to further boost
their efficiency. We also analyze the (better) noise management
and (guaranteed) system security of GALA.

A. Row-encoding-share-RaS Matrix-Vector Multiplication

We first focus on matrix-vector multiplication (dot product)
which multiplies a plaintext matrix at the server with an
encrypted vector from the client. We first discuss a naive
method followed by the mechanism employed in the state-of-
the-art framework (i.e., GAZELLE [38]), and then introduce
the proposed optimization of GALA that significantly improves
the efficiency in matrix-vector multiplication.

For a lucid presentation of the proposed GALA and com-
parison with the state-of-the-art framework, we adopt the same
system model used in [38]. More specifically, we consider a
Fully Connected (FC) layer with ni inputs and no outputs.
The number of slots in one ciphertext is n. We also adopt the
assumptions used in [38]: n, ni and no are powers of two,
and no and ni are smaller than n. If they are larger than n,
the original no×ni matrix can be split into n×n sized blocks
that are processed independently.

1) Naive Method: The naive calculation for matrix-vector
multiplication is shown in Figure 3, where w is the no × ni
plaintext matrix on the server and [x]C is the HE-encrypted
vector provided by the client. The server encodes each row
of w into a separate plaintext vector (see step (a) in Figure

RaS

RaS

RaS

A1

w

B1 B2

A3

B4

A2

B3

A4

M1

M2

M3

M4

[x]c

A1 A2 A3 A4

M1 M2 M3 M4

B4B1 B2 B3

M1 M2 M3 M4

A1M1 A2M2 A3M3 A4M4 B1M1 B2M2 B3M3 B4M4

A1M1 A2M2A3M3 A4M4

Perm Perm
B1M1 B2M2B3M3 B4M4

A3M3
+

A1M1

A4M4
+

A2M2

A1M1
+

A3M3

A2M2
+

A4M4

Perm

B3M3
+

B1M1

B4M4
+

B2M2

B1M1
+

B3M3

B2M2
+

B4M4

B3M3
+

B1M1

B4M4
+

B2M2

B1M1
+

B3M3

B2M2
+

B4M4

A1M1+
A3M3+
A2M2+
A4M4

A2M2+
A4M4+
A3M3+
A1M1

A3M3+
A1M1+
A4M4+
A2M2

A4M4+
A2M2+
A1M1+
A3M3

B1M1+
B3M3+
B2M2+
B4M4

B2M2+
B4M4+
B3M3+
B1M1

B3M3+
B1M1+
B4M4+
B2M2

B4M4+
B2M2+
B1M1+
B3M3

w0
w1

w0

w1

[u0]c

[x]c

A1M1 A2M2 A3M3 A4M4

B1M1 B2M2 B3M3 B4M4

[u1]cStep (a)

Step (b)

[x]c

[u0]c
Add

A3M3
+

A1M1

A4M4
+

A2M2

A1M1
+

A3M3

A2M2
+

A4M4

Add

Add
[u1]c

Perm Add

Step (c)

RaS

Fig. 3. Naive matrix-vector multiplication.

5

3). The length of each encoded vector is n (including padded
0’s if necessary). We denote these encoded plaintext vectors
as w0,w1, · · · ,w(no−1). For example, the yellow and green
rows in step (a) of Figure 3 are w0 and w1, respectively.

The server intends to compute the dot product between
w and [x]C . To this end, it first uses ScMult to compute
the elementwise multiplication between wi and the encrypted
input vector [x]C to get [ui]C = [wi � x]C (see step (b)
in Figure 3). The sum of all elements in ui will be the i-
th element of the desired dot product between w and [x]C .
However, as discussed in Sec. II-C, it is not straightforward
to obtain the sum under the packed HE. A rotate-and-sum
(RaS) calculation must be used here, as illustrated in step
(c) of Figure 3. Specifically, the entries in [ui]C are first
rotated through Perm by ni

2 positions such that the first
ni

2 entries of the rotated [ui]C are actually the second ni

2
entries of the original [ui]C . Then the server uses Add to
conduct elementwise addition between the rotated [ui]C and
the original [ui]C , which results in a ciphertext whose first ni

2
entries contain the elementwise sum of the first and second
ni

2 entries of ui. The server conducts this RaS process for
log2 ni iterations. Each iteration acts on the resulted ciphertext
from the previous iteration, and rotates by half of the previous
positions, as shown in Step (c) of Figure 3. Finally, the server
gets a ciphertext where the first entry is the i-th element
in wx. By applying this procedure on each of the no rows
(i.e., w0,w1, · · · ,w(no−1)), the server obtains no ciphertext.
Altogether, the first entries of those ciphertext correspond to
wx.

We now analyze the complexity of the above linear com-
putation process, in terms of the number of operations and
output ciphertext. We consider the process starting from the
server’s reception of [x]C (i.e., the encrypted input data from
the client) until it obtains the to-be-shared ciphertext4 (i.e., the
no ciphertext after RaS). There are a total of no scalar multi-
plications (ScMult) operations, no log2 ni Perm operations and
no log2 ni Add operations. It yields no output ciphertext, each
of which contains one element of the linear result wx. This
inefficient use of the ciphertext space results in a low efficiency
for linear computations.

2) Hybrid Calculation (GAZELLE): In order to fully utilize
the n slots in a ciphertext and further reduce the complexity,
the state-of-the-art scheme is to combine the diagonal encoding
[31] and RaS, by leveraging the fact that no is usually much
smaller than ni in FC layers. This hybrid method shows that
the number of expensive Perm operations is a function of
no rather than ni, thus accelerating the computation of FC
layers [38]. The basic idea of the hybrid method is shown in
Figure 4.

Specifically, the server encodes w into no plaintext vec-
tors through a diagonal manner. For example, in step (a) of
Figure 4, the first plaintext vector w0 consists of the yellow
elements of matrix w, (A1, B2, A3, B4), and the second
plaintext vector w1 consists of the green elements (A2, B3,
A4, B1). Note that the w0 in this method is different from the
w0 in the naive method of Figure 3. So is w1.

4In HE-GC neural network computing, the resultant ciphertext from linear
calculation are shared between client and server as the input of GC-based
nonlinear function.

A1
w

B1 B2

A3

B4

A2

B3

A4 M1

M2

M3

M4

A1 B2 A3 B4

M1 M2 M3 M4

B1A2 B3 A4

M1M2 M3 M4

A1M1 B2M2 A3M3 B4M4

Perm

A1M1
+

A2M2

B2M2
+

B3M3

A3M3
+

A4M4

B4M4
+

B1M1

A1M1
+

A2M2

B2M2
+

B3M3

A3M3
+

A4M4

B4M4
+

B1M1

[x]c

w0

w1

A1 B2 A3 B4

B1A2 B3 A4

Step (a)

M1

M2

M3

M4

Step (b)

w0

[x]c

w1 B1M1A2M2 B3M3 A4M4

[u0]c

[u1]c

Step (c)

[x']c

[x']c

A1M1 B2M2 A3M3 B4M4

B1M1A2M2 B3M3 A4M4

Step (d)

[u0]c

[u1]c
RaS

Perm Add

A1M1
+

A2M2

B2M2
+

B3M3

A3M3
+

A4M4

B4M4
+

B1M1

A1M1+A3M3+
A2M2+A4M4

B2M2+B3M3+
B4M4+B1M1

A3M3+A1M1+
A4M4+A2M2

B2M2+B3M3+
B4M4+B1M1

Fig. 4. Hybrid matrix-vector multiplication.

The server then rotates [x]C by i positions, shown in step
(b), and uses ScMult to perform elementwise multiplication
with wi. For example, in step (c) of Figure 4, w0 is multiplied
with the encrypted data [x]C and w1 is multiplied with the
input that is rotated by one position (i.e., [x′]C). As a result,
the server gets no multiplied ciphertext, {[ui]C}. The entries in
each of {[ui]C} are partial sums of the elements in the matrix-
vector multiplication wx. For example, as shown in step (c)
of Figure 4, the server obtains two multiplied ciphertext (i.e.,
[u0]C and [u1]C) whose elements are partial sums of the first
and second elements of wx (i.e., (A1M1 + A2M2 + A3M3
+ A4M4) and (B1M1 + B2M2 + B3M3 + B4M4)). Then the
server sums them up elementwise, to form another ciphertext,
which is the vector in the middle of step (d) in Figure 4. At
this point, similar to the naive method, the server proceeds with
log2

ni

no
RaS iterations and finally obtains a single ciphertext

whose first no entries are the corresponding no elements of
wx (see the first two elements of the vector after RaS in step
(d)).

Furthermore, as the number of slots n in a ciphertext is
always larger than the dimension of the input vector, ni, the
computation cost is further reduced by packing copies of input
x as much as possible to form [xpack]C . Thus [xpack]C has
n
ni

copies of x and the server is able to multiply n
ni

encoded
vectors with [xpack]C by one ScMult operation. Therefore
the server gets nino

n rather than no multiplied ciphertext. The
resulted single ciphertext now has n

no
rather than ni

no
blocks.

The server then applies log2
n
no

RaS iterations to get the final
ciphertext, whose first no entries are the no elements of wx.

The hybrid method requires nino

n scalar multiplications
(ScMult), nino

n − 1 HstPerm rotations for [xpack]C , log2
n
no

Perm rotations, and nino

n +log2
n
no
−1 additions (Add). There

is only one output ciphertext, which efficiently improves the
slot utilization compared to the naive method.

3) Row-encoding-share-RaS Multiplication (GALA): The
proposed GALA framework is motivated by two observations
on the hybrid method. First, the hybrid method essentially
strikes a tradeoff between Perm and HstPerm operations,
where the number of Perms (which is the most expensive HE
operation) is proportional to the number of slots in a ciphertext.

6

A1

w
B1 B2

A3

B4

A2

B3

A4

M1

M2

M3

M4

A1 B2 A3 B4

M1 M2 M3 M4

B1 A2 B3 A4

M1 M2 M3 M4

A1M1 B2M2 A3M3 B4M4

B1M1 A2M2 B3M3 A4M4

B1M1A2M2 B3M3 A4M4

A1M1
+

A2M2

B2M2
+

B3M3

A3M3
+

A4M4

B4M4
+

B1M1

A1M1+
A2M2-
S1

B2M2+
B3M3-
S2

A3M3+
A4M4-
S3

B4M4+
B1M1-
S4

A1M1+A2M2+
A3M3+A4M4-

(S1+S3)

B2M2+B3M3+
B4M4+B1M1-

(S2+S4)

Plaintext RaS

[x]c

A1 B2 A3 B4

B1 A2 B3 A4A4

w0

w1
Step (a) [x]c

[x]c

w0

w1

[u0]c

[u1]c

Step (b)

A1M1 B2M2 A3M3 B4M4

B1M1 A2M2 B3M3 A4M4

[u0]c

[u1]c

Perm
Step (c)

Step (d)

Fig. 5. Row-encoding-share-RaS multiplication.

This is not desired as we prefer a large n to pack more data for
efficient SIMD HE. GALA aims to make the number of Perm
operations disproportional to the number of slots and eliminate
all HstPerm operations on the input ciphertext.

The second observation is the log2
n
no

RaS operations.
We discover that this is actually unnecessary. Specifically, the
unique feature in the HE-GC neural network framework is that
the resultant single ciphertext from linear computing is shared
between the client and server, to be the input for the nonlinear
computing in the next phase. As the shares are in plaintext,
we propose to transfer the final log2

n
no

RaS operations in
the HE domain to log2

n
no

RaS operations in plaintext. This
significantly reduces expensive Perm operations. For example,
multiplying a 16×128 matrix with a length-128 vector by our
proposed scheme shows about 19× speedup compared with
the hybrid method [38] on a commodity machine (see detailed
benchmarks in Sec. IV).

Figure 5 illustrates GALA’s matrix-vector calculation. The
server first conducts the row-wise weight matrix encoding
which encodes w into no plaintext vectors in a diagonal
manner, as shown in step (a) in Figure 5. Compared with the
hybrid method, the row-wise weight matrix encoding of GALA
enables the server to directly multiply wi and [x]C , eliminating
the Perm operations on [x]C in step (b). Furthermore, the
encoding also benefits the noise management in the resultant
to-be-shared ciphertext as to be analyzed in Sec. III-C.

As a result, the server gets no multiplied ciphertext,
{[ui]C}, such that the first entry of [ui]C is a partial sum
of the i-th element of the matrix-vector multiplication wx.
For example, in step (b) of Figure 5, the first element A1M1
in [u0]C is a partial sum of the first element of wx (i.e.,
A1M1 + A2M2 + A3M3 + A4M4), and the first element
in [u1]C is a partial sum of the 2nd element of wx (i.e.,
B1M1 + B2M2 + B3M3 + B4M4). Then, the server conducts
rotations on each [ui]C , with totally (no− 1) Perm operations
excluding the trivial rotation by zero, to make the first entry
of [ui]C to be a partial sum of the first element of wx. Next,
the server adds all of the rotated [ui]C to obtain a single
ciphertext whose entries are repeatedly a partial sum of the
elements of wx. For example, in step (c) of Figure 5, [u1]C

is rotated by one position, and then added with [u0]C to get
one ciphertext, whose entries are the partial sum of the first
and second elements of wx.

Till now, the natural next step is to conduct log2
ni

no
RaS

iterations to get a final ciphertext whose first no entries are
the no elements of wx, i.e., the approach used by the hybrid
method [44], [38]. With GALA, we propose to eliminate
the log2

ni

no
time-consuming RaS iterations by integrating it

with the generation of shares for the GC-based nonlinear
computing.

As introduced in the hybrid method [44], [38], in order to
do the GC based nonlinear computing, the encrypted linear
output is shared as follows: (1) the server generates a random
vector; (2) the server subtracts the random vector from the
ciphertext (the encrypted linear output); (3) the subtracted
ciphertext is sent to the client, which subsequently decrypts
it and obtains its share.

Here we let the server encode a similar random vector
and subtract it from the ciphertext obtained in step (c) of
Figure 5. The subtracted ciphertext is sent to the client, which
decrypts ciphertext, and then applies log2

ni

no
RaS iterations on

the plaintext, as illustrated in step (d) of Figure 5. Similarly,
the server gets its share by log2

ni

no
plaintext RaS iterations

on its encoded random vector. Hence, in GALA, the server
replaces the ciphertext RaS operations by much faster plaintext
RaS operations. This significantly improves the computation
efficiency.

Furthermore, in order to make use of all slots in a
ciphertext, the client packs n

ni
input x to form a packed

vector [xpack]C . Then the server multiplies n
ni

encoded weight
vectors with [xpack]C by one ScMult operation. As a re-
sult, the server obtains nino

n multiplied ciphertext, which are
respectively rotated to enable the elementwise sum, finally
producing a single ciphertext that has n

no
to-be-accumulated

blocks. Without any further HE RaS iterations, the server then
starts to encode the random vector for the share generation.
The only extra computation is the plaintext RaS iteration(s) at
both the client and server, which is much faster compared to
the ones in HE domain.

As a result, GALA needs nino

n ScMult operations, (nino

n −
1) Perm operations, and (nino

n − 1) Add operations. It yields
one output ciphertext, and makes efficient utilization of ci-
phertext slots. Table II compares the complexity among the
naive method, the hybrid method (i.e., GAZELLE) and the
proposed row-encoding-share-RaS matrix-vector multiplica-
tion (GALA). We can see that the proposed method completely
eliminates the HstPerm operations and significantly reduces the
Perm operations.

TABLE II. COMPLEXITY COMPARISON OF THREE METHODS.

Method # Perm # HstPerm # ScMult # Add

Naive no log2 ni 0 no no log2 ni

GAZELLE log2
n
no

nino
n − 1

nino
n log2

n
no

+
nino

n − 1

GALA nino
n − 1 0

nino
n

nino
n − 1

7

M1 M3M2

M4 M6M5

M7 M9M8

F1 F3F2

F4 F6F5

F7 F9F8

K

M1 M2 M3
M4 M5 M6
M7 M8 M9

F5

M2 M3 M4
M5 M6 M7
M8 M9 M1

M3 M4 M5
M6 M7 M8
M9 M1 M2

F5 F5
F5 F5 F5
F5 F5 F5

M4 M5 M6
M7 M8 M9
M1 M2 M3

F8 F8 F8
F8 F8 F8
0 0 0

M7 M8 M9
M1 M2 M3
M4 M5 M6

0 0 0
F2 F2 F2
F2 F2 F2

F6 F6 0
F6 F6 0
F6 F6 0

M5 M6 M7
M8 M9 M1
M2 M3 M4

F9 F9 0
F9 F9 0
0 0 0

M8 M9 M1
M2 M3 M4
M5 M6 M7

0 0 0
F3 F3 0
F3 F3 0

0 F7 F7
0 F7 F7
0 0 0

M6 M7 M8
M9 M1 M2
M3 M4 M5

0 0 0
0 F1 F1
0 F1 F1

M9 M1 M2
M3 M4 M5
M6 M7 M8

0 F4 F4
0 F4 F4
0 F4 F4

M1 M2 M3
M4 M5 M6
M7 M8 M9

F5

M2 M3 M4
M5 M6 M7
M8 M9 M1

M3 M4 M5
M6 M7 M8
M9 M1 M2

F5 F5
F5 F5 F5
F5 F5 F5

M4 M5 M6
M7 M8 M9
M1 M2 M3

F8 F8 F8
F8 F8 F8
0 0 0

M7 M8 M9
M1 M2 M3
M4 M5 M6

0 0 0
F2 F2 F2
F2 F2 F2

F6 F6 0
F6 F6 0
F6 F6 0

M5 M6 M7
M8 M9 M1
M2 M3 M4

F9 F9 0
F9 F9 0
0 0 0

M8 M9 M1
M2 M3 M4
M5 M6 M7

0 0 0
F3 F3 0
F3 F3 0

0 F7 F7
0 F7 F7
0 0 0

M6 M7 M8
M9 M1 M2
M3 M4 M5

0 0 0
0 F1 F1
0 F1 F1

M9 M1 M2
M3 M4 M5
M6 M7 M8

0 F4 F4
0 F4 F4
0 F4 F4

0 1 2

3 4 -4

-3 -2 -1

Step (a)

f0 f1 f2

f3 f4 f-4

f-3 f-2 f-1

Step (b) Step (c)

0 1 2

3 4 -4

-3 -2 -1

f0

f3

f-3

f1

f4

f-2

f2

f-4

f-1

[x]c

Fig. 6. SISO convolution.

B. Kernel Grouping Based Convolution

In this subsection, we introduce GALA’s optimization for
convolution. Similar to the discussion on the matrix-vector
multiplication, we first begin with the basic convolution for
the Single Input Single Output (SISO), then go through the
state-of-the-art scheme for the Multiple Input Multiple Output
(MIMO) (i.e., the GAZELLE framework [38]). Finally we
elaborate GALA’s first-Add-second-Perm (kernel grouping)
scheme that achieves more efficient convolution computation.
We assume the server has co plaintext kernels with a size of
kw×kh×ci and the client sends to the server the encrypted data
in the size of uw × uh with ci channels. The server needs to
homomorphically convolve the encrypted data from the client
with its plaintext kernels to produce the encrypted output.

1) Basic SISO convolution: SISO is a special case of MIMO
where ci = co = 1. In this case, the encrypted data from
the client has a size of uw × uh with one channel (i.e., a 2D
image) and there is only one kernel with size kw × kh (i.e.,
a 2D filter) at the server. The SISO convolution is illustrated
by an example in Figure 6 where [x]C is the encrypted data
from the client and K is the plaintext kernel at the server.
The process of convolution can be visualized as placing the
kernel K at different locations of the input data [x]C . At each
location, a sum of an element-wise product between the kernel
and corresponding data values within the kernel window is
computed. For example, in Figure 6, the first value of the
convolution between [x]C and kernel K is (M1F5 + M2F6
+ M4F8 + M5F9). It is obtained by first placing the center
of K, i.e., F5, at M1 and then calculating the element-wise
product between K and the part of [x]C that is within K’s
kernel window (i.e., M1, M2, M4 and M5). The final result is
the sum of the element-wise product. The rest of convolution
values are calculated similarly by placing F5 at M2 to M9.

We now elaborate the convolution by an example when
F5 is placed at M5 (i.e., the central element of [x]C). In this
example, the kernel size is kwkh = 9. The convolution is
derived by summing the element-wise product between the 9
values in K and the corresponding 9 values around M5. This
can be achieved by rotating [x]C in a raster scan fashion [38].
Specifically, [x]C is converted to a vector by concatenating
all rows. Then, it is rotated by (kwkh − 1) rounds, with
half of them in the forward direction and the other half in
the backward direction. We denote πj as the rotation by j
positions, where a positive sign of j indicates the forward
direction and negative the backward direction, as shown in
step (a) of Figure 6.

The convolution is obtained by (1) forming the kernel

C1

C3

K11

K21

K12

K22

K1

[x1]c

C2

C4

K13 K14

K23 K24

K31

K41

K32

K42

K33 K34

K43 K44

K2

K3 K4

K11 K22

K21 K12

K13 K24

K14K23

K31 K42

K41

K13

K32

K24K33

K14

K44

K23 K34K43

Step (a)

K11 K22

K21 K12

C1

C2

C1

C2

C1K11 C2K22C1K21 C2K12 C2K12 C1K21

Perm

C3K13 C4K24C3K23 C4K14 C4K14 C3K23

Perm

C1K31 C2K42C1K41 C2K32 C2K32 C1K41

Perm

C3K33 C4K44C3K43 C4K34 C4K34 C3K43

Perm
Step (b)

K13 K24 C3

C4

K14K23

K31 K42

K41 K32

K33 K44

K34K43

C3

C4

[x0]c

Fig. 7. MIMO convolution.

coefficients according to the partial sum at the corresponding
location as shown in step (b) of Figure 6, (2) scaling the 9
rotated πj with the corresponding kernel coefficients, and (3)
summing up all scaled πj (see step (c)).

The rotation for [x]C is completed by HstPerm5. The scal-
ing is done by ScMult and the summation is achieved by Add.
Therefore, the SISO convolution requires a total of (kwkh−1)
HstPerm operations (excluding the trivial rotation by zero),
kwkh ScMult operations and (kwkh− 1) Add operations. The
output is one ciphertext6 which contains the convolution result.

2) Output Rotation based MIMO convolution
(GAZELLE): We now consider the more general case,
i.e., MIMO, where ci or co is not one. The naive approach
is to directly apply SISO convolution by first encrypting the
ci input channels into ci ciphertext, {[xi]C}. Each of the
co kernels includes ci filters. Each [xi]C is convolved with
one of the ci filters by SISO and the final convolution is
obtained by summing up all of the ci SISO convolutions.
As a result, the naive approach requires ci(kwkh − 1)
HstPerm operations (for ci input channels), cicokwkh ScMult
operations and co(cikwkh − 1) Add operations. There are co
output ciphertext.

Given the number of slots n in a ciphertext is usually larger
than the channel size uwuh, the ciphertext utilization (i.e., the
meaningful slots that output desired results) in the co output
ciphertext is low.

In order to improve the ciphertext utilization and com-
putation efficiency for MIMO convolution, the state-of-the-
art method (i.e., the output rotation [38]) first packs cn
channels of input data into one ciphertext, which results in ci

cn
input ciphertext (see Figure 7 where the four input channels
form two ciphertext, each of which includes two channels).
Meanwhile, the co kernels are viewed as a co × ci kernel
block and each row of the block includes ci 2D filters for one
kernel. Then the MIMO convolution is viewed as a matrix-
vector multiplication where the element-wise multiplication is
replaced by convolution. As each ciphertext holds cn channels,
the kernel block is divided into coci

c2n
blocks (see step (a) in

Figure 7, where the kernel block is divided into K1 to K4).

Next, each divided block is diagonally encoded into cn
vectors such that the first filters in all vectors are in the first

5With a common DecPerm operation.
6We assume the input size uwuh is smaller that the ciphertext size n.

8

C1

C3

K11

K21

K12

K22

K1

C2

C4

K13 K14

K23 K24

K31

K41

K32

K42

K33 K34

K43 K44

K2

K11 K22

K21 K12

K13 K24

K14K23

K31 K42

K41

K13

K32

K24K33

K14

K44

K23 K34K43

Step (a)

K11 K22

K21 K12

C1

C2

C1

C2

C1K11 C2K22

C1K21 C2K12

C3K13 C4K24

C3K23 C4K14

Perm

C1K31 C2K42

C1K41 C2K32

C3K33 C4K44

C3K43 C4K34

Step (b)

K13 K24 C3

C4

K14K23

K31 K42

K41 K32

K33 K44

K34K43

C3

C4

C1K11
+

C3K13

C2K22
+

C4K24

C3K23
+

C1K21

C4K14
+

C2K12

C3K23
+

C1K21

C4K14
+

C2K12

C3K33
+

C1K31

C4K44
+

C2K42

Perm

C1K41
+

C3K43

C2K32
+

C4K34

C1K41
+

C3K43

C2K32
+

C4K34

[x1]c

[x0]c

Fig. 8. Kernel grouping based MIMO convolution.

column of the kernel block (see the four groups of vectors in
step (a) of Figure 7). In this way, each input ciphertext can
directly convolve with the vectors in each divided block by
SISO, and the convolution for each divided block is obtained
by rotating the cn convolved vectors to the same kernel order
as the diagonal one and summing them up (see step (b)).

Finally, the convolution for cn kernels is calculated by
adding the convolution of ci

cn
blocks associated with the same

kernels as illustrated in step (b) of Figure 7.

Clearly, there are co
cn

output ciphertext, as expected. For
each of the coci

c2n
blocks, there are total cn SISO-like convo-

lutions, requiring cnkwkh ScMult operations, (cn − 1) Perm
operations and (cnkwkh − 1) Add operations. Next, there are
ci
cn

block convolutions which are associated with the same
kernel order. Thus they are added up to obtain the final con-
volution result. Meanwhile, the rotation group for each input
ciphertext is reused to convolve with different kernel blocks.
Thus there are total ci(kwkh−1)

cn
HstPerm operations with ci

cn
common DecPerm operations. In all, the MIMO convolution
needs a total of cico

c2n
(cn − 1) Perm, ci

cn
(kwkh − 1) HstPerm,

kwkh
cico
cn

ScMult and co
cn
(cikwkh − 1) Add operations.

3) Kernel Grouping Based MIMO convolution (GALA):
One key observation on the above MIMO convolution is
that, each of the coci

c2n
blocks needs (cn − 1) expensive Perm

operations in order to get the convolution for that block.
However, we actually do not need to get the convolution for
each block. As our goal is to get the convolution for each
kernel, the blocks that are associated with the same kernel
are combined in our proposed first-Add-second-Perm approach
(kernel grouping) to reduce the Perm cost. Specifically, in step
(a) of Figure 8, the whole kernel block is divided into two
blocks K1 and K2 such that each block is the combination
of ci

cn
cn-by-cn divided blocks, which correspond to the same

kernels (i.e., the first and second kernel in K1 and the third
and fourth kernel in K2).

For each newly formed block, all of the vectors are first
convolved with the corresponding input ciphertext by SISO-
like convolution. Then the convolved vectors that are associ-
ated with the same kernel order are first added together (see
the addition of convolved vectors before rotation in step (b) of
Figure 8). Finally, these added vectors are rotated to the same
kernel order and summed up to obtain the convolution result
(see the rotation and final addition for each block in step (b)

of Figure 8).

This kernel grouping calculation results in (cn − 1) Perm
operations for each of co

cn
newly formed blocks, which re-

duces the Perm complexity by a factor of ci
cn

compared with
GAZELLE’s MIMO convolution. This reduction is nontrivial
especially for the state-of-the-art neural networks such as
ResNets [32], where ci

cn
can be 256. This is because these

neural networks contain a large number of large-size feature
maps in order to capture the complex input features [62], [40],
[32].

Similar to the output rotation based MIMO convolution
discussed above, there are co

cn
output ciphertext in the proposed

scheme. For each of the co
cn

newly formed blocks, there are ci
SISO-like convolutions. Then for each of the cn kernel orders,
there are ci

cn
convolutions to be summed up, which results in

cn added convolutions. These added convolutions are further
rotated to the same kernel order and summed up to get the
final convolution. Therefore, the proposed MIMO convolution
requires a total of co

cn
(cn − 1) Perm, ci

cn
(kwkh − 1) HstPerm,

kwkh
cico
cn

ScMult, and co
cn
(cikwkh − 1) Add operations.

Table III compares the overall complexity for convolution
computations. GALA’s kernel grouping approach reduces the
expensive Perm operations by a factor of ci

co
without increasing

other operations compared with the output rotation based
MIMO convolution (i.e., the GAZELLE framework). The
reduction in Perm operations leads to a significant speedup.
Specifically, GALA shows about 14× speedup compared with
GAZELLE in the convolution between input data with a size
of 16×16 with 2048 channels, and 512 kernels with a size of
1×1@2048 on a commodity machine (see detailed benchmarks
in Sec. IV).

TABLE III. COMPLEXITY COMPARISON OF CONVOLUTION.

Method # Perm # HstPerm] # ScMult # Add

GAZELLE cico(cn−1)

c2n

ci(kwkh−1)

cn

cicokwkh
cn

co(cikwkh−1)

cn

GALA co(cn−1)
cn

ci(kwkh−1)

cn

cicokwkh
cn

co(cikwkh−1)

cn

]Rotations of the input with ci
cn

common DecPerm operations.

C. Noise Management

The packed HE (e.g., the BFV scheme) introduces noise in
the ciphertext which theoretically hides the original message
[38], [13]. However, the noise management is critical to the
correct decryption of ciphertext after a series of HE opera-
tions. We will show that GALA has better noise management
compared with GAZELLE.

Based on the computation complexity of matrix-vector
multiplication and convolution, along with the noise change
for HE operations as described in Sec. II-C, Table IV shows
the noise growth of different schemes. As for the matrix-
vector multiplication, GALA has a lower noise growth while
keeping the number of output ciphertext as small as one7.
As for the convolution computation, GALA reduces the noise

7Note that the noise in Table IV is calculated by assuming (nino
n

−1) ≥ 0.
The noise of GALA is still lower than that of GAZELLE when (nino

n
−1) <

0 as it means one ciphertext can hold data with size no × ni, which
only involves one ScMult operation in GALA, and GAZELLE needs to
subsequently conduct a series of RaS operations.

9

term associated with rotation by a factor of ci
cn

compared to
GAZELLE. This is nontrivial especially for state-of-the-art
neural networks such as ResNets [32], where ci

cn
can be 256.

The number of output ciphertext is also maintained as small as
co
cn

. Overall, GALA features a lower noise growth and lower
computation complexity compared with GAZELLE.

TABLE IV. COMPARISON OF NOISE MANAGEMENT.

Matrix-vector Multiplication
Method Noise after computation # Cipher
Naive niη0ηmult + (ni − 1)ηrot no

GAZELLE niη0ηmult + [nino−n
no

ηmult +
n−no
no

]ηrot 1
GALA nino

n
η0ηmult + (nino

n
− 1)ηrot 1

Convolution Computation
Method Noise after computation # Cipher

GAZELLE ciη∆ + ci
cn

(cn − 1)ηrot
co
cn

GALA ciη∆ + (cn − 1)ηrot
co
cn

η∆ = kwkhηmultη0 + (kwkh − 1)ηrotηmult

D. System Security

GALA is based on the same security framework as
GAZELLE [38]. The security of linear computation in GALA
is fully protected by the security of HE (e.g., the BFV
scheme [13], [23]). The nonlinear computation (which is
not the focus of this paper) is protected by Garbled Cir-
cuits (GC) [72] or its alternatives. The security of GC-based
nonlinear computation has been proven in TASTY [33] and
MP2ML [12].

IV. EVALUATION

We conduct the experiments in both LAN and WAN set-
tings. The LAN setting is implemented on a Gigabit Ethernet
in our lab between two workstations as the client and server,
respectively. Both machines run Ubuntu, and have an Intel i7-
8700 3.2GHz CPU with 12 threads and 16 GB RAM. The
WAN setting is based on a connection between a local PC and
an Amazon AWS server with an average bandwidth 200Mbps
and round-trip time around 13ms. We have downloaded the
codes released by GAZELLE8, DELPHI9 and CrypTFlow210,
and run all experiments on the same hardware devices and
network settings. We conduct a series of experiments under
various neural network architectures. In each experiment, we
first run the baseline algorithm (i.e., GAZELLE, DELPHI or
CrypTFlow2) to obtain the baseline total runtime (including
online runtime and offline runtime), and then replace the linear
computation of the baseline algorithm by GALA to get a new
total runtime, which is then used to compute the speedup.

While the codes for GAZELLE, DELPHI and CrypTFlow2
are implemented in different ways (for example, GAZELLE is
based on its crypto platform while DELPHI and CrypTFlow2
are based on the Microsoft SEAL library), we focus on
the speedup of GALA on top of each of them. We also
set the cryptographic parameters in line with GAZELLE: 1)
Parameters for both HE and GC schemes are selected for a
128-bit security level. 2) A plaintext modulus p of 20 bits
is enough to store all the intermediate values in the network

8Available at https://github.com/chiraag/gazelle mpc
9Available at https://github.com/mc2-project/delphi
10Available at https://github.com/mpc-msri/EzPC/tree/master/SCI

computation. 3) The ciphertext modulus q is chosen to be
a 60-bit pseudo-Mersenne prime that is slightly smaller than
the native machine word on a 64-bit machine to enable lazy
modular reductions. 4) The selection of the number of slots
is the smallest power of two that allows for a 128-bit security
which in our case is n = 2048. We refer readers to [38] for
more details about the parameter selection.

A. Microbenchmarks

In this section, we benchmark and compare the runtime of
GALA’s linear optimization (i.e., matrix-vector multiplication
and convolution computation) with state-of-the-art approaches.
We claim the same communication cost and inference accuracy
with GAZELLE and achieve improved computation efficiency.

1) Matrix-Vector Multiplication: Table V compares the
computation complexity of GALA’s matrix-vector optimization
with GAZELLE and two other optimization schemes (i.e.,
a diagonal method (Diagonal) [31] and an extended method
(Extended) [17]). We can see that GALA largely reduces
the expensive Perm operation to zero in our cases (including
the HstPerm) while GAZELLE needs up to 11 Perm and
Extended [17] needs up to 520 Perm (including HstPerm).
On the other hand, GALA also maintains a light overhead
for HE multiplication/addition, i.e., only one multiplication,
compared with other three optimizations, e.g., Diagonal [31]
and Extended [17] involve up to 2048 multiplication/addtion.

The runtime results for matrix-vector multiplication are
summarized in Table VI, which includes the original runtime
of GAZELLE, DELPHI and CrypTFlow2, and the speedup
of GALA on top of each. We take the share-RaS calculation
cost (see the plaintext computing for final share at the client
in step (d) of Figure 5) as part of the runtime cost of
GALA for fair comparison. Meanwhile, as multiple copies are
packed in one ciphertext, the HstPerm operation includes a
common DecPerm to enable hoist optimization for rotation
(see the details in [38]). As can be seen from Table VI,
GALA’s optimization gains a large speedup due to the row-
encoding-share-RaS module, which reduces the costly Perm,
Mult, and Add operations for a series of RaS calculation.
Specifically, GALA achieves the speedup of 1795×, 208× and
57× over the Diagonal [31] under different matrix dimensions
in the LAN setting. This benefit stems from the fact that
the computation complexity of the Diagonal is related to
the input dimension ni, which is always large in the state-
of-the-art neural networks such as AlexNet [40], VGG [62]
and ResNet [32]. For a similar reason, GALA significantly
outperforms the Extended method [17].

Meanwhile, GALA has a speedup of 59×, 13× and 19×
over GAZELLE under different matrix dimensions in the LAN
setting. This computation gain comes from the HstPerm-free
scheme (i.e., row-encoding) and elimination of RaS computa-
tion (i.e., share-RaS scheme) compared to GAZELLE, which
is particularly effective for large ni

no
ratio and large ciphertext

slots (see the superior performance for the neural network with
a dimension of 1× 2048). These features suit well to current
convolutional neural networks which have tens of thousands
of values to be fed into the fully connected layers [62], [32].

Compared with DELPHI and CrypTFlow2, GALA
achieves a speedup for weight matrix multiplication up to

10

TABLE V. COMPUTATION COMPLEXITY OF MATRIX-VECTOR
MULTIPLICATION.

Dimension (no × ni): 1×2048
Metric Diagonal[31] GAZELLE Extended[17] GALA
Perm 0 11 0 0

HstPerm\ 2047 0 2047 0
ScMult 2048 1 2048 1

Add 2047 11 2047 0
Dimension (no × ni): 2×1024

Metric Diagonal[31] GAZELLE Extended[17] GALA
Perm 0 10 9 0

HstPerm\ 1023 0 511 0
ScMult 1024 1 512 1

Add 1023 10 520 0
Dimension (no × ni): 16×128

Metric Diagonal[31] GAZELLE Extended[17] GALA
Perm 0 7 4 0

HstPerm\ 127 0 7 0
ScMult 128 1 8 1

Add 127 7 11 0
\Rotations of the input with a common DecPerm

TABLE VI. RUNTIME COST OF MATRIX-VECTOR MULTIPLICATION.

Dimension (no × ni): 1×2048

Approach Comm. LAN (ms) WAN (ms)
(MB) Time Speedup Time Speedup

Diagonal[31] 0.03 57 1795× 75 4×
Extended[17] 0.03 57.5 1796× 77 4×

GAZELLE[38] 0.03 1.9 59× 19.3 1×
DELPHI[46] 0.14 28 700× 59.5 3.2×

CrypTFlow2[54] 0.13 28 700× 46.2 2.5×
Dimension (no × ni): 2×1024

Diagonal[31] 0.03 28 208× 47 2.5×
Extended[17] 0.03 16 116× 36 1.9×

GAZELLE[38] 0.03 1.8 13× 19 1×
DELPHI[46] 0.13 26.5 176× 57.8 3.1×

CrypTFlow2[54] 0.13 26.5 176× 44.7 2.4×
Dimension (no × ni): 16×128

Diagonal[31] 0.03 3.7 57× 21 1×
Extended[17] 0.03 1 16× 20.4 1×

GAZELLE[38] 0.03 1.2 19× 21 1×
DELPHI[46] 0.13 20.5 292× 51.7 2.8×

CrypTFlow2[54] 0.13 20.5 292× 38.7 2.1×

700× in the LAN setting. This is largely due to GALA’s deep
optimization for HE computation. We also notice that GALA’s
speedup slows down in WAN which is due to the communi-
cation rounds needed for conversions between HE and GC.
Therefore it leads to significant round time in total compared
with the light HE computation overhead. For example, the
round-trip time is around 13 milliseconds while the GALA’s
optimized HE cost is within one millisecond.

2) Convolution Computation: We benchmark and compare
the computation complexity and runtime of GALA with
GAZELLE, DELPHI and CrypTFlow2 for convolution cal-
culation. The details are illustrated in Table VII and VIII.
As for the computation complexity, we compare GALA with
GAZELLE whose privacy-preserved convolution calculation
over HE is one of the most optimized methods in current liter-
ature. While introducing no extra HE multiplication/addition,
GALA reduces the most expensive Perm, i.e., DecPerm and
HstPerm, by up to 59× for input size of 16×16@2048 with
kernel size of 1×1@512. This block with large channels and
small kernel size is featured in state-of-the-art neural networks
such as ResNets [32], which makes GALA suitable to boost

TABLE VII. COMPUTATION COMPLEXITY OF CONVOLUTION.

Input † Kernel ‡ Metric GAZELLE[38] GALA

16×16@128 1×1@128

DecPerm 1792 112
HstPerm 1792 112
ScMult 2048 2048

Add 2032 2032

16×16@2048 1×1@512

DecPerm 114944 2048
HstPerm 114688 1792
ScMult 131072 131072

Add 130944 130944

16×16@128 3×3@128

DecPerm 1808 128
HstPerm 1920 240
ScMult 18432 18432

Add 18416 18416

16×16@2048 5×5@64

DecPerm 14592 312
HstPerm 20480 6200
ScMult 409600 409600

Add 409592 409592
†Dim. is in the form of uw × uh@ci
‡Dim. is in the form of kw × kh@co with ci channels per kernel

TABLE VIII. RUNTIME COST OF CONVOLUTION.

Dimension (Input Dim.†, Kernel Dim.‡): 16×16@128, 1×1@128

Approach Comm. LAN (ms) WAN (ms)
(MB) Time Speedup Time Speedup

GAZELLE 0.5 321 9× 408 3.2×
DELPHI 2.1 391 3.1× 502 2.3×

CrypTFlow2 2 389 3.1× 482 2.2×
Dimension (Input Dim.†, Kernel Dim.‡): 16×16@2048 , 1×1@512
GAZELLE 8 20583.5 14× 21784 8.7×
DELPHI 31 17939 4.4× 19205 3.7×

CrypTFlow2 29 17928 4.4× 19101 3.6×
Dimension (Input Dim.†, Kernel Dim.‡): 16×16@128, 3×3@128

GAZELLE 0.5 457 2.6× 547 2.1×
DELPHI 2 2563.6 5.8× 2671 5×

CrypTFlow2 1.9 2559 5.8× 2648 5×
Dimension (Input Dim.†, Kernel Dim.‡): 16×16@2048, 5×5@64

GAZELLE 8 5875.2 1.7× 7073 1.5×
DELPHI 31 56499 7.4× 57765 6.3×

CrypTFlow2 29 56409 7.4× 57582 6.5×
†Dim. is in the form of uw × uh@ci
‡Dim. is in the form of kw × kh@co with ci channels per kernel

the modern networks.

As for runtime comparison shown in Table VIII, GALA
demonstrates 9×, 14× and 2.6× speedup over GAZELLE
with different input and kernel dimensions in LAN setting.
As analyzed in Sec. III-B, due to the fundamental complexity
reduction by GALA’s kernel grouping approach, GALA re-
duces the expensive Perm operation by a factor of ci

cn
. As we

mention above, the large speedup is achieved under large input
channels and small kernel size, the proposed approach fits very
well with the state-of-the-art networks such as ResNets [32],
where the feature maps are always with large channels (which
results in large ci while cn is fixed) and small kernels (that are
usually 1×1, 3×3 and 5×5 at most, which benefit small HE
multiplication/addition). Meanwhile, the speedup over DEL-
PHI and CrypTFlow2 is up to 7.4× in the LAN setting. On
the other hand, the speedup of GALA in the WAN setting
is also decent, up to 8.7×, 6.3× and 6.5× for GAZELLE,
DELPHI and CrypTFlow2, respectively. This is because the
computation cost of convolution increases accordingly with
regard to the communication cost, compared with the case of
matrix-vector multiplication.

11

TABLE IX. COMPUTATION COMPLEXITY OF STATE-OF-THE-ART
NEURAL NETWORK MODELS.

Net. Frameworks Metric GAZELLE[38] GALA

MLP
Perm 70 55

ScMult 56 56
Add 70 55

AlexNet

Perm 40399 1157
DecPerm 143 142
HstPerm 1493 1492
ScMult 481298 481298

Add 481096 481089

VGG

Perm 66055 2115
DecPerm 161 160
HstPerm 1283 1280
ScMult 663556 663556

Add 663370 663363

ResNet-18

Perm 180375 5921
DecPerm 483 482
HstPerm 3467 3464
ScMult 1399363 1399363

Add 1398778 1398771

ResNet-50

Perm 1464119 30615
DecPerm 2819 2818
HstPerm 3863 3848
ScMult 2935408 2935408

Add 2931734 2931727

ResNet-101

Perm 2560823 64887
DecPerm 6083 6082
HstPerm 8215 8200
ScMult 5302896 5302896

Add 5294326 5294319

ResNet-152

Perm 3463991 95127
DecPerm 8963 8962
HstPerm 12055 12040
ScMult 7252592 7252592

Add 7239894 7239887

TABLE X. RUNTIME COST OF CLASSIC MODEL.

Network Model: MLP

Approach Comm. LAN (ms) WAN (ms)
(MB) Time Speedup Time Speedup

SecureML 0.21 31.9 2.6× 79.3 1.5×
MiniONN 4.4 14.1 1× 227.6 1×
GAZELLE 0.21 15 1× 84.9 1×
DELPHI 84 204.5 3.1× 3658.3 1×

CrypTFlow2 12.4 246 2.3× 780.6 1.2×

B. Performance with Classic Networks

In this section, we benchmark the GALA performance
on a 4-layer Multi Layer Perceptron (MLP)11 which is also
adopted in other privacy preserving frameworks including
GAZELLE, SecureML [48] and MiniONN [44] as a baseline
network, as well as state-of-the-art neural network models
including AlexNet [40], VGG [62], ResNet-18 [32], ResNet-
50 [32], ResNet-101 [32], and ResNet-152 [32]. We use
MNIST dataset [3] for the MLP and CIFAR-10 dataset [1]
for state-of-the-art networks.

Table IX shows computation complexity of the proposed
GALA compared with GAZELLE. We can see that GALA
reduces GAZELLE’s Perm by 34×, 31×, 30×, 47×, 39×,
and 36× for AlexNet, VGG, ResNet-18, ResNet-50, ResNet-
101, and ResNet-152, respectively. The fundamental base for
this speedup lies in GALA’s deep optimization for HE-based
linear computation. We also notice that GALA achieves limited

11The network structure is 784-128-128-10.

TABLE XI. RUNTIME COST OF STATE-OF-THE-ART MODELS.

Network Model: AlexNet

Approach Comm. LAN (ms) WAN (ms)
(MB) Time Speedup Time Speedup

GAZELLE 17.45 11,019.2 2.5× 13,669.6 1.9×
DELPHI 617 90,090.1 2.9× 114,955 2×

CrypTFlow2 116.6 69,133.6 6.5× 73,876.8 4.8×
OT-based 2,108 226,431.7 21× 310,985.6 20×CrypTFlow2

Network Model: VGG
GAZELLE 22.8 18,067.4 2.7× 21,566.2 2×
DELPHI 718.5 123,198.4 2.9× 152,176.4 1.5×

CrypTFlow2 150 97,038.9 6× 103,169.1 4.6×
OT-based 5,063.7 340,342.9 21× 543,242 24×CrypTFlow2

Network Model: ResNet-18
GAZELLE 54 42,748.3 3.2× 51,032.7 2.3×
DELPHI 2,033.9 250,618.4 2.6× 332,524.2 1.9×

CrypTFlow2 354 190,684.7 5.7× 205,146.8 4.3×
OT-based 6,292.1 650,989.7 19.5× 903,492.6 19×CrypTFlow2

Network Model: ResNet-50
GAZELLE 297.1 276,886.8 8.3× 321,600.2 4×
DELPHI 10,489 746,568.8 1.7× 1167,566.8 1.4×

CrypTFlow2 1,831 425,454.4 4.5× 499,429.6 2.9×
OT-based 13,104 1364,463.2 14.4× 3307,902.6 19×CrypTFlow2

Network Model: ResNet-101
GAZELLE 603.1 486,745.2 7.7× 577,454.9 3.7×
DELPHI 22,199.4 1411,383.8 1.7× 2302,091.8 1.3×

CrypTFlow2 3,582.8 777,057.4 4.2× 921,735.6 2.8×
OT-based 23,857 2467,606.1 13.3× 6006,071.4 18.2×CrypTFlow2

Network Model: ResNet-152
GAZELLE 873.1 659,833.7 7.5× 786,587 3.6×
DELPHI 29,433 1975,798.9 1.6× 3157,176.8 1.3×

CrypTFlow2 5,141 1065,103.4 4.1× 1272,772.6 2.7×
OT-based 32,804 3379,188.7 13× 8245,124.5 17.5×CrypTFlow2

reduction of Perm in MLP (from 70 to 55). This is due to
the small ratio between the number of slots in the ciphertext
and output dimension in each layer, i.e, n

no
, which limits the

performance gain. The limited gain is also observed in Table X
which shows the system speedup of GALA over GAZELLE,
CrypTFlow2, DELPHI, SecureML and MiniONN. Specifically,
GALA boosts CrypTFlow2 by 2.3× in the LAN setting.
SecureML also gains 2.6× in the LAN setting. Meanwhile,
GALA’s performance is similar to GAZELLE and MiniONN.
The is due to the relatively small network size and noticeable
communication overhead (i.e., the large round time in total
compared with computation cost). Nevertheless, none of the
competing schemes achieves a better performance than GALA.

It is worth pointing out that the MLP network is not
widely adopted in practical scenarios. On the other hand, as
the state-of-the-art deep neural networks utilize large channels
and small-size kernels to capture data features while the size
of feature maps is large, GALA is especially effective for
accelerating such large state-of-the-art network models.

Table XI shows the runtime of GAZELLE, DELPHI and
CrypTFlow2, and the speedup of GALA on top of each. By
reducing HE operations, especially Perm operations, GALA
achieves noticeable boost over the GAZELLE, DELPHI and
CrypTFlow2 frameworks. Specifically, the results show that
GALA boosts GAZELLE by 2.5× (from 11s to 4.3s), 2.7×
(from 18s to 6.5s), 3.2× (from 43s to 13s), 8.3× (from 276s
to 33s), 7.7× (from 486s to 62s), and 7.5× (from 659s to
87s) in LAN setting, on AlexNet, VGG, ResNet-18, ResNet-

12

TABLE XII. PERCENTAGES OF LINEAR COMPUTATION IN
STATE-OF-THE-ART NEURAL NETWORK MODELS.

Networks GAZELLE DELPHI CrypTFlow2 Plaintext
AlexNet 97.7 76.9 98.7 98.5

VGG 98.2 77.9 98.8 98.1
ResNet-18 98.3 75.1 98.6 98.9
ResNet-50 98.5 55.2 96.8 97.9

ResNet-101 98.4 53.2 96.5 98.3
ResNet-152 98 52 96.4 98.4

50, ResNet-101, and ResNet-152, respectively.

CrypTFlow2 (CCS’20) is the latest framework for pri-
vacy preserved neural networks. It optimizes the nonlinear
operations of DELPHI, and adopts a similar HE scheme of
DELPHI for linear operations. GALA is an efficient plug-and-
play module to optimize the linear operations of CrypTFlow2.
As shown in the Tables VI and VIII, GALA’s optimization
of linear operations can further boost CrypTFlow2 by 700×
and 7.4× for matrix-vector multiplication and convolution
in the LAN setting, respectively. This speedup stems from
GALA’s streamlined HE calculation compared with the one
of CrypTFlow2. Slow-down is observed in the WAN setting,
but CrypTFlow2 can still gain up to 6.5× speedup for convo-
lution due to the computation-intensive nature for large input
channels with small kernel dimensions featured in state-of-the-
art network models. As for the overall system speedup, GALA
can boost CrypTFlow2 by 6.5×, 6×, 5.7×, 4.5×, 4.2×, and
4.1× in LAN, and by 4.8×, 4.6×, 4.3×, 2.9×, 2.8×, and 2.7×
in WAN, based on the aforementioned network architectures.

It might appear anti-intuitive that while CrypTFlow2 is
a more recent system than DELPHI, the speedup of GALA
over DELPHI is smaller than its speedup over CrypTFlow2.
This is because CrypTFlow2 has optimized the nonlinear part
of DELPHI, significantly reducing its runtime. As a result,
the runtime of linear operations in CrypTFlow2 accounts for
a very high percentage as illustrated in Table XII. Hence
CrypTFlow2 can benefit more from GALA’s optimization of
linear computation, resulting in a higher speedup in terms of
the overall runtime. It is worth pointing out that the ability
to accelerate CrypTFlow2 is highly desirable since it is the
latest privacy-preserving framework. Meanwhile, we also show
GALA’s speedup on top of the OT-based CrypTFlow2 which
relies on OT to complete the linear computation. As significant
communication cost, including round cost, is involved in
OT, the overhead of linear computation, especially in the
WAN setting, increases compared with HE-based CrypTFlow2,
which results in greater speedup achieved by GALA.

Next we examine the runtime breakdown of different layers
for those six state-of-the-art networks as shown in Fig. 9,
which allows detailed observation. Note that the layer indexing
here is slightly different from the original plaintext model
for the sake of HE operations, e.g., the nonlinear activation
or pooling following a convolution operation is counted as a
separate layer. The x-axis of each subfigure in Fig. 9 shows
the layer index of a sequence of linear (convolution or matrix-
vector multiplication) and nonlinear (activation or pooling)
layers that constitute each network model. The y-axis plots the
accumulated running time (milliseconds) up to a layer, and the
speedup of GALA over GAZELLE in each layer.

For example, Fig. 9 (a) illustrates the result for AlexNet.

TABLE XIII. ACCURACY WITH FLOATING AND FIXED POINT IN
STATE-OF-THE-ART NEURAL NETWORK MODELS. TOP-1 ACCURACY: ONLY

THE PREDICTION WITH THE HIGHEST PROBABILITY IS A TRUE LABEL;
TOP-5 ACCURACY: ANY ONE OF THE FIVE MODEL PREDICTIONS WITH

HIGHER PROBABILITY IS A TRUE LABEL.

Network Models Floating-point Fix-point
Top1 Top5 Top1 Top5

AlexNet 78.89% 97.32% 78.43% 97.26%
VGG 92.09% 99.72% 92.05% 99.68%

ResNet-18 93.33% 99.82% 93.21% 99.81%
ResNet-50 93.86% 99.85% 93.86% 99.84%

ResNet-101 94.16% 99.79% 94.12% 99.79%
ResNet-152 94.23% 99.81% 94.15% 99.79%

The most time-consuming computation in GAZELLE is in
layer “6”, “8” and “10”, which are all convolution com-
putations. This is evidenced by the large jump of runtime
from these layers to the next layer. GALA decreases the time
for these linear computations by nearly 3×. Meanwhile, the
nonlinear layers (activation/pooling) have a speedup of 1, as
GALA has the same computation cost as GAZELLE in those
layers. Since the nonlinear computation contributes to only
a small portion of the total cost, it does not significantly
affect the overall performance gain of GALA that focuses
on accelerating the linear computation. Note that GALA does
not benefit much in the first layer of AlexNet, i.e., the first
convolution, as the input has only three channels. However,
the speedup for the following more costly convolutions allows
GALA to effectively reduce the overall cost. A similar obser-
vation can be seen from the result on VGG. As for the four
ResNets frameworks, the most significant performance gain
stems from the convolution with 1×1 kernels. As ResNets
repeat the blocks with multiple 1×1 convolution kernels,
GALA effectively accelerates this type of convolution due to
its deeply optimized linear computation mechanism (see details
in Sec. III-B), thus reducing the overall runtime. Similar trend
is observed for DELPHI and CrypTFlow2.

It is also worth mentioning that GALA focuses on optimiz-
ing the HE-based linear operations only and can be integrated
into a baseline model (such as GAZELLE, CryptFlow2, or
DELPHI). The proposed approach does not introduce approx-
imation. Hence it does not result in any accuracy loss com-
pared to the baseline privacy preserved model. Furthermore,
compared with the original plaintext model, the only possible
accuracy loss in GALA comes from the quantification of
floating point numbers to fixed point numbers in the HE op-
erations. Such quantification is indispensable in all HE-based
frameworks including CryptFlow2. From our experiments, the
model accuracy loss due to quantification is negligible, as
shown in Table XIII.

V. CONCLUSION AND FURTHER DISCUSSIONS

This paper has focused on a deep optimization on the HE-
based linear computation in privacy-preserved neural networks.
It aims to minimize the Perm operations, thus substantially
reducing the overall computation time. To this end, we have
proposed GALA: Greedy computAtion for Linear Algebra,
which views the HE-based linear computation as a series of
Homomorphic Add, Mult and Perm operations and chooses
the least expensive operation in each linear computation step
to reduce the overall cost. GALA has made the following

13

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10111213
0

1

2

3

4

5

6

7

8
S

pe
ed

up

Speedup
GAZELLE
GALA

0

0.5

1

1.5

2
104

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

Speedup
GAZELLE
GALA

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
104

0 5 10 15 20 25 30 35 40
0

5

10

15

Speedup
GAZELLE
GALA

0

0.5

1

1.5

2

2.5

3
105

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

Speedup
GAZELLE
GALA

0

1

2

3

4

5
105

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

Speedup
GAZELLE
GALA

0

1

2

3

4

5

6

7

A
cc

um
ul

at
ed

 R
un

tim
e

(m
s)

105

0 50 100 150 200 250 300

Layer Index

0

2

4

6

8

10

12

14

16

18

Speedup
GAZELLE
GALA

(a) (b) (c)

(d)

(e)

(f)

Fig. 9. Layer-wise accumulated runtime and GALA speedup over GAZELLA on different networks: (a) AlexNet; (b) VGG; (c) ResNet-18; (d) ResNet-50; (e)
ResNet-101; (f) ResNet-152. The bar with values on the left y-axis indicates speedup, and the curve with values on the right y-axis indicates the accumulated
runtime. The layers with speedup of 1 are nonlinear layers.

contributions: (1) It has introduced a row-wise weight matrix
encoding with combined share generation (i.e., row-encoding-
share-RaS (Rotated and Sum)) to reduce the Perm operations
for dot product. (2) It has designed a first-Add-second-Perm
approach (named kernel grouping) to reduce the Perm oper-
ations for convolution. As such, GALA efficiently reduces
the cost for the HE-based linear computation, which is a
critical building block in almost all of the recent frameworks
for privacy-preserved neural networks, including GAZELLE,
DELPHI, and CrypTFlow2. With its deep optimization of
the HE-based linear computation, GALA can be a plug-and-
play module integrated into these systems to further boost
their efficiency. Our experiments show that GALA achieves
a significant speedup up to 700× for the dot product and
14× for the convolution computation under different data
dimensions. Meanwhile, GALA demonstrates an encouraging
runtime boost by 2.5×, 2.7×, 3.2×, 8.3×, 7.7×, and 7.5×
over GAZELLE and 6.5×, 6×, 5.7×, 4.5×, 4.2×, and 4.1×
over CrypTFlow2, on AlexNet, VGG, ResNet-18, ResNet-50,
ResNet-101, and ResNet-152, respectively.

It is worth pointing out that even with the significant
progress toward privacy preserved machine learning in recent
years (including this work), there still exists a large perfor-
mance gap between the plaintext system (generally below a
second) and the privacy preserved system (ranging from sec-
onds to hundreds of second). Nevertheless, it is still promising
to attain the long-term goal for practical implementation of
privacy preserved machine learning. First, the privacy pre-
served machine learning system is to be deployed on clouds
with abundant computation power. Hence, even though it takes
significantly more time than the plaintext system on the same
local hardware, running it on clouds with parallel computing
infrastructure can significantly reduce the gap. Second, the
research efforts on the in-depth optimization of the privacy-
preserved computation further help to close the runtime gap.
Altogether, the combination of advanced algorithms and cloud
computation resources may enable the privacy-preserved sys-
tem to achieve a response time well suited for some practical
applications in the near future.

14

ACKNOWLEDGMENT

The authors would like to thank the shepherd and anony-
mous reviewers for the constructive and insightful guidance
and comments. This work was supported in part by the Na-
tional Science Foundation under Grant CNS-1828593, OAC-
1829771, EEC-1840458, and CNS-1950704, Office of Naval
Research under Grant N00014-20-1-2065, and the Common-
wealth Cyber Initiative, an investment in the advancement of
cyber R&D, innovation and workforce development. For more
information about CCI, visit cyberinitiative.org.

REFERENCES

[1] CIFAR-10 dataset. [Online]. Available: https://www.cs.toronto.edu/
∼kriz/cifar.html

[2] Developer reference for Alexa interface. [Online]. Available: https:
//developer.amazon.com/zh/docs/device-apis/alexa-interface.html

[3] MNIST dataset. [Online]. Available: http://yann.lecun.com/exdb/mnist/
[4] Reference for Google developers. [Online]. Available: https:

//developers.google.com/actions/reference/rest/conversation-webhook
[5] UCI Iris dataset. [Online]. Available: https://archive.ics.uci.edu/ml/

datasets/iris
[6] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: A system
for large-scale machine learning,” in 12th USENIX symposium on
Operating Systems Design and Implementation, 2016, pp. 265–283.

[7] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 308–318.

[8] A. Act, “Health insurance portability and accountability act of 1996,”
Public Law, vol. 104, p. 191, 1996.

[9] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient
oblivious transfer and extensions for faster secure computation,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer and
Communications Security, 2013, pp. 535–548.

[10] S. P. Bayerl, T. Frassetto, P. Jauernig, K. Riedhammer, A.-R. Sadeghi,
T. Schneider, E. Stapf, and C. Weinert, “Offline model guard: Secure
and private ml on mobile devices,” in Proceedings of the DATE, 2020.

[11] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in Proceedings of the Annual International Cryptology Conference.
Springer, 1991, pp. 420–432.

[12] F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and H. Yalame,
“MP2ML: A mixed-protocol machine learning framework for private
inference,” in Proceedings of the 15th International Conference on
Availability, Reliability and Security, 2020, pp. 1–10.

[13] Z. Brakerski, “Fully homomorphic encryption without modulus switch-
ing from classical GapSVP,” in Proceedings of the Annual Cryptology
Conference. Springer, 2012, pp. 868–886.

[14] Z. Brakerski, C. Gentry, and S. Halevi, “Packed ciphertexts in LWE-
based homomorphic encryption,” in International Workshop on Public
Key Cryptography. Springer, 2013, pp. 1–13.

[15] G. Brassard, C. Crépeau, and J.-M. Robert, “All-or-nothing disclosure
of secrets,” in Proceedings of the Conference on the Theory and
Application of Cryptographic Techniques. Springer, 1986, pp. 234–
238.

[16] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tripathi, “EzPC:
Programmable, efficient, and scalable secure two-party computation for
machine learning,” Cryptology ePrint Archive, Report 2017/1109, Tech.
Rep., 2017.

[17] H. Chen, W. Dai, M. Kim, and Y. Song, “Efficient multi-key homomor-
phic encryption with packed ciphertexts with application to oblivious
neural network inference,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp. 395–
412.

[18] T. Chen and S. Zhong, “Privacy-preserving backpropagation neural
network learning,” IEEE Transactions on Neural Networks, vol. 20,
no. 10, pp. 1554–1564, 2009.

[19] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-Fei, “Faster
CryptoNets: Leveraging sparsity for real-world encrypted inference,”
arXiv preprint arXiv:1811.09953, 2018.

[20] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 20,
no. 1, pp. 30–42, 2012.

[21] D. Demmler, T. Schneider, and M. Zohner, “ABY–A framework for
efficient mixed-protocol secure two-party computation,” in Proceedings
of the NDSS, 2015.

[22] R. Fakoor, F. Ladhak, A. Nazi, and M. Huber, “Using deep learning
to enhance cancer diagnosis and classification,” in Proceedings of the
International Conference on Machine Learning, vol. 28. ACM New
York, USA, 2013.

[23] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” IACR Cryptology ePrint Archive, vol. 2012, p. 144, 2012.

[24] Q. Fan and J. Yang, “A denoising autoencoder approach for credit
risk analysis,” in Proceedings of the 2018 International Conference on
Computing and Artificial Intelligence. ACM, 2018, pp. 62–65.

[25] I. File, “Proposal for a regulation of the european parliament and of the
council on the protection of individuals with regard to the processing
of personal data and on the free movement of such data (general data
protection regulation),” General Data Protection Regulation, 2012.

[26] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 1322–1333.

[27] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “CryptoNets: Applying neural networks to encrypted data
with high throughput and accuracy,” in Proceedings of the International
Conference on Machine Learning, 2016, pp. 201–210.

[28] O. Goldreich, Foundations of cryptography: volume 2, basic applica-
tions. Cambridge University Press, 2009.

[29] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game, or a completeness theorem for protocols with honest majority,” in
Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, 2019, pp. 307–328.

[30] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof systems,” SIAM Journal on Computing, vol. 18,
no. 1, pp. 186–208, 1989.

[31] S. Halevi and V. Shoup, “Algorithms in HElib,” in Proceedings of the
Annual Cryptology Conference. Springer, 2014, pp. 554–571.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[33] W. Henecka, S. K ögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg,
“TASTY: Tool for automating secure two-party computations,” in
Proceedings of the 17th ACM Conference on Computer and Communi-
cations Security, 2010, pp. 451–462.

[34] E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright, “Privacy-
preserving machine learning as a service,” in Proceedings on Privacy
Enhancing Technologies, vol. 2018, no. 3, 2018, pp. 123–142.

[35] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Networks, vol. 4, no. 2, pp. 251–257, 1991.

[36] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious
transfers efficiently,” in Proceedings of the Annual International Cryp-
tology Conference. Springer, 2003, pp. 145–161.

[37] X. Jiang, M. Kim, K. Lauter, and Y. Song, “Secure outsourced matrix
computation and application to neural networks,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2018, pp. 1209–1222.

[38] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE:
A low latency framework for secure neural network inference,” in
Proceedings of the 27th USENIX Security Symposium. USENIX
Association, 2018.

[39] V. Kolesnikov and R. Kumaresan, “Improved OT extension for transfer-
ring short secrets,” in Proceedings of the Annual Cryptology Conference.
Springer, 2013, pp. 54–70.

15

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Proceedings of the
Advances in Neural Information Processing Systems, 2012, pp. 1097–
1105.

[41] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and
R. Sharma, “CrypTFlow: Secure tensorflow inference,” in Proceedings
of the 2020 IEEE Symposium on Security and Privacy. IEEE, 2020,
pp. 336–353.

[42] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua, “A convolutional
neural network cascade for face detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.
5325–5334.

[43] S. Li, K. Xue, B. Zhu, C. Ding, X. Gao, D. Wei, and T. Wan, “FALCON:
A fourier transform based approach for fast and secure convolutional
neural network predictions,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2020, pp. 8705–
8714.

[44] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2017, pp. 619–631.

[45] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for
Security and Privacy, 2013.

[46] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“DELPHI: A cryptographic inference service for neural networks,” in
Proceedings of the 29th USENIX Security Symposium, 2020.

[47] P. Mohassel and P. Rindal, “ABY3: A mixed protocol framework
for machine learning,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2018,
pp. 35–52.

[48] P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in Proceedings of the 38th IEEE Sympo-
sium on Security and Privacy. IEEE, 2017, pp. 19–38.

[49] M. Mozaffari-Kermani, S. Sur-Kolay, A. Raghunathan, and N. K. Jha,
“Systematic poisoning attacks on and defenses for machine learning
in healthcare,” IEEE Journal of Biomedical and Health Informatics,
vol. 19, no. 6, pp. 1893–1905, 2015.

[50] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning,” in Proceedings of the IEEE Symposium on
Security and Privacy, 2019.

[51] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious multi-party machine learning
on trusted processors,” in Proceedings of the 25th USENIX Security
Symposium, 2016, pp. 619–636.

[52] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 1999,
pp. 223–238.

[53] N. Phan, Y. Wang, X. Wu, and D. Dou, “Differential privacy preser-
vation for deep auto-encoders: An application of human behavior pre-
diction,” in Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[54] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “CrypTFlow2: Practical 2-party secure inference,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 325–342.

[55] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter, and F. Koushan-
far, “XONN: XNOR-based oblivious deep neural network inference,”
in Proceedings of the 28th USENIX Security Symposium, 2019, pp.
1501–1518.

[56] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, “Chameleon: A hybrid secure computation frame-
work for machine learning applications,” in Proceedings of the 2018 on
Asia Conference on Computer and Communications Security. ACM,
2018, pp. 707–721.

[57] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “DeepSecure: Scal-
able provably-secure deep learning,” in Proceedings of the 55th

ACM/ESDA/IEEE Design Automation Conference. IEEE, 2018, pp.
1–6.

[58] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified
embedding for face recognition and clustering,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 815–823.

[59] “Microsoft SEAL (release 3.2),” https://github.com/Microsoft/SEAL,
Feb. 2019, microsoft Research, Redmond, WA.

[60] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 1310–1321.

[61] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in Proceedings of
the IEEE Symposium on Security and Privacy. IEEE, 2017, pp. 3–18.

[62] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proceedings of the International
Conference on Learning Representations, 2015.

[63] S. Sohangir, D. Wang, A. Pomeranets, and T. M. Khoshgoftaar, “Big
Data: Deep learning for financial sentiment analysis,” Journal of Big
Data, vol. 5, no. 1, p. 3, 2018.

[64] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning models
that remember too much,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2017,
pp. 587–601.

[65] H. Takabi, J. B. Joshi, and G.-J. Ahn, “Security and privacy challenges
in cloud computing environments,” IEEE Security & Privacy, no. 6, pp.
24–31, 2010.

[66] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction APIs,” in Proceedings of the
USENIX Security Symposium, 2016, pp. 601–618.

[67] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-Party secure
computation for neural network training,” vol. 1, 2019, p. 24.

[68] L. Wan, W. K. Ng, S. Han, and V. Lee, “Privacy-preservation for
gradient descent methods,” in Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2007, pp. 775–783.

[69] B. Wang and N. Z. Gong, “Stealing hyperparameters in machine
learning,” in Proceedings of the IEEE Symposium on Security and
Privacy. IEEE, 2018, pp. 36–52.

[70] W. Wang, J. Gao, M. Zhang, S. Wang, G. Chen, T. K. Ng, B. C. Ooi,
J. Shao, and M. Reyad, “Rafiki: Machine learning as an analytics service
system,” in Proceedings of the VLDB Endowment, vol. 12, no. 2, 2018,
pp. 128–140.

[71] R. Xu, J. B. Joshi, and C. Li, “CryptoNN: Training neural networks
over encrypted data,” in Proceedings of the IEEE 39th International
Conference on Distributed Computing Systems. IEEE, 2019, pp. 1199–
1209.

[72] A. C.-C. Yao, “How to generate and exchange secrets,” in Proceedings
of the 27th Annual Symposium on Foundations of Computer Science.
IEEE, 1986, pp. 162–167.

[73] J. Yuan and S. Yu, “Privacy preserving back-propagation neural network
learning made practical with cloud computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 1, pp. 212–221, 2013.

[74] Q. Zhang, C. Wang, H. Wu, C. Xin, and T. V. Phuong, “GELU-Net:
A globally encrypted, locally unencrypted deep neural network for
privacy-preserved learning.” in Proceedings of the IJCAI, 2018, pp.
3933–3939.

[75] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An oblivious and encrypted distributed analytics
platform,” in Proceedings of the 14th USENIX Symposium on Net-
worked Systems Design and Implementation, 2017, pp. 283–298.

[76] W. Zheng, R. A. Popa, J. E. Gonzalez, and I. Stoica, “Helen: Mali-
ciously secure coopetitive learning for linear models,” in Proceedings
of the IEEE Symposium on Security and Privacy. IEEE, 2019, pp.
724–738.

[77] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2921–2929.

16

