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1 Equations of Motion in Polar Coordinates

1.1 General Theory and Derivations

To begin, we recall the following definitions for generalized force

Qj =
∑
i

F · ∂ri
∂qj

(1)

and for the equations of motion (EOM)

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qi
= Qi (2)

where T is the kinetic energy of the system. We can also make the substitution T → L in
the above equation, where L is the Lagrangian,

L = T − V (3)

in which case we omit the term Qi (unless we have a really irritating problem with both
potentials and forces). We will now set about deriving a general expression for T in polar
coordinates. In Cartesian coordinates, the kinetic energy can be written

T =
1

2
m
(
ẋ2 + ẏ2

)
(4)

which we can convert to polar coordinates using the standard definitions

x = r cos θ , y = r sin θ (5)

Assuming r and θ are time-dependent, we can use the chain rule to write

ẋ = ṙ cos θ − rθ̇ sin θ , ẏ = ṙ sin θ + rθ̇ cos θ (6)

Next, we require the square of each term in (6)

ẋ2 = ṙ2 cos2 θ − 2rṙθ̇ cos θ sin θ + r2θ̇2 sin2 θ (7)

ẏ2 = ṙ2 sin2 θ + 2rṙθ̇ cos θ sin θ + r2θ̇2 cos2 θ (8)

Finally, substituting (7) and (8) into (4) and simplifying, we find our expression for the
kinetic energy in polar coordinates.

T =
1

2
m
(
ṙ2 + r2θ̇2

)
(9)

Before deriving the equations of motion which correspond to (9), it is informative to calculate
the components of the generalized force using (1). For the radial component, using (5) we
find
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Qr = Fx
∂x

∂r
+ Fy

∂y

∂r
= Fx cos θ + Fy sin θ

= F · r̂ (10)

which is simply the force in the radial direction. For the θ component we find

Qθ = Fx
∂x

∂θ
+ Fy

∂y

∂θ
= −Fxr sin θ + Fyr cos θ

= −yFx + xFy

= |r× F|
= N (11)

which is the torque. We now proceed to write the equations of motion for each component
using Lagrange’s equation. In the radial direction, we find

Qr =
d

dt

∂T

∂ṙ
− ∂T

∂r

= m
d

dt
ṙ −mrθ̇2

= mr̈ −mrθ̇2 (12)

where the second term on the right is the familiar centripetal force. For the θ component
we find

Qθ =
d

dt

∂T

∂θ̇
− ∂T

∂θ

= m
d

dt
r2θ̇

= mr2θ̈ + 2mrṙθ̇ (13)

where the second term on the right is again a familiar one - the Coriolis force.

1.2 Example: Rotating Mass on a Spring
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We now consider the problem of a spring of length l attached to the origin at one end, and
attached to a block of mass m at the other. Assume the spring is able to rotate freely in the
θ̂ direction. The kinetic energy term for this problem is identical to the one derived above,
we need only write the potential term, which for a spring is given by

V =
1

2
k(r − l)2 (14)

where k is the traditional spring constant. Using (9) and (14) we write our Lagrangian

L =
1

2
mṙ2 +

1

2
mr2θ̇2 − 1

2
k(r − l)2 (15)

Since we know the specific potential for this system, there is no need to construct a general-
ized force. Additionally, since the potential does not involve θ, the angular momentum will
be constant, and there will be no net torque on the system. The equation of motion reads

d

dt

∂L
∂θ̇
− ∂L
∂θ

= mr2θ̈ + 2mrṙθ̇ = 0 (16)

And the radial EOM is given by

d

dt

∂L
∂ṙ
− ∂L
∂r

= mr̈ −mrθ̇2 + k(r − l) = 0 (17)

Stationary Solution

In order to obtain the stationary solution we set r̈ = θ̈ = 0, which implies both ṙ and θ̇ are
constants. We define θ̇ = ω0, and the radial EOM reads

mrω2
0 = k(r − l)

ω2
0 =

k(r − l)
mr

(18)

for r > l (since there is no stationary solution corresponding to the spring being compressed).

Small Oscillations

For small oscillations, we assumed the system experiences a small perturbation which we
can write as

r(t) = r0 + δr , δr << r0 (19)

θ̇(t) = ω0 + δθ̇ , δθ̇ << ω0 (20)

Using these, the radial EOM becomes

mδr̈ −m(r0 + δr)(ω2
0 + 2ωoδθ̇ + δθ̇2) + k(r0 + δr − l) = 0 (21)
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We are interested in small oscillations around the stationary state, and we will use the
following results from our stationary state analysis

mr0ω
2
0 = k(r0 − l) (22)

and

mr2θ̇ = mr20ω0 (23)

substituting (19) and (20) into (23) yields

m(r0 + δr)2(ω0 + δθ̇) = mr20ω0 (24)

Since we are dealing with small oscillations, we omit all terms that are higher than first order
in δr and δθ̇. (24) is then rewritten and solved for δθ̇

mr20ω0 = mr20ω0 + 2mr0δrω0 +mr20δθ̇

mr20δθ̇ = −2mr0δrω0

δθ̇ = −2ω0

r0
δr (25)

We now return to (21), which when neglecting higher order terms is written

mδr̈ = mr0ω
2
0 − k(r0 − l) + 2mr0δθ̇ω0 +mδrω2

0 − kδr (26)

Finally, we can use (22) and (24) to write

mδr̈ = −2mr0ω0

(
2ω0

r0
δr

)
+mδrω2

0 − kδr

= δr(mω2
0 − k − 4mω2

0)

= −δr(3ω2
0 + k) (27)

Where the form of this differential equation should be familiar to the reader, and the fre-
quency of small oscillations is easily seen to be

ωr =
√

3ω2
0 + k/m (28)

1.3 Example: Bead on a Hoop
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Using spherical coordinates, we define the azimuthal frequency as

Ω = φ̇ (29)

The kinetic energy of the hoop is given by

T =
1

2
mR2θ̇2 +

1

2
m(ΩR sin θ)2 (30)

where the angle θ has been defined such that the axial portion of the kinetic energy provides
its maximum contribution at θ = π/2. The potential energy is gravitational, and is written

V = −mgR cos θ (31)

where the negative sign assures we have a positive value for the energy at θ = π. Our
Lagrangian is

L =
1

2
mR2θ̇2 +

1

2
m(ΩR sin θ)2 +mgR cos θ (32)

which depends only a single generalized coordinate θ. The EOM are then given by

mR2θ̈ = mΩ2R2 sin θ cos θ −mgR sin θ (33)

which simplifies to

θ̈ = sin θ
(

Ω2 cos θ − g

R

)
(34)

Limiting Case 1: Small angles, no rotation

In this case, Ω = 0 and sin θ ≈ θ. The EOM then reduces to

θ̈ = − g
R
θ (35)

Again, the form of this equation should be familiar to the reader, and the motion can be
written

θ = A cos
(√

g/R + δ
)

(36)

where A is an arbitrary constant, δ is a phase shift, and the frequency is given by ω =
√
g/R.

Limiting Case 2: Stationary solution for non-zero rotation

For the stationary solution (θ̈ = 0) corresponding to a non-zero rotation (Ω 6= 0), the EOM
is written

0 = sin θ
(

Ω2 cos θ − g

R

)
(37)

There are two solutions which satisfy this condition. The first is given by
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g = Ω2R cos θ or cos θ =
g

Ω2R
(38)

which is valid only if g/Ω2R ≤ 1, which is a limit imposed by the range of cos θ. The other
solution occurs is sin θ = 0, which occurs at either θ = 0, θ = π. At θ = π the bead is at the
top of the hoop, and the equilibrium is unstable. At θ = 0 the nature of the equilibrium is
determine by the ratio of g/R.

Small Oscillations and the Stationary Solution

We define the perturbation

θ = θ0 + δθ (39)

our equation of motion is then

Rδθ̈ = sin(θ0 + δθ)
(
Ω2R cos(θ0 + δθ)− g

)
(40)

To analyze this equation, we will need the following trig identities

sin (θ0 + δθ) = sin θ0 cos δθ + sin δθ cos θ0 (41)

cos (θ0 + δθ) = cos θ0 cos δθ − sin θ0 sin δθ (42)

and for small angles we will use

cos δθ ≈ 1

sin δθ ≈ δθ

Our EOM then becomes

Rδθ̈ = (sin θ0 + cos θ0δθ)(Ω
2R(cos θ0 − sin θ0δθ)− g) (43)

If we only work to first order in δθ, this reduces to

Rδθ̈ = sin θ0(Ω
2R cos θ0 − g) + δθ(Ω2R cos2 θ0 − g cos θ0 − Ω2R sin2 θ0) (44)

Using the stationary solutions (38) this further reduces to

δθ̈ = −Ω2 sin2 θ0δθ (45)

and finally solving the differential equation yields the frequency of small oscillations

freq = Ω sin θ0 =
√

Ω2 − (g2/Ω2R2) (46)

Forces of Constraint
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We already know that since the bead is confined to the hoop at radius R, which means that
δr = 0. However, we are now interested in find the constraint force Fr such that δr = 0. We
begin with the standard definition

R = R + δr (47)

Working only to first order in δr the kinetic energy can be written

T =
m

2

(
δṙ2 + (R2 + 2Rδr)(θ̇2 + Ω2 sin2 θ)

)
(48)

and the potential energy becomes

V = mg(R + δr) cos θ − Frδr (49)

where the last term represents the work done by the force of constraint. Our EOM is obtained
from

d

dt

∂L
∂δṙ
− ∂L
∂δr

= 0 (50)

which yields

mδr̈ = mR(θ̇2 + Ω2 sin2 θ)−mg cos θ − Fr (51)

However, δr is constrained which means δr̈ = 0. Finally we can use this to solve the above
equation for the constraint force, which we find to be

Fr = mR(θ̇2 + Ω2 sin2 θ)−mg cos θ (52)

The result is the difference between the centripetal force and the force of gravity. We now
turn our attention to the constraint force Fθ. We define

Ω = Ω0 + δφ̇ (53)

Our kinetic and potential energies are then written

T =
m

2
(R2θ̇2 +R2 sin2 θ(Ω0 + δφ̇)2) (54)

V = −mgR cos θ +Nδφ (55)

we are already aware the constraint force is proportional to the torque, which allows us to
write the potential as

V = −mgR cos θ +R sin θFφδφ (56)

Working to first order δφ̇, our EOM becomes

2mR2 cos θ sin θ(Ω0 + δφ)θ̇ +mR2 sin2 θδφ̈−R sin θFφ = 0 (57)

Working with constraints allows us to set δφ = δφ̈ = 0, after which we can finally solve for
Fφ
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Fφ = −2mRΩ0 cos θθ̇ (58)

1.4 Example: Atwood’s Machine

We now turn our attention to one of the earliest problems encountered in introductory
physics. Using the same procedures we have developed exhaustively above, we demonstrate
how we can use the Lagrangian to very simply obtain the EOM.

T =
1

2
(m1 +m2)ẋ

2 (59)

V = −m1gx−m2g(l − x) (60)

L =
1

2
(m1 +m2)ẋ

2 +m1gx+m2g(l − x) (61)

(m1 +m2)ẍ− (m1g −m2g) = 0 (62)

ẍ =
m1 −m2

m1 +m2

g (63)

2 Velocity Dependent Potentials

If there exists a function U(qj, q̇j) such that the generalized forces can be obtain using

Qj = −∂U
∂qj

+
d

dt

(
∂U

∂q̇j

)
(64)

then the EOM can still obtained from a Lagrangian of the form

L = T − U (65)

Such potentials are called ”velocity-dependent potentials” or ”generalized potentials”.
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2.1 Lorentz Force

One common example of a force which can be written at a velocity dependent potential is
the Lorentz force

F = q(E + v×B) (66)

Where the E and B fields can be expressed in terms of the scalar potential φ and the vector
potential A.

E = −∇φ− ∂A

∂t
(67)

B =∇×A (68)

As it turns out, the potential which gives rise to the Lorentz force is given by

U = q(φ−A · v) (69)

and the corresponding Lagrangian is written

L =
1

2
mv2 − qφ+ qA · v (70)

In order to demonstrate this does indeed give rise to the Lorentz force, we need only prove
it is true for one component, which we arbitrarily choose to be the x-component. As such,
we can write the quantity A · v as Axẋ which gives us

∂L
∂ẋ

= mẋ+ qAx (71)

and

d

dt

∂L
∂ẋ

= mẍ+ q
dAx
dt

(72)

Using the chain rule, we can rewrite the last term as

dAx
dt

=
∂Ax
∂t

+ vx
∂Ax
∂x

+ vy
∂Ax
∂y

+ vz
∂Ax
∂z

(73)

which can be used to rewrite (72) as

d

dt

∂L
∂ẋ

= mẍ+ q

(
∂Ax
∂t

+ vx
∂Ax
∂x

+ vy
∂Ax
∂y

+ vz
∂Ax
∂z

)
(74)

Next, recalling that both φ and A are functions of position as well as time, we find

∂L
∂x

= −q∂φ
∂x

+ q

(
vx
∂Ax
∂x

+ vy
∂Ay
∂x

+ vz
∂Az
∂x

)
(75)

We at last obtain our EOM
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mẍ = q

(
vx
∂Ax
∂x

+ vy
∂Ay
∂x

+ vz
∂Az
∂x

)
− q∂φ

∂x
− q
(
∂Ax
∂t

+ vx
∂Ax
∂x

+ vy
∂Ax
∂y

+ vz
∂Ax
∂z

)
(76)

Before proceeding, we observe that

(v×B)x = v× (∇×A)x

= vy

(
∂Ay
∂x
− ∂Ax

∂y

)
+ vz

(
∂Az
∂x
− ∂Ax

∂z

)
(77)

Finally, we can use this to write the x-component of the EOM in the familiar form

mẍ = q

[
−∂φ
∂x

+ vy

(
∂Ay
∂x
− ∂Ax

∂y

)
+ vz

(
∂Az
∂x
− ∂Ax

∂z

)]
(78)

= q[Ex + (v×B)x] (79)

Showing that this holds true for one component in Cartesian coordinates is equivalent to
proving the statement.

2.2 Rayleigh Dissipation Function

Another velocity dependent force commonly come across in physics is drag force. Consider
a velocity-dependent force in the x-direction, given by

Fx = −kxvx (80)

The equations of motion for such a force can be derived from Rayleigh’s dissipation function

F =
1

2

∑
i

(
kxv

2
ix + kyv

2
iy + kzv

2
iz

)
(81)

where the resultant force is obtained via

F = −∇vF (82)

Physically this can be interpreted as the work done against drag by the system

dW = −F · dr = −F · v dt =
(
kxv

2
x + kyv

2
y + kzv

2
z

)
dt (83)

which implies that 2F is the rate of energy dissipation due to friction. We can also find the
component of the generalized force due to drag

Qj =
∑
i

Fi ·
∂ri
∂qj

= −
∑
i

∇vF ·
∂ri
∂qj

(84)

recalling an identity proved in an earlier lecture
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∂ri
∂qj

=
∂ṙi
∂q̇j

=
∂vi
∂q̇j

(85)

which we can use to write

Qj = −
∑
i

∇vF ·
∂ri
∂qj

= −
∑
i

∂F
∂v
· ∂vi
∂q̇j

= −∂F
∂q̇j

(86)

The EOM is then written

d

dt

∂L
∂q̇j
− ∂L
∂qj

+
∂F
∂q̇j

= 0 (87)

Where the reader can see that in order obtain the EOM, two scalar functions, L and F must
be specified. A common example of a force which can be derived from a velocity-dependent
potential is Stokes law for a sphere of radius a moving at a speed v through a fluid of viscosity
η. The drag force is given by

F = −6πηav (88)

3 Hamilton’s Principle

Assuming a force is derivable from a scalar potential of the form

V ({qi}, {q̇i}, t) (89)

Then the action I, given by

I =

∫ t2

t1

L dt (90)

is stationary with respect to the path. This implies the action remains unchanged if the
path undergoes small variations. Consider an initial path qi(t), which then undergoes a
slight perturbation αηi(t). We write the new path as

q′i(t) = qi(t) + αηi(t) (91)

The action with respect to the new path is then written

I =

∫ t2

t1

L({qi(t) + αηi(t)}, {q̇i + αη̇i(t)}, t) dt (92)

We also assume the perturbation does not affect the endpoints of the path, that is
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ηi(t1) = ηi(t2) = 0 (93)

In order for the action to remain stationary, its derivative with respect to the perturbation
must be equal to zero, that is

d

dα

∫ t2

t1

L({qi(t) + αηi(t)}, {q̇i + αη̇i(t)}, t) dt = 0 (94)

Using the chain rule, the integrand can be expressed as

∑
i

(
∂L
∂qi

∂

∂α
(qi + αηi) +

∂L
∂q̇i

∂

∂α
(q̇i + αη̇i)

)
=
∑
i

(
∂L
∂qi

ηi +
∂L
∂q̇i

η̇i

)
(95)

again we can use the chain rule to rewrite the second term. We note that

d

dt

(
∂L
∂q̇i

ηi

)
=
∂L
∂q̇i

η̇i +
d

dt

(
∂L
∂q̇i

)
ηi (96)

which can be used to rewrite the second term in (95). We can know write the full integral
as follows ∑

i

∫ t2

t1

d

dt

(
∂L
∂q̇i

ηi

)
dt+

∑
i

∫ t2

t1

(
∂L
∂qi
− d

dt

(
∂L
∂q̇i

))
ηi dt = 0 (97)

The first term is merely the function evaluated at the endpoints. However, we have already
defined the behavior of η at the endpoints (93), and we know that terms must necessarily
be zero. We are left with ∑

i

∫ t2

t1

(
∂L
∂qi
− d

dt

(
∂L
∂q̇i

))
ηi dt = 0 (98)

which requires the (familiar) term in parenthesis to be zero in order to be satisfied. Thus we
have derived the EOM from Hamilton’s principle rather than D’Alembert’s.
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