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Abstract— In this paper, we report a newfound vulner-
ability on smartphones due to the malicious use of unsu-
pervised sensor data. We demonstrate that an attacker can
train deep Convolutional Neural Networks (CNN) by using
magnetometer or orientation data to effectively infer the
Apps and their usage information on a smartphone with an
accuracy of over 80%. Furthermore, we show that such attacks
can become even worse if sophisticated attackers exploit
motion sensors to cluster the magnetometer or orientation
data, improving the accuracy to as high as 98%. To mitigate
such attacks, we propose a noise injection scheme that can
effectively reduce the App sniffing accuracy to only 15% and
at the same time has negligible effect on benign Apps.

I. INTRODUCTION

Smartphones have become constant companions in
our daily life. People are not just using their mobile
devices at work and home - they are living on them.
People rely on smartphone applications (Apps) for com-
munication, social networking, entertainment, banking,
shopping, navigation, healthcare, and more. For many
people, every day begins and ends with checking their
smartphones. As more and more personal data are stored
on and processed and transmitted by smartphones, they
are becoming an increasingly attractive target for cy-
bercriminals. For example, recent studies have shown
several attacks by exploiting smartphone sensors [1]-[5].

The modern smartphones integrate a diversity of sen-
sors for productivity, such as accelerometer, gyroscope,
magnetometer, GPS, gravity sensor, barometer, micro-
phone, ambient light sensor, and proximity sensor. The
smartphone operating systems often create their own
access control for the sensors. Some sensors, for instance,
the location sensor (GPS) and audio sensor (microphone)
trigger privacy concerns and hence require user per-
mission before any App can access their data. On the
other hand, a range of sensors (including accelerometer,
gyroscope, and magnetometer), are called unsupervised
sensors, which are not considered explicitly sensitive and
thus accessible freely by Apps. Some of them can be even
obtained by Javascript embedded in webpages [3].

In this paper we report a newfound vulnerability on
smartphones due to the malicious use of unsupervised
sensor data, where the attacker can sniff mobile Apps,
i.e., infer what Apps have been installed on the user’s
mobile device, how frequently they are used, and when
they are opened, by analyzing the magnetometer data
along with the motion sensor data using deep learning
techniques. The accuracy can be as high as 98%.

A. Preliminary Experiments and Observations

The quest begins with the observation of a subtle
correlation between an LED display and its surrounding
magnetic field. For example, in our first experiment, we
display a black image on a 27 inch LED PC monitor for
20 seconds, followed by a white image for 60 seconds.
We repeat the pattern for a number of rounds. In the
meantime, an iPhone 7 Plus is placed in front of the
monitor about 10cm away to measure the magnetic field.
We observe a noticeable change in the magnetic field
while switching between the two images (see Fig. 1(a)).

The above phenomenon motivates us to further ex-
plore how the LED display on a smartphone would
affect its magnetometer readings. To this end, we carry
out a similar experiment by displaying the black and
white images on the iPhone 7 Plus while recording the
data captured by the magnetometer on the same phone.
Compared with the previous setting, we expect more
stable results since the distance between the LED display
and the magnetometer is shorter and their relative ori-
entation is fixed. The experimental data are depicted in
Fig. 1(b), demonstrating significant changes in magnetic
field when different images are displayed on the phone.

Fig. 1(c) further shows the change of magnetometer
readings while the smartphone displays four different
colors, white-black-red-blue, in sequence. While it is be-
yond the scope of the paper to fully model this physical
phenomenon, it is largely due to the fact that different
bias voltages are used when LED displays different
colors, which accordingly lead to the change of the
magnetic field [6].

The results shown in Fig. 1 demonstrate the correla-
tion between colors on LED display and surrounding
magnetic field. Since different Apps often adopt different
graphic designs that mix different color patterns, we
speculate that they also induce different magnetometer
readings. In particular, when one clicks on an App’s icon,
a unique welcome-page will be displayed till the App is
fully open. The corresponding changes in magnetic field
can be measured by the integrated magnetometer. Fig. 2
illustrates the averaged magnetometer readings over the
period for opening two popular Apps, ie., Snapchat
and Twitter, on an iPhone 7 Plus. As can be seen, they
differ dramatically on at least one axis (in this case, Y-
axis). This is because Snapchat adopts predominantly a
bright yellow color while Twitter uses blue. We have
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Fig. 1. Magnetometer readings on Y-axis. (a) Change of magnetome-
ter reading due to PC LED display, where the black and magenta
waveforms correspond to the black and white images, respectively. (b)
Change of magnetic field due to smartphone LED display (black and
white). (c) Change of magnetic field while the smartphone sequentially
displays white-black-red-blue. The solid orange line in each dashed
rectangle box represents the mean of the signal within the box.

verified that the above observations are repeatable on
different smartphones and models. More results will be
presented in Secs. II-IV. These preliminary experimental
data indicate that different Apps are likely associated
with unique magnetic signatures. Therefore, if one can
acquire magnetometer data, he can potentially infer the
Apps running on a smartphone.

B. Our Contributions

This is the first work that discovers and reports the
correlation between magnetometer readings and LED

(a) Screen shots when opening Snapchat and Twitter.
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(b) Magnetometer X-axis readings for Snapchat and Twitter.
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(c) Magnetometer Y-axis readings for Snapchat and Twitter.
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(d) Magnetometer Z-axis readings for Snapchat and Twitter.

Fig. 2. Welcome pages and magnetometer readings of popular Apps.

displays on smartphones. Based on this observation, we
demonstrate a newfound side-channel attack, where the
attacker can sniff mobile Apps through magnetometer
data. In particular, we devise deep Convolutional Neural
Networks (CNN) that can be trained to effectively infer



the Apps installed on the smartphone and their usage
information. We implement the attack on iPhone 7 Plus
and Samsung Galaxy 7 and carry out extensive experi-
ments, showing that the attack can achieve an accuracy
of about 84% based on the magnetometer data.

Furthermore, we discover that the orientation data is
closely correlated with the magnetometer readings. To
this end, we use the orientation of the smartphone as an
alternative to train and test the CNN models. The perfor-
mance is only slightly lower than the original approach
based on magnetometer data. This finding enables even
more pervasive attacks since the orientation data can be
readily obtained by integrating a 4-line Javascript code in
attacker’s websites and the Javascript can continuously
acquire the orientation data even in the background.

Moreover, we show that the attack can become worse
if the attacker exploits motion sensor data. Briefly, for
a given mobile phone, the locations of the Apps are
generally fixed on the screen. Suppose the mobile user
clicked on an App for k times during a period. If the &
magnetometer or orientation data are fed into the CNN
model, about 16% of them would be misclassified to
other Apps. However, if the attacker is able to recognize
that the k clicks are all at the same location on the
screen, then he can put them into a cluster and feed the
cluster of magnetometer or orientation data to the CNN
model. The vast majority of them (about 84%) should
be recognized correctly. Since the cluster of clicks are
from the same location, they should be the same App.
Therefore, a majority vote can effectively determine the
App for the entire cluster. This Approach can increase
the accuracy to as high as 98%.

Besides showing this newfound side-channel attack,
we also discuss viable methods to mitigate it by injecting
minimal amount of noise into the magnetometer or
orientation data. The rest of this paper is organized as
follows. Sec. II introduces the magnetometer-based App
sniffing, including extended discussions on attacks based
on orientation data. Sec. IIl demonstrates the motion
sensor-assisted approaches. Sec. IV presents experiments
and results. Sec. V discusses viable schemes to defeat the
attacks. Finally, Sec. VI concludes the paper.

II. MAGNETOMETER-BASED APP SNIFFING (MAS)

In this section, we present App sniffing solely based
on the readings from magnetometer. The preliminary
observations presented in Sec. I indicate that different
Apps are likely to induce different magnetic field. How-
ever, it remains a nontrivial problem to identify the
unique magnetic signature for each App and accordingly
infer the Apps according to magnetometer readings. The
fundamental challenge lies in the facts that the magne-
tometer data exhibit noise and randomness and that the
Apps’ graphic designs often incorporate complex combi-
nation of color patterns, rendering simple classification
methods infeasible. To this end, we propose to exploit

the powerful deep CNN to classify magnetometer data
and to infer the corresponding Apps.

A. Deep CNN Models for Magnetometer-based App Sniffing

Magnetometer data can be recorded when a user
opens an App. In our preliminary exploration, we have
considered the top-7 most used Apps, ie., Twitter,
Snapchat, Pandora, Netflix, Google Maps, Chase Bank,
and HBO. The recording process essentially collects a
sequence of magnetometer samples during the interval
from clicking on an App to the time when the wel-
come page of the App is fully displayed on the mobile
screen. Fig. 2 shows the examples for opening Snapchat
and Twitter, respectively. Different phones may have
different sampling rates of their magnetometers. For
instance, Samsung Galaxy S7 and iPhone 7 Plus sample
their magnetometers at the rate of 20Hz and 100Hz,
respectively. As to be shown later, the sampling rate has
negligible impact on the effectiveness of App sniffing.

Since the change of magnetic field is relatively small,
we preprocess the raw magnetometer data by using a de-
noising function (e.g., wden available in MATLAB [7]).
It decomposes the signal into wavelets and performs
thresholding on wavelets coefficients. We set the function
at the denoise-level 5 with soft thresholding rule for the
universal threshold 1/21n(-). Then, we normalize the de-
noised data by subtracting its mean and dividing it by
its vector’s norm. Figs. 2(b)-(d) illustrate the normalized
magnetometer readings of Snapchat and Twitter on X, Y,
and Z axis. While the figure only shows about 4 seconds,
the total recording time is 8.25 seconds including some
overhead before and after the App is opened. Thus on
an iPhone with a sampling rate of 100Hz, each magne-
tometer data would have a dimension of 825 x 3. Directly
feeding such high dimensional data into the CNN yields
poor results (less than 50% accuracy) because drastic
changes over such a large span of 825 sample points
may easily overwhelm a neural net’s representational
capability. To this end, we adopt a sliding window
approach with a window size of W sample points to slide
over the time series. Each pair of adjacent slices has an
overlap of P sample points. For example, assume W = 36
and P = 31. If we have 100 original data (each with a
dimension of 825 x 3), they will be converted to 15,800
sliced data each with a dimension of 36 x 3. The sliced
data are labeled with corresponding Apps for training
and testing as to be discussed next.

The success of CNN has been demonstrated in com-
puter vision [8]-[10]. Compared to traditional learning
techniques based on hand-crafted features, CNN can be
trained from end-to-end to extract features automatically.
It usually stacks multiple convolutional layers, each
comprising filters to capture spatial patterns in the data
and activations that represent the result of convolution.
CNN exploits these layered structures of non-linearities
to characterize highly complicated relations in the data.



CL1 3x34x64 pool 3x16x64

CL1 3x32x64
Input 3x36

| Convolution
64x1x3

CL1 3x14x64

CL1 3x12x64

pool 3x6x64

--Dense 172% Softmax

AN

Convolution
64x1x3

Fig. 3. An example of the proposed deep CNN architectures.

Max pooling layers are usually introduced between con-
volutional layers to reduce the number of parameters
and speed up computation.

We have explored several deep CNN architectures to
sniff Apps based on magnetometer data. In contrast to
computer vision (that adopts 2D filters for images), the
magnetometer data on smart phone involves 3 channels
(x,y,z) and data points along each channel dimension is
a 1D time series. To this end, 1D filter is adopted in the
architectures to capture temporal correlations on each
channel. Similar approaches are also found in human
activity recognition [11], [12].

Our goal is to demonstrate that an appropriately de-
signed CNN can effectively sniff frequently used Apps
on a mobile phone. The exploration begins with a 3-
Layer architecture consisting of only one convolutional
layer. We adopt 1 x 3 kernels that capture subtle changes
along the time axis. Each layer applies Rectified Linear
Units (ReLUs) as the activation functions (taking f(x) =
max(0,x)). The features extracted by convolutional layers
are fed into a densely connected layer which connects to
the output softmax function.

Although a single convolutional layer is fast for com-
putation, low-level features captured in the first layer
may not generalize well on the entire dataset. To exploit
the wealth of data that an attacker can obtain, we
have further investigated several deeper structures by
stacking more convolutional layers together and insert-
ing max pooling layers to reduce dimensionality. Fig. 3
illustrates an example of such deep CNN structures. For
brevity, a 6-layer CNN is denoted as: Conv(64)-Conv(64)-
Pool-Conv(64)-Conv(64)-Pool-Dense(128)-Sfmax. A layer is
counted if it has adjustable weighted connections. Each
convolutional layer has 64 filters and the densely con-
nected layer has 128 neurons with ReLU activations.
Maxpooling layer reduces the input dimension by half.
As more convolutional layers are stacked up, the net-
work will be able to extract high-level features and
generalize on the dataset.

To understand the effectiveness of this CNN approach
and compare the accuracy of different CNN architec-
tures, we have carried out a set of preliminary experi-
ments. We have considered the top-7 most used Apps as
discussed earlier (from Twitter to HBO), and collected a

total of 700 raw magnetometer recordings on a number
of Samsung Galaxy S7 and iPhone 7 Plus units. They
are the flagship smartphones of Samsung and Apple -
two companies that together have a total market share
of 72.8% in the US [13]. The CNN models have been im-
plemented in Tensorflow [14] with batch sizes of 150 and
100 epochs. For comparison, we have also implemented
a baseline 3-layer neural network (NN) model that has
dense connections and a support vector machine (SVM)
model using LibSVM [15]. All of them are trained and
tested on a PC with 17-4470 CPU and NVIDIA 1080Ti
graphic card. As discussed earlier, we adopt a sliding
window approach to slice each recorded magnetometer
data. The default parameters are W =36 and P = 31.

The primary performance metric is the accuracy, i.e.,
the fraction of correctly recognized Apps. We utilize 4-
fold cross validation (CV) for performance evaluation,
where we randomly divide a dataset to 4 parts and
use three parts for training and the remaining part for
testing. This process is repeated four times such that each
part is used for testing once. We are also interested in
the running time. For a 6-layer CNN model, the training
time for each epoch is around 4 seconds, and it takes
about 100 epochs to achieve converged result.

As shown in Table I, the 6-Layer CNN has the highest
accuracy. At the same time, we also observe that the
accuracy is not sensitive to different CNN architectures.
All of them perform significantly better than SVM and
NN. Thus, an attacker can utilize any general-purpose
CNN to construct the attack without the need to fine-
tune the CNN model.

Fig. 4 visualizes the features learned on input signal
captured by the 4 convolutional layers, dense layer and
finally the output layer. Each convolutional layer trains
a number of filters to match similar spatial patterns in
the input signal in order to minimize the cost function.
Each learned feature is displayed as 3 x 36 (size of the
signal input) and arranged in a stitched 16 x 4 = 64 array
for each layer. Here, 3 is the number of channels and 36
is the sliding window size. Since the features learned
from the signals are rather flat, we remove the margins
between neighboring features for better visualization.
From Fig. 4(a), the highlighted features (boxed) show
mosaic patterns that are activated from the raw input
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Fig. 4. Visualization of features learned by the deep CNN.

signal. Subsequent layers are more abstract and such
low-level, mosaic patterns start to disappear from the
3rd layer. Although the high level features learned by the
CNN are not visually explainable at this point [16], they
jointly represent unique identifications for each class
of Apps on the high level. The learned features from
convolutional layers are fed into the dense layer that
classifies the outputs into 7 classes. The output layer is a
generalization of all the features learned by the network
that average over the data points in each class. This is
consistent with the reasoning in [17]. In contrast, SVM
and NN fail to effectively identify different Apps. It may
be due to the fact that the time series from different Apps
are overlapped and these models lack the automatic
feature learning capabilities.

We further compare the performances by tuning differ-
ent hyperparameters. The experimental results (omitted
here due to space limit) show that the model is not
sensitive to the batch size. The slice window with W =36
and P =31 always yields the highest accuracy. We also
observe that the errors are generally evenly distributed
unless two Apps are very similar in colors and patterns.
As shown in Table II, the confusion between HBO and
Netflix is relatively high, i.e., most errors of Netflix are
misclassified into HBO, and vice versa, because their col-
ors are both predominantly black. This is also reflected in

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT CNN MODELS.
Machine Learning Model | Accuracy
SVM 0.3923
SVM with Sliced Input Data 0.4214
3-Layer NN 0.4333
3-Layer NN with Sliced Input Data 0.4577
3-Layer CNN with Sliced Input Data 0.8198
5-Layer CNN with Sliced Input Data 0.8273
6-Layer CNN with Sliced Input Data 0.8389
7-Layer CNN with Sliced Input Data 0.8317
8-Layer CNN with Sliced Input Data 0.8368

TABLE 1I
CONFUSION MATRIX (UNDER 6-LAYER CNN WITH SLICED INPUT).

HBO | Chase | Google Maps | Netflix | Pandora | Snapchat | Twitter
HBO 70.13 1.71 0.27 14.92 2.85 1.34 1.41
Chase 3.78 85.54 3.26 1.09 1.12 226 232
Google Maps | 3.33 2.1 86.53 146 1.23 134 143
Netflix 16.56 1.26 3.64 72.79 1.48 1 0.37
Pandora 0.7 3.52 0.68 2.45 89.12 1.19 3.02
Snapchat 3.14 224 1.17 294 2.86 91.81 0.12
Twitter 2.36 3.63 4.45 435 134 1.06 91.33

Fig. 4(f), where the 1% and 4" classes, which respectively
correspond to HBO and Netflix, show similarities.
B. Orientation-based App Sniffing

The previous subsection has shown a possible ap-
proach to sniff Apps on a mobile phone based on



magnetometer data. The accuracy is about 0.84. We will
introduce enhanced schemes which achieve a higher
accuracy of close to 1 in the next section. But before that,
we would like to discuss how an attacker can obtain
sensory data from a user’s smartphone.

By default, any App on a smartphone can access
magnetometer without user permission. So the most
straightforward approach is to embed a small piece of
code in an benign App to report magnetometer data
to the attacker. However, not all mobile users would
install such App. Toward this end, we have further
considered a web-based method, where the attackers can
acquire sensor data by simply integrating a small (4 line)
Javascript code in their webpage. When a smartphone
browses the webpage, the Javascript can read a range of
sensory data such as gyroscope and accelerometer that
we will use later. However, it can not attain direct access
to the magnetometer of the mobile devices.
function deviceOrientationHandler (eventData) ({

var ori_gamma = eventData.gamma;

var ori_beta eventData.beta;

var ori_alpha eventData.alpha;

}

Nevertheless, our investigation reveals that the ori-
entation of the devices can be sniffed using the web-
based method. Furthermore, the orientation is closely
correlated with the magnetometer data as shown by
comparing Fig. 1(c) and Fig. 5. As a matter of fact, the
primary use of magnetometer data on the smartphone is
to calculate the device’s orientation in conjunction with
the accelerometer. Based on this interesting observation,
we use the orientation of the device as an alternative to
train and test the CNN model. The performance (i.e.,
recognition accuracy) is only slightly lower than the
original approach based on magnetometer data. Details
results will be discussed in Sec. IV (see Table IV and
related discussions).

0.15

Normalized Orientation Data

0 10 20 30 40 50 60 70 80
Time (second)

Fig. 5. Change of orientation data while the smartphone sequentially
displays four different colors, white-black-red-blue.
III. MOTION SENSOR-ASSISTED MAS

In the previous section, we have demonstrated a side
channel attack, i.e., MAS, where the attacker sniffs the

magnetometer data on a smartphone and accordingly
infers the Apps opened by the mobile user. The accuracy
of such inference is about 84%. In this section, we show
that the attack can be worse, i.e., the attacker can achieve
even higher accuracy, if he exploits motion sensor data.

Briefly, on a given smartphone, the locations of the
Apps are generally fixed during the time window when
the attacker sniff sensor data (e.g., ranging from a few
hours to a few days). Suppose the mobile user clicked
on Chase App 20 times during the period. If the 20
magnetometer or orientation data are fed into the CNN
model introduced in Sec. II, about four of them would
be classified incorrectly to some other Apps. However,
if the attacker is able to recognize that the 20 clicks are
all at the same location on the screen, then he can put
them into a cluster and feed the cluster of magnetometer
data to the CNN model. The vast majority of them (about
84% in average) should be recognized correctly as Chase.
Since the cluster of clicks are from the same location,
they should be the same App.! Therefore, the attacker
can conclude that all 20 clicks are Chase. This approach
is effective because, as to be shown next, such clustering
can be achieved with high accuracy (nearly 100%) by
using motion sensor data on the phone.

A. Clustering based on Motion Sensor Data

Nowadays, most mobile operating systems place their
App icons in a fixed grid layout. For instance, iPhone 7
plus has a 4x7 layout and Samsung S7 uses a 4x5 grid.
When a user clicks on different spots on the touch screen,
the smartphone has a small rotation and/or vibration
that can be captured by the 3-axis gyroscope and ac-
celerometer. Similar to the discussion on magnetometer,
different phones sample their motion sensors at different
frequencies: 100 Hz on iPhone and 50 Hz on Samsung
Galaxy. Fig. 6 illustrates the 3-axis gyroscope data while
clicking on the top-left and bottom-left on an iPhone’s
screen. As can be seen, the gyroscope waveforms differ
on all three axes, especially the X and Z axes. Several
previous studies have shown the use of motion sensors
to infer the touches on a smartphone screen [18].

The attacker can build a training data set for each
popular smartphone model and feed the training data
to CNN to create a motion classifier for this type
of smartphone. Note that, we cannot mix the train-
ing data of iPhone and Samsung phone since their
layout are different. Again, various CNN architectures
and hyperparameters are explored, and finally we
adopt a 4-layer CNN model with the following setting
in our experiments: Conv(64)-Conv(64)-Pool-Dense(128)-
Dropput(0.5)-Sfmax. As discussed earlier, motion sensor
(including accelerometer and gyroscope) data are freely
accessible by Apps or web-embedded Javascript. For

!We have assumed that the most frequently used Apps are on the
home page. The scenarios with multiple pages and groups will be
investigated in our future research.
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Fig. 6. Comparison of gyroscope data on X, Y, and Z axis while clicking on top-left and bottom-left of the screen.
training purpose, the attacker can easily experiment on TABLE III
different phones to build training data sets. For example, PERFORMANCES OF CLUSTERING BASED ON MOTION SENSORS.
given a type of phone, the aTttacker can chck' ON eVery —o—rGrds | 4 | 8 7] 162 %] B
grid points for a number of times, collect motion sensor Accuracy | 1.000 | 0.996 | 0992 | 0990 | 0.980 | 0979 | 0978

data, and label each data with the corresponding grid
point. The 3-axis gyroscope data and accelerometer data
are combined together. A click lasts about 1 second. So,
each data has a dimension of 6 x 100 on iPhone since its
sampling rate is 100 Hz, or 6 x 50 on Samsung S7 that
samples at 50 per second.

The CNN models are trained offline. Once they are
ready, the attacker can acquire motion sensor data from
mobile users either via Apps installed on the users’
phones or when the mobile users browse the attacker’s
websites embedded with his Javascript as we discussed
earlier. The data from each user are fed into the selected
CNN model that matches the user’s phone. If the type of
phone is unknown, the attacker can always try different
CNN models and choose the one that yields the most
reasonable result. Thus, the attacker can label each click
with a grid position on the screen, and accordingly group
all clicks with the same label into a cluster.

For example, in our preliminary experiment, we have
collected gyroscope and accelerometer data when click-
ing 100 times on each spot of an iPhone 7 Plus’s screen.
The experiments have been repeated by two people
using both right and left hands. In total, dataset contains
2x2x100 x4 x7=11200 data samples and each data
sample has a dimension of 6 x 100. Again, 4-fold cross
validation is adopted. Table III shows the clustering
results. When we only consider four possible positions
(at the four corners of the screen), the accuracy is per-
fectly 1.0. With the increase of grid points, the accuracy
decreases slightly but is still maintained stable around
98%. With such high accuracy, the attacker can effectively
group the clicks into clusters and consider all clicks in
the same cluster to be associated with the same App.

B. Motion Sensor-Enhanced Attack

Based on the above findings, we now combine the
clustering scheme (enabled by motion sensors) and the
App classification based on magnetometer or orientation
data. The overall procedure of the motion sensor-assisted
MAS is illustrated in Fig. 7.

Assume that a smartphone has visited the attacker’s
website embedded with the aforementioned Javascript.
Since the Javascript has free access to accelerometer,
gyroscope and orientation, the attacker can continuously
eavesdrop such sensor data. Note that, even the webpage
is in the background, the Javascript can still acquire
data. Of course, the attacker can also try to camouflage
codes in seemingly benign Apps, given the behavior of
accessing the sensor data is fairly common.

The hacker continuously collects sensor data for a de-
sired period (usually for several hours or days), and then
performs a straightforward preprocessing to identify the
clicks on the screen and format corresponding motion
data and magnetic (or orientation) data as follows:

magnetic(orientation)
magnetic(orientation)

motion
motion)

clicky
clicky

time_stamp
time_stamp»

click, motion, magnetic(orientation), time_stamp,,

Each row represents one data comprising a click ID,
corresponding motion sensor recording, magnetic or ori-
entation recording, and other information such as the
time stamp. The attacker first uses the 4-layer motion
CNN model to classify each click (i.e., each row of the
dataset) into a cluster and label it with the corresponding
grid ID. The maximum number of clusters equals to
the number of grids on the mobile screen. Note that,
all clicks in the same cluster are from the same grid
location and thus should be the same App. As shown
in Table III, this step is very accurate. Next, the attacker
feeds a cluster of magnetic (or orientation) data with
the same grid ID to the 6-layer magnetic CNN model.
Over 80% of them are expected to be classified correctly,
according to the accuracy presented in Table I. Because
they all belong to the same App, a majority vote can
effectively determine the App for the entire cluster.

As a result, the attacker can infer what Apps have been
installed on the user’s mobile device, how frequently
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Fig. 7. The overall procedure of the motion sensor-assisted MAS.

they are used, and when they are opened. In other
words, the attacker can track the users’ habits of App
usage. The attack can become even worse. For example,
if the attacker has identified a bank App, it is not too
hard to capture the motion sensors while the user types
username and password. If the keyboard is static, the
attacker can obtain the password by using a similar ap-
proach as discussed above and access the bank account.

IV. EXPERIMENTAL EVALUATION

We have used iPhone 7 Plus and Samsung Galaxy 7 to
implement and demonstrate the attacks. In this section,
we present our experiments and results.

A. System Setup

To collect motion sensor training data, we have consid-
ered iPhone 7 Plus and Samsung S7 separately, since they
have different App layouts: 4 x 7 and 4 x 5. For each grid
point in a layout, we have collected 400 samples. The
corresponding dataset size for each model is 400 x 4 x 7
and 400 x4 x 5.

To recognize Apps, we have considered both mag-
netometer and orientation data. As discussed before,
the latter is desired because it can be accessed by
Javascript embedded in the attacker’s website. To create
the training dataset, we have considered top-15 most
used Apps. We open each App 100 times and record
the corresponding magnetometer and orientation data.

All CNN models are implemented in Tensorflow [14].
The training is done offline and the training data can
be easily obtained by the attacker himself. On the other
hand, it is trickier to collect sensor data of the victims.
To this end, we have developed a mobile webpage
embedded with a sensor data collection Javascript (for
gyroscope, accelerometer, and orientation data) and a
sensor data collection App on both iOS and Android (for
gyroscope, accelerometer, and magnetometer data). We
run the experiment for one day to collect data from users.
Some clicks are to open Apps while others happen in the
Apps. We differentiate them by detecting the pressing of
the home button on iPhone or Samsung phones. We only
process the sensor data of the clicks after pressing home
button. Note that, the attacker is not necessary to process
all clicks. As long as he can collect enough number of
useful sensor data, he can achieve his goal of sniffing
users’” Apps and tracking their usage.

TABLE IV
PERFORMANCE COMPARISON OF MAS APPROACHES.

Number of Apps 3 7 11 15

Magnetic Model (Single Device) 0.8913 | 0.8389 | 0.8120 | 0.7916

Magnetic Model (Cross Device) 0.8979 | 0.8249 | 0.8157 | 0.7882

Magnetic Model (Cross Model) 0.6834 | 0.6233 | 0.5816 | 0.5314

Magnetic Model (Cross Model Mix) 0.8809 | 0.8244 | 0.7975 | 0.7653

Magnetic Model (Cross Model Mix) + Downsampling | 0.8869 | 0.8313 | 0.8033 | 0.7793

Magnetic Model (Cross Model Mix) + Upsampling 0.8885 | 0.8311 | 0.8061 | 0.7846

Orientation Model (Cross Model Mix) 0.8279 | 0.7849 | 0.7557 | 0.7174

Magnetic Model (Cross Model Mix) + Motion 0.9786 | 0.9833 | 0.9767 | 0.9753

Orientation Model (Cross Model Mix) + Motion 0.9706 | 0.9755 | 0.9895 | 0.9806

We have shown some initial experimental results in
Sec. II, assuming only magnetometer data are sniffed to
infer Apps. More results are presented here by consid-
ering different number of Apps and different MAS ap-
proaches. In the following discussion, “Magnetic Model”
denotes the baseline method where only the magne-
tometer data are used for training and testing; likewise,
“Orientation Model” means the orientation data are used
for training and testing; “+ Motion” indicates motion
sensor data are also employed by following the proce-
dure presented in Fig. 7.

We have also experimented on various devices. “Sin-
gle Device” denotes the experimental setting where
training and testing are carried out based on the data
from a single device; “Cross Device” indicates the ex-
periments conducted in a way that training is based on
the data from a device, while testing is on a different
device but of the same type (e.g., both devices are
iPhone 7 Plus or both are Samsung Galaxy 7); “Cross
Model” shows the results where training is based on
the data from a device, but testing is on a different
device of the different type; finally, “Cross Model Mix”
means the setting where we mix data from different
devices in different models for both training and testing.
Note that, the sensors” sampling rates on iPhone 7 Plus
and Samsung Galaxy 7 are different. So, under “Cross
Model Mix”, the training and testing datasets include
data sampled at different rates. “+Downsampling” and
“+Upsampling” are the signal processing schemes to
decrease the sampling rate on iPhone 7 Plus or increase
the sampling rate of Samsung Galaxy 7 to keep them
consistent.

B. Experimental Results

As can be seen in Table IV, the accuracy generally
decreases when more Apps are considered. When there
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are more Apps, their feature distances become shorter,
thus resulting in higher errors in CNN classification.
For a given number of Apps, the accuracy is the lowest
under “Magnetic Model (Cross Model)”. This is because
different smartphone models (especially different man-
ufacturers) often use different types of magnetometers.
Therefore, if we train the CNNs based on data from
iPhone 7 Plus, but test them on Samsung Galaxy 7,
the performance is naturally low. However, if training
and testing are both based on mixed data from different
device models, the performance degradation becomes
negligible (see “Magnetic Model (Cross Model Mix)”).
It is straightforward for an attacker to collect data
from various popular phones for training purpose. In
addition, “Upsampling” and “Downsampling” do not
significantly improve the performance. The CNN model
is not sensitive to the variance of sampling rate.

Comparing “Magnetic Model (Cross Model Mix)” and
“Orientation Model (Cross Model Mix)”, the latter’s
accuracy is only lower than the former by 4 —6%. As
discussed in Sec. II, orientation is highly correlated with
magnetometer data. The use of orientation makes the
attack much easier, given that it can be obtained by a
Javascript embedded in the attacker’s webpage.

When motion sensor-assisted MAS is employed, the
accuracy becomes as high as about 0.98, and the dif-
ference between magnetometer and orientation data are
fading away. This is because the difference in their
accuracy does not affect the majority vote.

In addition, large electronic devices, for example, re-
frigerators, may generate interference on the magnetic
field. To this end, we have carried out experiments when
the smartphone is placed at different distances to a
refrigerator. As shown in Table V, the impact is insignif-
icant. This is because the interference is a constant and
thus cancelled out after normalization.

V. DEFENSE MECHANISM

In this section, we discuss viable methods to mitigate
the MAS attack. The first approach is to restrict the
permission to access magnetic, orientation and motion
sensors. With this method, a system notification will be
popped up when an APP or Javascript requests access
to those sensor data, alerting the users. Unfortunately,

TABLE V
ACCURACY UNDER MAGNETIC INTERFERENCES.
Distance to Refrigerator (cm) 25 50 100
Magnetic Model (Cross Model Mix) + Motion 0.9721 | 0.9817 | 0.9769
Orientation Model (Cross Model Mix) + Motion | 0.9768 | 0.9761 | 0.9782

despite a potential threat, users may still obliviously
permit such access.

A more transparent method is noise injection that
perturbs magnetic sensor output. Since the change of
magnetic field caused by LED is relatively small, a
minor Gaussian noises can be introduced into the mag-
netometer or orientation data to mitigate the attack. An
example of such noise is illustrated in Fig. 8(a). It has
minimum impact on normal applications. For example,
the e-compass uses magnetometer data to determine
how many degrees the phone’s front deviates from the
true North. Its results based on noised and original
magnetometer signals are shown in Fig. 8(b), with the
mean error of only 0.2°. For most applications, such
small errors do not substantially affect their functionality.

On the other hand, the noise will significantly af-
fect the accuracy of MAS. For instance, we generate a
Gaussian noises at different levels (from 2 — 10 pT) and
observe their impact on MAS accuracy. As shown in
Figure. 8(c), the accuracy of the magnetic model drops
to 15% when the average amplitude of noise is 10 pT.
Similarly the accuracy of orientation model degrades
significantly with the increase of noise level. Under
the motion sensors-assisted MAS which exploits motion
sensor data for clustering, it is even more interesting
to observe the sharp accuracy decrease when the noise
level exceeds 5 nT. In this case, the majority vote is likely
wrong, thus the entire cluster is classified incorrectly.

VI. CONCLUSION

We have discovered a new side-channel attack, where
the attacker can sniff mobile Apps by analyzing mag-
netometer or orientation data along with motion sensor
data using deep learning techniques. We have demon-
strated the attack on both iPhone 7 Plus and Samsung
Galaxy 7. Our experiments have shown that its accuracy
is as high as 98%. We have further proposed a noise
injection scheme to effectively mitigate such attacks.
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