Classical Mechanics - Problem Set 5 (Due Tuesday, Mar 9)

Problem 1)

Assume you are given a rotational matrix \(\mathbf{R} \) that transforms the components of the vector \(\mathbf{r} \) in the unprimed coordinate system, \(\mathbf{r}^T = (x,y,z) \), into its components in the primed (rotated) coordinate system, \(\mathbf{r}'^T = (x',y',z') \) where \(\mathbf{r}' = \mathbf{R} \mathbf{r} \) (passive rotation).

Show explicitly (using known properties of derivatives and rotational matrices) that the gradient
\[
\nabla^T = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right)
\]
transforms like a vector under this rotation,
\[
\nabla' = \mathbf{R}\nabla \quad \text{where} \quad (\nabla')^T = \left(\frac{\partial}{\partial x'}, \frac{\partial}{\partial y'}, \frac{\partial}{\partial z'} \right),
\]
(i.e., the components of \(\nabla \) in the primed coordinate system are simply the derivatives with respect to the primed coordinates \(x', y', z' \)).

(If you find the notion of a “del operator” without anything to take the derivative of unfamiliar, just “multiply” it with any scalar function \(f(\mathbf{r}) \), i.e., take the gradient of such a function).

Problem 2)

Check Goldstein’s Eq. (4.46), pg. 153, by explicitly multiplying the three “Euler matrices” BCD. Show your intermediate steps.

Problem 3)

An infinitesimal rotation around the z-axis by an angle \(d\phi \) can be described by the rotational matrix \(\mathbf{R}(d\phi) = \mathbf{I} + \mathbf{M}_3 d\phi \) (see Goldstein pg. 171). Show that for a finite rotation around the same axis by an angle \(\phi \), one can write the rotational matrix as \(\mathbf{R}(\phi) = \exp(\mathbf{M}_3 \phi) \) where the “exponent of a matrix” is simply given by the usual Taylor expansion of the exp function. Note: your proof doesn’t have to be rigorous – I’ll give you full credit if you calculate the first few terms in the Taylor expansion and then explain how the full series will lead to the correct result.