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ABSTRACT Keywords

With both computational complexity and storage space bounded 3D sensor networks, harmonic mapping, routing

by a small constant, greedy routing is recognized as an appealing

approach to support scalable routing in wireless sensor networks.

However, significant challenges have been encountered in extend-l' i INTRO_DUCTIO_N )

ing greedy routing from 2D to 3D space. In this research we de- With both of its computation complexity and storage space bounded
velop decentralized solutions to achieve greedy routing in 3D sen- by @ small constant, greedy routing is known for its scalability to
sor networks. Our proposed approach is based on a unit tetraheJarge networks with stringent resource constraints on individual
dron cell (UTC) mesh structure. We propose a distributed algo- Nodes. Under most greedy routing algorithms, a node makes its
rithm to realize volumetric harmonic mapping of the UTC mesh routing decision by standard distance calculation based on a small
under spherical boundary condition. It is a one-to-one map that Set of local coordinates only. Such salient property is imperatively
yields virtual coordinates for each node in the network. Since a needed in the emerging 3D sensor network [1-12], where the prob-
boundary haS been mapped to a SpherE, node_based greedy routin@m n I’OUtIng Scalablhty IS gl’eaﬂy exacerbated n Compal’lson W|th
is always successful thereon. Atthe same time, we exploit the UTC its 2D counterpart, due to dramatically increased sensor nodes in
mesh to develop a face-based greedy routing algorithm, and proveorder to cover a 3D space.

its success at internal nodes. To deliver a data packet to its destina- The conventional greedy routing algorithms are node-based [13,
tion, face-based and node-based greedy routing algorithms are em14]. More specifically, a node always forwards a packet to one of
ployed alternately at internal and boundary UTCs, respectively. As its neighbors, which is the closest to the destination of the packet.
far as we know, this is the first work that realizes truly deterministic However, such greedy forwarding is not always achievable. A node

greedy routing with constant-bounded storage and Computation in is called a local minimum if it is not the destination but closer to the
3D wireless sensor networks. destination than all of its neighbors. Clearly, greedy routing fails

at the local minimum. Such local minimums may appear at either

boundary or internal nodes (as highlighted in red in Fig. 1(b)). A
Categories and Subject Descriptors node on a boundary, especially a concave boundary, usually be-
comes a local minimum when the source and destination nodes
are located on two sides of the boundary. Although it seems anti-
intuitive, an internal node can be a local minimum too, due to local
concavity under random deployment of sensor nodes.

Various approaches have been developed to address the problem

General Terms of local minimum in 2D networks, with primary focus on bound-
Algorithms, Design, Theory aries. For example, face routing and its alternatives and enhance-

ments [13-20] exploit the fact that a concave void in a 2D planar

network is a face with a simple line boundary. Thus when a packet

reaches a local minimum on a boundary, it employs a local deter-

C.2.2 [Computer-Communication Networks]: Network Proto-
cols—Routing Protocols

Permission to make digital or hard copies of all or part of thikafor ministic algorithm to search the boundary in either clockwise or
personal or classroom use is granted without fee providaddbpies are counter-clockwise direction as shown in Fig. 2(a), until greedy for-
not made or distributed for profit or commercial advantage aatidbpies warding is achievable. In a 3D network, however, a void is no
bear this notice and the full citation on the first page. Toycaiherwise, to longer a face. Its boundary becomes a surface, yielding an arbitrar-

repuplis_h, to post on servers or to redistribute to listgunees prior specific ily large number of possible paths to be explored (see Fig. 2(b)) and
permission and/or a fee.

Mobihoc'11 Paris. France thus rendering face routing infeasible. On the other hand, greedy
Copyright 20XX ACM XXX XXXIXOXUXX ... $10.00. embedding [21-27] provides theoretically sound solutions to en-



(@) A 3D sensor network (Network (b) Local minimums in nodal greedy (c) Unit tetrahedron cells (UTCs).
model 1). routing.

(d) Volumetric Harmonic mapping. (e) A greedy routing path in mapped () A greedy routing path in original
domain. network.

Figure 1: lllustration of the proposed greedy routing protocol. (8) A 3D sensor network that has irregular outer and inner boundaries
and consists of about 2,000 nodes. This is one of the network mdsl@ised on our simulation (see Fig. 6 for other network models).
The nodes on the inner boundary are highlighted in red. (b) The node that are local minimums under node-based greedy routing
are highlighted as blue squares and red triangles, for boundary noels and internal nodes, respectively. (c) The established unit
tetrahedron cells (UTCs). (d) The result after volumetric Harmornic mapping, with both outer and inner boundaries mapped to
spheres. (e) A greedy routing path shown in virtual coordinates reated by volumetric Harmonic mapping. (f) The greedy routing
path shown in the original network.

sure the success of greedy routing. Unfortunately, none of the searching may be employed to jump out a local minimum. It is pro-
greedy embedding algorithms in literatures can be extended from posed in [3] to construct hulls to partition a network into subspaces,
2D to 3D general networks. The challenge of greedy routing in limiting the recovery to search a subspace only. Separately, the
3D networks is further revealed in [28], which proves that there Random-Walk algorithm is proposed in [6] where random walk is
does not exist a deterministic algorithm that can guarantee delivery employed on a local spherical structure to escape from voids when
based on local information only in 3D networks. a local minimum is reached. However, such attempts for random-
In view of the above challenges, several approaches have beerized recovery of local minimums are non-deterministic and often
proposed for recovery from local minimums in 3D networks. First, lead to high overhead or long delay. Among all routing algorithms
mapping and projection are introduced to reduce routing complex- discussed in literatures for 3D sensor networks, Random-Walk [6]
ity in a 3D space. For example, a 3D network is projected to a 2D is the sole truly greedy routing scheme with constant-bounded stor-
plane in [4,5] in order to apply face routing. However, face routing age and computation complexity.
on the projected plane does not ensure a packet to move out of a Our proposed solution is based on a unit tetrahedron cell (UTC)
void in the original 3D network. A different projection scheme is mesh structure. We propose a distributed algorithm to realize volu-
proposed in [7] for load balancing, which does not guarantee deliv- metric harmonic mapping of the UTC mesh under spherical bound-
ery either. Second, guarantee delivery can be achieved at thef cost oary condition. It is a one-to-one map that yields virtual coordinates
more (non-constant-bounded) storage space. For example, a confor each node in the network. Since a boundary has been mapped to
vex hull-based tree structure is introduced in GDSTR-3D [8]. A a sphere, node-based greedy routing is always successfulthereo
packet is greedily forwarded to its destination. If a local minimum At the same time, we exploits the UTC mesh to develop a face-
is reached, GDSTR-3D switches to forwarding the packet along the based greedy routing algorithm, and prove its success at internal
edges of a spanning tree, guiding the packet to escape from the lo-nodes. To route a data packet to its destination, face-based and
cal minimum. GDSTR-3D offers deterministic routing. However, node-based greedy routing algorithms are employed alternately at
each node must maintain a set of convex hulls, and thus requires anternal and boundary UTCs, respectively. As far as we kitbis,
storage space proportional to network size and some nodes (suchs the first work that realizes truly deterministic greedy routing with
as the roots of trees) are heavily loaded (see Fig. 3). Finally, local constant-bounded storage and computation in 3D sensor networks
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Figure 2: Comparison of face routing in 2D and 3D networks.
Node S has a shorter distance to DestinatiorD than all of its
neighbors, and thus is a local minimum. (a) Face routing is
successful in a 2D planar network because a concave void is a
face with a simple line boundary, and thus a local deterministic
algorithm can be employed to search the boundary in either
clockwise or counter-clockwise direction as shown by the blue
and red lines. (b) In a 3D network, a void is no longer a face.
Its boundary becomes a surface, yielding an arbitrarily large
number of possible paths to be explored (as indicated by the
arrows). Thus face routing fails.
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Figure 3: Storage load distribution in GDSTR-3D, where the
storage load of a node is measured by the number of entries in
its local convex hull table.

Each node simply stores the virtual coordinates of itself and its

neighbors to make routing decisions.

We letUTC(A, B,C,D) denote the UTC formed by NodésB,C
andD, which includes four faces, i.ézaceA, B,C), Face(A,B,D),
FacegA,C,D) andFacgB,C,D). The union of all UTCs, called a
UTC mesh(see Fig 1(c)), represent the network.

A simple algorithm is employed to create a UTC mesh, which
starts from any arbitrary tetrahedron that contains its own vertex
nodes only. By removing all edges that intersect this tetrahedron,
the algorithm yields the first UTC, denoted byT C(A,B,C,D).

Next the algorithm expands it to form other UTCs. Based on each
face ofUTC(A,B,C,D), such ag-acg A, B,C), the algorithm looks

for the common neighbors of Nodés B andC. Let E be such a
common neighbor. Nodes, B, C andE form a valid UTC only if

it neither overlaps with any existing UTCs nor contains any other
nodes. Multiple such nodes lie may exist, and the algorithm ar-
bitrarily chooses one of them to form the new UTC. The algorithm
repeats the above procedure until no new UTC can be formed.

Here we have assumed no degenerated edges or nodes exist in
the network, and any internal hole (as small as a unit cube) has
been identified by [29] to ensure the successful establishment of
the UTC mesh. Moreover, we assume a node can create a local co-
ordinates system by using local distance information estimated via
standard methods [30]. Multiple available schemes are available for
creating such a local coordinates system [31-34]. Our implemen-
tation adopts [34] for its efficiency of filtering noises in distance
measurement and its tolerance of distance errors.

Definition 2. A Delaunay unit tetrahedron cell (DUTG3 a
UTC whose circumsphere contains no other nodes except its ver-
tices.

For example UTC(A,B,C,D) shown in Fig. 4(a) is a DUTC,
since its circumsphere contains no nodes ex£eptC andD. On
the other hand, Fig. 4(b) illustratésT C(A,B,C,D) that is not a
DUTC because NodE is inside its circumsphere. Similarly, nei-
ther isUTC(E,B,C,D) a DUTC. Note that the UTCs constructed
by the algorithm introduced above are not necessarily DUTCs.

Definition 3. A face is éboundary facéf it is contained in one
UTC only.

Definition 4. A UTC is aboundary UTQf it contains at least
one boundary face. A non-boundary UTC is calliaternal UTC

Definition 5. Aholeof a network is formed by a closed surface
that consists of boundary faces. The outer boundary of the network

The rest of this paper is organized as follows: Sec. 2 introduces is considered as a special hole.

the construction of UTC and related definitions. Sec. 3 proposes

the face-based greedy routing algorithm. Sec. 4 elaborates the dis- For example, a set of boundary faces are highlighted in magenta
tributed volumetric harmonic mapping algorithm that yields virtual in Fig 1(c), which together form the surface of the hole.
coordinates to support global end-to-end greedy routing. Sec. 5

presents our simulation results. Finally, Sec. 6 concludes the paper. Definition 6. Two UTCs are neighbors if and only if they share

a face.

2. CONSTRUCTION OF UNIT TETRAHE- Apparently, dJTC has at most 4 neighboringTCs Similarly,

DRON CELLS

We represent a wireless sensor network by a g&{8hE), where
the vertices\) denote the sensor nodes and the edg¢indicate
the communication links in the network.

Definition 1. A unit tetrahedron cell (UTC)s a tetrahedron

we have

Definition 7. Two faces are neighbors if and only if they share
an edge.

Definition 8. Node i is greedily reachable to Node j if a packet

formed by four network nodes, which does not intersect with any can be greedily routed from the former to the latter based on a

other tetrahedrons.

metric that is kept locally and consumes constant storage space.



(a) DUTC.

(b) Non-DUTC.

Figure 4. lllustration of Delaunay unit tetrahedron cell
(DUTC), under an arbitrary (non-unit disk graph (UDG)) com-
munication model.

Our objective is to enable greedy routing from any source to any
destination in a given sensor network. More specifically, we aim
to map an arbitrary 3D sensor network tgreedily reachable net-
work as defined below:

Definition 9. A network is called @reedily reachable network
if every two nodes in the network ageeedily reachabléo each
other.

Based on the above definitions, we next discuss how to enable
a greedily reachable network. We first examine a simple case, i.e.,
greedy routing at internal nodes, which appears trivial but is anti-
intuitively unachievable by straightforward application of the node-
based greedy routing algorithm. Then we introduce our proposed
approach based on volumetric harmonic mapping for global end-
to-end greedy routing.

3. ROUTING AT INTERNAL UTCS: FACE-
BASED GREEDY ROUTING

As discussed in Sec. 1 and demonstrated in Fig. 1(b), the node-

Node S first computes a line segment betwegand D, which
is denoted byl". Clearly, ' passes through a set of UTCs be-
tweenS and D, and intersects with a sequence of faces, denoted
by ® = {FacegA,B;,Ci)|1 <i <k}, wherek is the total number of
such faces (see Fig. 5). The distance fieatg A, B;,C;) to Des-
tination D is defined as the distance betwderand the intersec-
tion point of andFacegAj,B;j,C;). As to be proved in Lemma 1,
FacegA;,B;,Ci) and FacgA+1,Bi11,Ci+1) must be neighboring
faces, and thus share an edge. Let's denote the shared edge as

Under the proposed face-based greedy routing algorithm, data
packets are forwarded froface/A;,B1,Cy) to Face (A, Bk, Cy).
Each intermediate node only needs to calculate the next face in
®. For example, Nod& can easily determin€acgAq,B1,Cy),
because the latter must be one of the faces in the UTCs that con-
tain the former. Therefore, Nod&can check which of them in-
tersects witH", with a computation time bounded by a small con-
stant.Facg Ay, By,Cy) is determined similarly. Thus the packet is
routed fromSto one of the end nodes of Edge, i.e., the edge
shared byFacegA;,B1,Cq) andFacg Ay, B,,Cp). The above pro-
cess repeats at each intermediate node, until the packet arrives at
Face Ay, B, Ck) that contains DestinatioD, or it fails to find the
next face ind based on locally available information.

Next we prove that the proposed face-based greedy routing algo-
rithm is always successful at internal nodes.

Lemma 1. The face-based greedy routing does not fail at a
non-boundary UTC.

PrROOF T intersects with a sequence of faces, i®.,Sincel’
is a straight line segment, it is obvious th&ce A1, Bi+1,Ci+1)
must be closer to the destination compared Vit A, B;,Ci)
for i <k, as illustrated in Fig. 5. To prove the lemma, we only
need to show thafaceg A, B;,Ci) and FacgAi+1,Bi+1,Ci+1) are
neighboring faces and thus a routing decision can be made by using
local information only, ifFaceA;, B;j,Ci) is a non-boundary face.

I penetrates through a set of UTCs. According to Definitions 3
and 6, a non-boundary face is always shared by two UTCs. Thus
whenT intersects with a non-boundary face, it can be consider as

based greedy routing scheme ensures success at neither boundasyxiting from the current UTC or entering into the next UTC.

nor internal nodes in a 3D wireless sensor network. We focus on
the latter in this section.
We first show that node-based greedy routing is not always suc-

Let’s consider thaf enters a UTC when it intersects with a non-
boundary face, e.gFacgA;,B;,Ci). According to Definition 1,
" does not meet any faces inside the UTC. Thus the next face

cessful even under the UTC structure, for example, in a case asit meets, i.e.FacgAi;1,Bi;+1,Ci;+1), must be another face of the

simple as across two neighboring UTCs. More specifically, let's
consider two UTCSUTC(A,B,C,D) andUTC(B,C,D,E), which
shareFacgB,C,D). If they are DUTCs as illustrated in Fig. 4(a),
NodesA and E are greedily reachable to each other. However,
building DUTCs is expensive and often impractical in sensor net-
works. The UTCs constructed by the algorithm introduced in Sec. 2
are not necessarily DUTCs. For a UTC shown in Fig. 4(b) for ex-
ample,lga can be shorter thaa, Ica, andlpa (whereljj denotes

the distance between Nodeand j), thus resulting in a failure in
node-based greedy routing frd&to A. Obviously, the UTC mesh

same UTC, as along dacegA;,B;,Ci) is not a boundary face.
Since any two faces of a tetrahedron share an deleg(A;, Bi,Ci)
andFaceg A1 1,Bi11,Ci1) must be neighboring faces according to
Definition 7. As a result, routing from the former to the latter can
be achieved by using local information only. The lemma is thus
proven. [

Lemma 1 shows that greedy routing wealways advances data
packets toward the destination at internal UTCs, which is in a sharp
contrast to node-based greedy routing where local minimum exists

is a special structure of a 3D sensor network. Since the node-basedft internal nodes (as demonstrated in Fig. 1(b)).

greedy routing is not always successful under UTCs, it offers no
guarantee of data delivery in a general 3D sensor network either.
To this end, we propose a face-based greedy routing algorithm.
Let’s consider a data packet that is to be delivered from Sdsitce
DestinationD. Similar to conventional node-based greedy routing

4. GLOBAL END-TO-END GREEDY ROUT-
ING: VOLUMETRIC HARMONIC MAP-
PING (VHM)

algorithms, we assume the data packet contains the IDs and coor- The face-based greedy routing algorithm supports greedy data

dinates ofSandD. Note that, the coordinates are not necessarily

forwarding at internal UTCs. However, as depicted in Fig. 1, it

based on GPS. Instead, they can be virtual coordinates, e.g., proimay fail at boundaries, which are generally complex and concave.

duced by our proposed volumetric harmonic mapping algorithm as
to be discussed later in Sec. 4.

This naturally motivates us to map a boundary to a sphere, yielding

virtual coordinates for boundary nodes such that any two nodes on



must be one-to-one correspondent to the sensor nodes. To this end,
we resort to volumetric harmonic mapping (VHM) under spherical
boundary condition.

In general, a functiorf is harmonicif it satisfies the Laplace’s
equationAf = 0. If Dirichlet boundary condition is imposed on
this partial differential equation, a harmonic function is the solution
of the Dirichlet’s problem.

The same concepts can be well formulated on volumes in a dis-
crete setting. To this end, we first introduce the definition of edge
weight.

Definition 10. For Edge ¢ which connects Vertices &nd v,
its edge weightik is a real value determined as follows. Suppose
Edge ¢ is shared by t adjacent tetrahedra. Then it lies against t
dihedral angles{6m|1 < m<t}. The weight of g is defined as

Figure 5: A packet is routed through a sequence of faces under

face-based greedy routing. 1t
m=1

a boundary are greedily reachable to each other. But note that itwhere |, is the length of edge to whichjds against in the UTC
is insufficient to map boundaries only, because the virtual coordi- mesh.

nates for boundary nodes would become inconsistent with the coor- . . . ) )
dinates of the internal nodes. As a result, greedy routing fails when ~ Based on edge weight, we next define the piecewise Laplacian
a routing path involves both boundary nodes and internal nodes. under discrete setting.

More specifically, although greedy routing is supported between Definition 11. The piecewise Laplacian is the linear operator

any two nodes on a boundary based on their virtual coordinates, aApo — 0 0n the space of piecewise linear functions. Let's define
node cannot identify the correct target on the boundary, in order to amap f: T — RS, where f— (fo, fy, f2). fo, f1, and % are cor-

advance the packet to its destination. To this end, we propose a Olis'responding to three dimensions, and each of them is a real valued
tributed algorithm to realize volumetric harmonic mapping (VHM) function defined over the verticés of the UTC mesh. The piecewise
under spherical boundary condition. It is a one-to-one map that Laplacian of f is: ’ P

yields virtual coordinates for each node in the entire 3D wireless P )

sensor network to enable global end-to-end greedy routing. ApLf = (ApLfo, ApLfr, ApLf2), 3)

4.1 Theoretical Insights whereAp fm = J e, cekij (fm(Vj) — fm(vi)) for m=0,1,2. _
First, we briefly introduce the necessary theoretical background Our goal is ta find  such thalip, T =0, Le., the volumetric

knowledge that provides useful insights and underlies our proposedharmonlc funct_|on. Itis equivalent to minimize the following volu-
metric harmonic energy.

algorithm.
. . Definition 12. The volumetric harmonic energy of f is:
4.1.1 Volumetric Embedding th vormet ! gyortt
The volumetric embedding is the process of computing a map E(f) = % E(fm) @)
between the original volumetric data anccanonical domainn ““o m
RS.

For the purpose of computation, a volume is usually modeled as Where B fm) = Yo ez kij || fm(Vj) — fm(vi)|[%.

point clouds or a piecewise linear tetrahedral mesh: If f minimizes the volumetric harmonic energy, then it satisfies

M = (T,F,E,V,C), (1) the conditionAp. f =0, i.e., f is harmonic.
whereT, F, E andV are the sets of tetrahedra, triangular faces, 4.1.3 Spherical Harmonic Function
edges and vertices in the mesh, wifilelescribes the connectivity Similar to that in a smooth setting, we can impose Dirichlet
among them. boundary conditions on the discrete volumetric harmonic function,

Volumetric embedding is to assign a set of 3D coordinates to ev- py fixing the value off on certain vertices; € V¢, whereV is the
ery vertex in the volumetric data. Note that although the mapping set of constraint vertices. It is important to control boundary con-
function is by definition restricted on vertices, it can be extende.d ditions in this work. Particularly, spherical boundaries are desired
through out the whole tetrahedral mesh piecewisely. More specif- to support greedy routing.
ically, the function value for an arbitrary point in the volume is The spherical harmonic function maps a closed topologically
defined as the interpolation of the values on the four vertices of the spherical surface (i.e., a surface with no holes) to a sphere. It is
enclosing tetrahedron, inducing a piecewise-linear map from the similar to the volumetric harmonic function. They share the same
original volumetr3|c mesl to a canonical domail. The domain harmonic energy as defined in Eqn. (4) but differ in how to assign
Nis a subset oR*, and should ideally have a regular shape. Inour weightk;;. For a topologically spherical surface, an edge is shared
case, the canonical domain is a solid ball in order to support greedy by two faces only. For example, given Edgg shared by triangle
routing. facesfjjx and fj , its weight is defined as

4.1.2 Volumetric Harmonic Function kj = L (cotd) + cotBy), 5)

Our goal is to construct virtual coordinates for a 3D sensor net- 2
work to support successful greedy routing. The virtual coordinates where8, = Zvijvivj and6y = Zvvv;.



4.2 Distributed Mapping Algorithm 4.2.3 Further Discussions

Based on the theory introduced above, we now propose a prac- The above discussions are for a solid 3D sensor network with-
tical distributed algorithm to realize volumetric harmonic mapping out inner holes. If there is a hole inside (see Figs. 1(a), 6(d) and
under spherical boundary condition. 6(e) for examples), the boundary condition has been changed. Two

Let’s first consider a solid sensor network with a possibly com- boundary surfaces will be detected, one outside and the other in-
plex and concave external boundary but no internal holes (seedfigs. side. The same spherical harmonic mapping algorithm is applied
6(c) for examples). A UTC mesh is established as discussed into map them to two unit spheres, respectively. Then, the boundary
Sec. 2 (as shown in Figs. 6(f)-6(h)). We construct a volumetric nodes perform simple local calculations to align the inner sphere
harmonic map with the heat flow method such that the entire UTC to the outer sphere. Specifically, the nodes on the inner boundary
mesh is homeomorphically (one-to-one) mapped to a solid tetra- scale their coordinates to reduce the radius of the inner sphete to
hedra ball inR3 (as illustrated in Figs. 6(k)-6(m)). The proposed which is constant less than one. Next, a node on the outer bound-

algorithm follows two steps, as outlined below sequentially. ary with its virtual coordinates most close to (0,0,1) finds its clos-
L. . . est node on the inner boundary based on the UTC mesh. The two
4.2.1 Distributed Spherical Harmonic Map nodes and the center of the spheres (i.e., (0,0,0)) form an amrgle, d

First we map the boundary of the 3D volume homeomorphically noted a$dp (which is calculated according to virtual coordinates).
(one-to-one) to a sphere by using spherical harmonic map. The6g is broadcasted to all nodes on the inner boundary, which subse-
boundary nodes of a 3D sensor network are identified as the nodesjuently apply a rotation matrix with Angk, on their virtual coor-
on boundary faces. Each boundary node is associated with a 3-dinates. Therefore the inner sphere is aligned with the outer sphere
vector metric, i.e.uj = (uio,uil,uiz) for Nodei, representing its 3D with respect to this pair of nodes. Then, another node on the outer
virtual coordinates. It is initialized by random coordinates on a unit boundary with its virtual coordinates most close to (0,1,0) repeats
sphere or by the normalized normal of Ndde order to accelerate the above process to initiate the second round of rotation. After two
convergence of the algorithm. Then, the algorithm goes through anrotations, the inner sphere and the outer sphere are approximately
iterative procedure. During the n-th iteration, Nddemputes its aligned, setting the spherical boundary conditions. Finally the vol-

current spherical harmonic energy: umetric harmonic map introduced above is applied to produce 3D
N virtual coordinates for each internal node in the network. Examples
EN— e =1 =12 of such mapping results are illustrated in Figs. 1(d), 6(n) and 6(0).
I*Zk'J(ui —u; )5 (6) = K with h . hol vial ol '
= or a network with more than one inner holes, a trivial clustering

algorithm is employed to segment the network into clusters, each
whereN; is the degree of Nodeandkj; is defined earlier in EQn.  centering at an inner hole. The algorithm discussed above is applied
(5). Nodei then updates its; along the negative of the gradient  in each cluster to create virtual coordinates. Greedy routing is thus
direction of its energy: supported inside a cluster. However, routing across clusters must
W =yt yOED ) rely on g_ateways or global co_ordinates alignment, which remains
! ! o challenging under the constraints of constant-bounded storage and
wherey is a small constant (which is set to 0.1 in our simulations). computation at individual node. We will address it in our future
Next, uj is normalized such that it is always on the unit sphere. The work.
above process repeats, until the difference betvégeand E{‘*l Note that the harmonic mapping of a shape in 2D is guaranteed
is less than a small constabite.g.,5 = 10-°) for all nodes in the @ diffeomorphism, if the boundary of the 2D shape is mapped to
network. The final serves as the virtual coordinates of Nade @ convex planar curve and the mapping is homeomorphism. How-
The algorithm is distributed, where a node only needs to commu- €ver, for 3D cases, even if the image of the boundary is convex,
nicate with its one-hop neighbors in each iteration. Moreover, its diffeomorphism is not theoretically guaranteed for harmonic map-

convergence is guaranteed [35]. ping, although we have not found a single non-diffeomorphism
o ) ) case for networks without or with one hole in our extensive ex-
4.2.2 Distributed Volumetric Harmonic Map perimental tests.

By now, we have arrived at a spherical harmonic mapping, which ~ Finally, the proposed algorithm based on volumetric mapping
maps the network boundary one-to-one to a sphere. Next we ap-may become less efficiept under extreme conQitions. For ex.ample,
ply volumetric harmonic map by minimizing the volumetric har- @ higher stretch factor is expected if the original network is ex-
monic energy under the computed spherical boundary condition. tremely narrow or thin. Nevertheless, the proposed algorithm still
More specifically, if a node is on the boundary, it simply keeps €nsures successful greedy routing.
it current virtual coordinates obtained above. On the other hand, . .

a non-boundary node, e.g, Notedetermines its 3D virtual co- ~ 4-2.4 Summary of the Routing Algorithm

ordinates via volumetric harmonic map. Similar to the spherical = The above mapping algorithm is executed during network initial-
harmonic mapping discussed above, Node associated with a ization. After mapping, each node has its own virtual coordinates
3-vector metric, i.e.u;, which represents its volumetric virtual co- in a 3D space. Since a boundary has been mapped to a sphere,
ordinates. Nodeiteratively calculateg; andu; according to Eqn. node-based greedy routing is always successful thereon. At the
(6) and (7). But note that, the edge weight (ilg;) is now com- same time, the UTC mesh remains valid under the virtual coordi-
puted according to Definition 10, instead of Eqn. (5). WIikgn nates. Thus successful greedy routing at internal nodes is achieved
differs by less than a small constdrbetween two iterations for all by face-based greedy routing. To route a data packet to its desti-
nodes in the network, the volumetric harmonic mapping algorithm nation, face-based and node-based greedy routing algorithms are
terminates, yielding the virtual coordinates for every internal node. employed alternately at internal and boundary UTCs, respectively.
Example of the result after volumetric harmonic mapping are given  An example is given in Fig. 1(f), where a data packet is delivered
in Figs. 6(k)-6(m). Again the algorithm is distributed, where anode from Sto D. NodeSfirst identifies a sequence of facésthat in-

only needs to communicate with its one-hop neighbors in each it- tersects with the line segment betwegandD. If the next face is
eration. The proof of its convergence can be found in Appendix.  reachable according to local information, the packet is forwarded
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Figure 6: 3D network models and mapping results, where the first rav shows original networks, the second row illustrates the
established UTC mesh structures with only boundary UTCs for coniseness, and the third row depicts the results after VHM. The
inner boundary is highlighted in the magenta.

accordingly by face-based greedy routing. When the packet fails Note that such nodal degree is moderate in 3D although it appears
to find the next face toward NodB, it must arrive at a bound- high for 2D networks. The boundaries are detected as discussed in
ary, which has been mapped to a sphere. Thus node-based greedprevious section. For example, the inner boundary is highlighted in
routing is applied to move the packet across the void. Whenever magenta in Figs. 6(i) and 6(j).

D becomes reachable reachable, face-based greedy routing is ap-

plied again. The above process continues until the packet reachess_l_l Stretch Factor

its destination. . ) .
As proven in previous sections, the proposed scheme guarantees

successful data delivery between any pair of nodes. Therefore we
5. APPLICATIONS AND SIMULATIONS focus on stretch factor in performance evaluation. The stretch fac-
We have implemented the face-based greedy routing algorithm tor of a route is the ratio of the actual path length to the shortest
and the volumetric harmonic mapping (VHM) algorithm introduced path length. We randomly select 10,000 pairs of nodes to calculate
above, in order to achieve highly efficient peer-to-peer greedy rout- the average stretch factor for each network model.
ing in 3D sensor networks. Moreover, we further apply the pro-  While many greedy routing algorithms have been proposed for
posed routing algorithm in in-network data centric storage and re- wireless sensor networks, few of them can be applied in a 3D set-
trieval. The simulation results are presented below sequentially.  ting. Moreover, we only focus on truly greedy routing algorithms
. with constant-bounded storage and computation complexity in 3D
5.1 Peer-to-Peer Greedy Routing sensor networks in this research. Therefore, Random-Walk [6]
Various 3D sensor networks in different sizes (ranging from 1,000 is the sole comparable scheme, as discussed in Sec. 1. Under
to 2,500) and shapes are simulated in this work. In addition to the Random-Walk, a packet is greedily advanced to its destination. If
network model shown in Fig. 1, Fig. 6 illustrates several other ex- a local minimum is reached, it escapes from the local minimum
amples, where the first row shows original networks, the second by random walk on a local spherical structure. Note that Random-
row illustrates the established UTC mesh structures, and the third Walk does not ensure deterministic routing results.
row depicts the results after volumetric harmonic mapping. Sensor  The average stretch factors of Random-Walk and our proposed
nodes are randomly distributed. The radio transmission range isalgorithm in different networks are summarized in Table 1. As can
around 0.11, resulting in an average nodal degree between 16 to 30be seen, the proposed scheme exhibits stable stretch factor and out-



Table 1: Comparison of stretch factors.
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Overall Average

Proposed Algorithm ~ 1.63 1.63 1.66 1.61 1.62 1.44 1.59
Random-Walk [6] 1.83 1.70 1.73 1.84 1.89 2.12 1.85
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Figure 7: (a) More routes under the proposed scheme have low &tch factors than Random-Walk does. (b) With the increase of the
actual path length between source and destination, the stretctactor decreases under our proposed scheme, while the stretéactor
of Random-Walk grows noticeably.

performs Random-Walk in all network models. In a contrast, the ing in a 3D sensor network. Another possible application of the
performance of Random Walk heavily depends on the size of the proposed scheme is for data centric networking which supports
hole, experiencing a higher stretch factor under the network with a in-network data storage and query. Traditionally, the underlying
bigger hole. network used for data storage and retrieval needs to store a great

Fig. 7 illustrates the distribution of stretch factor based on Net- amount of routing informations. With the proposed techniques, the
work model 6. We observe that most routing paths under our pro- whole network consists of tetrahedrons and is mapped into a unit
posed scheme have low stretch factor. For example, 70% of routessphere in a 3-D space, which supports greedy peer-to-peer routing.
have their stretch factor lower than 1.4. On the other hand, the dis- Therefore we propose to uniformly map a datum to a point inside
tribution under Random-Walk has a considerable shift to the right of the unit sphere and let the tetrahedron which contains the point
side. Particularly, there are about 20% routes experiencing a stretchto store the datum. Both data insertion and retrieval are naturally
factor of 2.0 or higher (which means a routing path at least as twice supported by greedy routing.
long as the shortest path).

Itis also an interesting observation from Fig. 7(b) that, with the  5.2.1  Where to store the data
increase of the actual path length between source and destination, Given a datum, finding the location to store it is the key issue in
the stretch factor decreases under our proposed scheme. This is iRjata centric networking. To this end, we exploit the result of vol-
a sharp contrast to Random-Walk, where two far-separated nodesymetric harmonic mapping, which maps the original network with
are likely located on the opposite side of the hole and accordingly an irregular shape to a ball. We adopt the polar coordinate system,
conventional node-based greedy routing between them may fail, where a point in a unit sphere can be representeg fay, ), where

leading to a long random walk path. p is the distance from this point to the origimjs the angle formed
s by the line connecting this point and the origin wKhaxis, and3
5.1.2  Load Distribution is the angle between the line aviehxis. p is boundedto & p < 1

We have also calculated the traffic load distribution among the for a network without hole, or' < p < 1 for a network with a hole,
sensor nodes, as illustrated in Fig. 8. The traffic load under our pro- wherer’ is the radius of the inner sphere in volumetric harmonic
posed scheme is well balanced, with more than 40% of the nodesmapping.
involved in less than 30 routes and around 60% in less than 50 First, we map a datum (possibly with multiple attributes) to a se-
routes. Random-Walk performs greedy routing first, and then ran- ries of bits by using the method introduced in [36-38]. We select
domly searches along the boundaries when a dead-end is reachedhe (& + 1)-th bits (wherek ranges from 0 to the largest value that
Thus, the nodes near boundaries (especially inner boundaries) usudepends on the length of the bit series), and concatenate them to

ally experience heavy load. a binary string, which is further normalized to yigid Similarly,
. (3k+2)-th and (&+ 3)-th bits are used to determieandf3, re-
5.2 Data Storage and Retrieval spectively. Since the unit ball (or hollow ball) is the volumetric

Our scheme guarantees greedy and stateless peer-to-peer routtarmonic mapping of the tetrahedron mesh of the original network,
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a point p,0,B) must be within a tetrahedron. Thus, we simply 7.

select one of the four vertex of this tetrahedron to store the datum.
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5.2.2 Route data and query
Once a datum is mapped to a point locatipno(, ), it is routed
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Appendix

Lemma 2. The convergence of the proposed discrete volumet-
ric harmonic mapping algorithm is guaranteed.

PROOF The proposed algorithm is to compute the harmonic
map f of a giving volumetric balM, which is a simply connected
3-manifold with a single boundary. The boundary surface of the
volume is a topological sphere.

The algorithm is equivalent to use heat diffusion to solve a Laplace
equation with Dirichlet boundary condition on a volume:

Af=0
f=g
whereg mapaM to S in our algorithm.

According to elliptic PDE theory [39], the solution is the mini-
mizer of the harmonic energy,

inM
onoM,

E(f):/ <Of,0f>.
M

Its definition in discrete case is given by Eqn. (4).

If the boundary is smooth, the energy is convex [39]. Since we
have mapped the boundary surface continuously to a unit sphere,
the solution exists and unique. The proposed algorithm uses gra-
dient descent method to minimize the energy, which is exactly the
heat flow. Therefore, the iteration process is guaranteed to con-
verge. IfM has a hole inside, it is still solving the Laplace equation
with smooth Dirichlet boundary conditions. Its convergence is still
guaranteed. []



