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Theory of Error Propagation

Consider a box having length L, width W and height H.  How is the change of volume (V) of
the box related to the changes in length, height and width?   Since V = LHW, if only the length
varies the change in volume is DV = DLHW, and LDHW if only the height changes and LHDW if
only the width changes.  If all three dimensions change, then the change in volume is simply the
sum of these individual changes

DV = DLHW + LDHW + LHDW. [1]

The variation of a function of several variables due to the change in only one of the variables is
how we define partial derivatives.  The first term in the equation above is simply the partial
derivative of V with respect to L times the change in length DL.  We can write the total differential
change in volume in terms of partial derivatives as
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Now suppose g x y z, ,( ) is a quantity that is a function of the measured variables x,y,z.  Then g

itself is uncertain due to the uncertainties of each of these measured values.  A measure of the
scatter of the individual measured values of each variable about their mean is provided by the
average square deviation of g and is given by the sum of the square deviations divided by N.  In
fact, this becomes the commonly accepted definition of the square of the standard deviation,s ,
when N is replaced by N-1.
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This definition keeps s  meaningful for small populations (when N = 1, or a small number).
Statistically, 68% of the measurements will fall within 1s  and 95% within 2s .  The variation
(deviation from the mean) of the ith value of g is related to the variations of the measured variables
by
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Therefore, the square of the standard deviation is given by
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or after expansion by
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The cross terms (second line in Eq. [6]) vanish in the summation if the variables are linearly
independent.  That is, if the variation in x, for instance, is independent of the variations in y and z.
Note also that
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Substituting the expressions from Eq. [7] into Eq. [6] yields
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which relates the standard deviation of the computed function s g to the standard deviations of the

measured quantities.  Since the standard deviation s  is related to the standard error a  by the
relationship a s= N , we can find the expected uncertainty of the computed quantity g from the

uncertainties of the measured quantities x,y,z.  This quantity is also known as the standard
deviation of the mean or the standard error of the mean.  Now lets see how this works for the
different functional forms.

I. Addition and Subtraction
First we consider a quantity g x y z, ,( ) that is a function of three independent parameters

consisting of sums and differences
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The sign depends upon whether the terms are added or subtracted.  We can use the expression
derived above (Eq. 8) to find s g as a function of s x , s y  and s z
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Note here that the minus signs vanish because of the squares.  The square of the standard error is
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Thus, the uncertainty for measurements that have a functional dependence that involves sums and
differences is
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Rule for Addition and Subtraction:
The overall uncertainty is equal to the square root of the sum of the squares of the uncertainties
of each of the individual terms.

II. Multiplication and Division
Next we consider a quantity g x y,( )  that is a function of two independent parameters consisting

of a single multiplication or division
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For the case of multiplication we have
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and for division
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Dividing by g2 (in each case) results in the following expression
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for both multiplication and division.  Now, recalling that the standard error is a s= N , and that
ag g is the fractional error of g, we have
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for both multiplication and division.

Rule for Multiplication and Division
The Fractional Error of the quantity (fractional overall uncertainty) is equal to the square root
of the sum of the squares of the individual fractional errors (note that a x x  is the fractional

error of x, etc.).
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III. Powers
At first glance one may think that powers are just products and we proceed as described above

for multiplication.  For instance, the function g x y Cxy Cxyy,( ) = =2 , is a constant C times the

product of three variables x, y and y, but the last two are obviously not independent variables.
Therefore, the treatment above is no longer valid and we must develop the proper expression for
variables raised to some power.

Consider a function of a single variable given by
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we can obtain the fractional uncertainty by dividing Eq. [23] by g ax b= ±
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Recalling that the standard error is defined as

a
s

=
N

[25]

we obtain the fractional uncertainty in terms of the standard error
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Rule for Powers
For measurements that have the functional form g x y z Cx y zm n p, ,( ) = , the fractional error on g

is given by
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Data Rejection
Sometimes when we make a series of measurements of a specific quantity one of the measured

values disagrees strikingly with all the other measured values.  When this happens the experimenter
is presented with the situation where he/she must decide whether the anomalous measurement
resulted from some mistake (glitch in the measurement system) and should be rejected  or  was a
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bona fide measurement that should be kept.  If careful records were kept sometimes we can
establish a definite cause for the anomalous measurement and therefore justifiably reject the
measurement.

If an external cause can not be found for the anomalous result, then the truly honest course of
action is to repeat the measurement many times.  If the anomaly shows up again then hopefully the
cause may be found.  Either as a glitch in the measurement system or as a real physical effect.  If
the anomaly does not recur, then due to the increased number of measurements made there will be
no significant difference in our final answer whether we include the anomaly or not.

If it is impossible to retake the measurements then the experimenter must decide whether or
not to reject the anomaly by examining the measured data and the properties of a Gaussian
distribution.  The rejection of data is a subjective controversial question, on which experts disagree.
The experimenter who rejects data may reasonably be accused of fixing his/her data.  The situation
is made worse by the possibility that the anomalous result may reflect some important physical
effect.  One criterion for rejecting suspect data is Chauvenet's criterion.

Chauvenet's Criterion for Data Rejection
Suppose we make N measurements  x x xN1 2, , ,K   of the same quantity x.

1. Using all the values of the  N measurements made calculate the mean x( )  and
standard deviation s x( ) .  If one of the measurements (call it xsuspect) greatly differs

from x  and looks suspicious, then calculate

t
x x
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x
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s
,

the number of standard deviations by which xsuspect  differs from x .

2. We next find the probability  P tsuspect xoutside s( )   that a legitimate measurement will

differ from  x   by  tsuspect   or more standard deviations.

P t P tsuspect x suspect xoutside within s s( ) = - ( )    1

3. Finally, we multiply by N, the total number of measurements, to arrive at

n x N P tsuspect suspect xworse than outside ( ) = ( )  s

This  n  is the number of measurements expected to be at least as bad as  xsuspect .

If  n  is less than  1
2 , then  xsuspect  fails Chauvenet's criterion and is rejected.
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t 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.00 0.80 1.60 2.39 3.19 3.99 4.78 5.58 6.38 7.17

0.1 7.97 8.76 9.55 10.34 11.13 11.92 12.71 13.50 14.28 15.07

0.2 15.85 16.63 17.41 18.19 18.97 19.74 20.51 21.28 22.05 22.82

0.3 23.58 24.34 25.10 25.86 26.61 27.37 28.12 28.86 29.61 30.35

0.4 31.08 31.82 32.55 33.28 34.01 34.73 35.45 36.16 36.88 37.59

0.5 38.29 38.99 39.69 40.39 41.08 41.77 42.45 43.13 43.81 44.48

0.6 45.15 45.81 46.47 47.13 47.78 48.43 49.07 49.71 50.35 50.98

0.7 51.61 52.23 52.85 53.46 54.07 54.67 55.27 55.87 56.46 57.05

0.8 57.63 58.21 58.78 59.35 59.91 60.47 61.02 61.57 62.11 62.65

0.9 63.19 63.72 64.24 64.76 65.28 65.79 66.29 66.80 67.29 67.78

1.0 68.27 68.75 69.23 69.70 70.17 70.63 71.09 71.54 71.99 72.43

1.1 72.87 73.30 73.73 74.15 74.57 74.99 75.40 75.80 76.20 76.60

1.2 76.99 77.37 77.75 78.13 78.50 78.87 79.23 79.59 79.95 80.29

1.3 80.64 80.98 81.32 81.65 81.98 82.30 82.62 82.93 83.24 83.55

1.4 83.85 84.15 84.44 84.73 85.01 85.29 85.57 85.84 86.11 86.38

1.5 86.64 86.90 87.15 87.40 87.64 87.89 88.12 88.36 88.59 88.82

1.6 89.04 89.26 89.48 89.69 89.90 90.11 90.31 90.51 90.70 90.90

1.7 91.09 91.27 91.46 91.64 91.81 91.99 92.16 92.33 92.49 92.65

1.8 92.81 92.97 93.12 93.28 93.42 93.57 93.71 93.85 93.99 94.12

1.9 94.26 94.39 94.51 94.64 94.76 94.88 95.00 95.12 95.23 95.34

2.0 95.45 95.56 95.66 95.76 95.86 95.96 96.06 96.15 96.25 96.34

2.1 96.43 96.51 96.60 96.68 96.76 96.84 96.92 97.00 97.07 97.15

2.2 97.22 97.29 97.36 97.43 97.49 97.56 97.62 97.68 97.74 97.80

2.3 97.86 97.91 97.97 98.02 98.07 98.12 98.17 98.22 98.27 98.32

2.4 98.36 98.40 98.45 98.49 98.53 98.57 98.61 98.65 98.69 98.72

2.5 98.76 98.79 98.83 98.86 98.89 98.92 98.95 98.98 99.01 99.04

2.6 99.07 99.09 99.12 99.15 99.17 99.20 99.22 99.24 99.26 99.29

2.7 99.31 99.33 99.35 99.37 99.39 99.40 99.42 99.44 99.46 99.47

2.8 99.49 99.50 99.52 99.53 99.55 99.56 99.58 99.59 99.60 99.61

2.9 99.63 99.64 99.65 99.66 99.67 99.68 99.69 99.70 99.71 99.72

3.0 99.73

3.5 99.95

4.0 99.994

4.5 99.9993

5.0 99.99994


