
Classical Mechanics Notes Week 4

Dylan English

February 2021

Tuesday, February 9th

1 Central Force Problems

We start by reducing the 2 body problem to a 1 body problem by choosing to work in the center of
mass reference frame.

~R =
m1 ~r1 +m2 ~r2
m1 +m2

(1)

Now the generalized potential does not depend on the center of mass coordinates U 6= U(~R) but

instead only on the internal coordinates U = U(~ri, ~̇ri, ...). Since the Lagrangian now only depends on

~̇R this means that ~R is cyclic and ~P is conserved. We also must replace the mass in of the internal
kinetic energy with the reduced mass µ = m1m2

m1+m2
. Note an easy way of quickly ”deriving” this reduced

mass is to just think of the dimensions and the fact that it must be symmetric in m1 and m2.
Taking the potential to be a conservative central force so V = V (r) and ~F = −∂V∂r r̂. Since the

potential is spherically symmetric any rotation will leave the equation of motion unchanged. This
leads to the angular momentum being conserved. There are 3 constraints because angular momentum
is a vector

~L = ~r × ~p (2)

This means that ~r will always be in a plane perpendicular to ~L. Choosing a special case where ~r ‖ ~p
means that ~L = 0 yielding straight line motion.

If instead we choose ẑ ‖ ~L then φ = pi
2 . This uses two of our three constraints. Note that in

physics we use the notation of (r, θ, φ) where the transformation equations of spherical to Cartesian
are as follows.

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

(3)

Now writing out the Lagrangian L = T − V

L =
1

2
µ(ṙ2 + r2θ̇2)− V (r) (4)

where θ is cyclic since L only depends on θ̇. This means that pθ is conserved and is equal to a constant
we will define as `z.

pθ =
∂L
∂θ̇

= µr2θ̇ = `z (5)
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Figure 1: the area swept out by the radius vector in the time dt

With angular momentum being a constant the motion is completely planar. Using equation (5)
we can deduce an equation for the area being swept dA = 1

2r
2dθ. Dividing both side by dt we get an

equation for areal velocity.

dA

dt
=

1

2
r2

dθ

dt
(6)

The areal velocity is constant because the angular momentum is constant. This is the proof of Kepler’s
second law of planetary motion: The radius vector sweeps out equal areas in equal times. This law
applies to any potential V (r) that is central. We can also write our angular momentum in the form

pθ = µ|~r × ~̇r|.
Now solving the Euler Lagrange equation for r

d

dt

∂L
∂ṙ
− ∂L
∂r

= µr̈ − µrθ̇2 +
∂V

∂r
= 0 (7)

Changing the spatial derivative of the potential into a force and substituting the constant angular

momentum equation (5) in as θ̇2 =
`2z
µ2r2 , this term is the centripetal force.

µr̈ − `2z
µr3

= f(r) (8)

2 Energy Conservation

In this section we will prove the conservation of energy in three different ways.

1. Noether’s Theorem: According to Noether’s theorem the time independence of the potential
V 6= V (t), leads to energy conservation.

E =
1

2
µ(ṙ2 + r2θ̇2) + V (r) (9)

2. Manipulation of the equation of motion: By rewriting the equation of motion, equation(7), into
a derivative with respect to r of both the potential and the centripetal force we come to the
equation.
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µr̈ = − d

dr

(
V +

1

2

`2z
µr2

)
(10)

Next multiplying both sides of the equation by ṙ. the left side of the equation becomes

µr̈ṙ =
d

dt

(
1

2
µṙ2
)

(11)

The right hand side of the equation becomes

− d

dr

(
V +

1

2

`2z
µr2

)
dr

dt
= − d

dt

(
V +

1

2

`2z
µr2

)
(12)

Now putting it all back together yields

d

dt

(
1

2
µṙ2
)

= − d

dt

(
V +

1

2

`2z
µr2

)
(13)

Adding the right hand side over to the left it becomes apparent that the time derivative of the
energy is equal to zero and therefore the energy is conserved.

d

dt

(
1

2
µṙ2 + V +

1

2

`2z
µr2

)
= 0 (14)

3. Energy function h: We use the definition of the energy function

h =
∑
i

piq̇i − L (15)

Applying the sum over both independent variables r and θ yields the function

h = (µṙ)ṙ + µr2θ̇2 −
[µ

2
(ṙ2 + r2θ̇2)− V

]
(16)

We can see that the kinetic energy terms and the centripetal force terms subtract quite nicely.

h =
1

2
µ(ṙ2 + r2θ̇2) + V = E (17)

Having thoroughly proved energy conservation, we can now solve for ṙ

dr

dt
=

[
2

µ

(
E − V − `2z

2µr2

)]1/2
(18)

Treating this as a differential equation and separating variables we can solve for time by inte-
grating over r to get a function t(r)

t(r) =

∫ r

r0

dr√
2
µ

(
E − V − `2z

2µr2

) (19)

This integral can be quite difficult so it is preferable to use books of known integrals to look up
similar solutions. After solving the integral, inverting the time function finally yields r(t).
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3 Orbits

This section focuses on getting as much information from the previous problem without having to
integrate. We start by creating a fictitious force made up from the actual force and the centripetal
force.

f ′ = f +
`2z
µr3

(20)

We can then deduce a fictitious potential from this force.

V ′ = V +
1

2

`2z
µr2

(21)

Plotting this fictitious potential gives us a hint as to what orbits
can be seen at different energy levels. We now take a look at 4 cases
of different energy levels.

The fictitious potential plotted in bold vs r. The upper bound
dotted line is the angular momentum centripetal barrier. The lower
bound is the potential V = −kr . We require that |V | decreases slower
than 1

r2 as r →∞ and |V | increases slower than 1
r2 as r → 0

1. E1 > 0 and r > r1: We can rewrite our energy as E1 = 1
2µṙ

2

as r →∞. Also note if V ∼ −kr then we get an orbit that is a
hyperbola.

2. E2 = 0 and r > r2: for this energy as r goes to infinity we get
1
2µṙ

2
∞ = 0. Also note if V ∼ −kr then we get an orbit that is a

parabola.

3. E3 < 0 and rmin3 < r < rmax3 :the orbit is bounded. For some
incidents the orbit is closed, meaning the orbit repeats itself.
Also note if V ∼ −kr then we get an orbit that is an ellipse.

4. E4 = V ′min and r = r4:the orbit is will always be a circle since
their is only one possible value of r.

Notice that we never specified the value of lz. As lz increases the obit energies and the values at min
change but the shapes do not.

Now we consider a couple weird cases. First we have the potential V (r) = −k
r3 , figure (a) below.

This potential fails both the limit tests given above. We consider three energy ranges. The first is
when E1 > V ′ where r is unbounded. The second is when E > 0 but it is bounded. In this case r < r1
or r > r2

Next we consider the Isotropic Harmonic Oscillator, figure (b) below. Using the harmonic oscillator
force f = −kr and potential V = 1

2kr
2. If ` = 0 then we just have V ′ = V 1D motion. If ` 6= 0 then

we get V ′ =
`2z

2µr2 + k
2 r

2. The equilibrium is found when ∂V ′

∂r =
−`2z
µr3 + kr = 0. Solving for r gives

the equilibrium radius of r4eq =
`2z
µk . Plugging the radius at equilibrium into the potential gives us the

potential at equilibrium.

V ′eq =
`2z
√
µk

2µ`z
+
k

2

`z√
µk

= `z

√
k

µ
= `zω (22)

We can also see that since the energy is at Vmin there is no kinetic energy T ′eq = 1
2mṙ

2 = 0.
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(a) The 1
r3

Potential
(b) The Isotropic Harmonic Oscillator Po-
tential

Now we can analyze the period of the harmonic oscillator. by taking the relation that the period
is equal to the area divide by the areal velocity and using the areal velocity we found earlier we arrive
at the equation.

Period =
πr2eq
`z
2µ

=
2πµr2eq
`z

(23)

Using the definition of then angular momentum from earlier `z =
√
µkr2eq. This shows that `z is

proportional to r.

Period =
2πµr2eq√
µkr2eq

= 2π

√
µ

k
=

2π

ω
(24)

If we look at the Cartesian solution L = 1
2µ(ẋ2 + ẏ2) + k

2 (x2 + y2) Where we solve for x and y and get

x = Ax cosωt+ φx

y = Ay sinωt+ φy
(25)

At equilibrium we have Ax = Ay and φx = φy.
Now taking into consideration small oscillations around the equilibrium we expand the fictitious

potential into a Taylor series.

V ′(r) = V ′(req) +
∂v′

∂r
δr +

1

2

∂2V ′

∂r2

∣∣∣∣
req

δr2 (26)

The first derivative term we already know to be zero and the first term is a constant. Taking the
second derivative we see that

V ′(r) = C +
1

2

(
3`2

µr4eq
+ k

)
δr2 (27)

Once again using the definition `z =
√
µkr2eq

V ′(r) = C +
1

2
(3k + k)δr2 = C +

1

2
(4k)δr2 (28)
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This yields an frequency of small oscillations of ωosc =
√

k′

µ =
√

4k
µ = 2ω. Since 2 is rational we

confirm that this is a closed orbit.
Finally addressing turning points at the minimum and maximum r. Since we are only looking at

extreme values of r we known that ṙ = 0. Therefore our energy equation becomes.

E =
`2z

2µr2
+
k

2
r2 (29)

Multiplying through by r 2r
2

k yields a quadratic equation in r2

r4 − 2E

k
r2 +

`2z
µk

= 0 (30)

Using the quadratic equation we an solve for r2

r2max,min =
E

k
±
[
E2

k2
− `2z
µ2k2

]1/2
(31)

February Thursday, February 11th

4 Virial Theorem

The Virial theorem is another property of central force motion and is a statistical statement about T
and V. We define a function G =

∑
i ~pi · ~ri. Taking the time derivative we arrive at

dG

dt
=
∑
i

~̇pi · ~ri +
∑
i

~pi · ~̇ri (32)

Where the first term on the right hand side of the equation is ~Fi · ~ri and the second term is 2T =∑
imv

2
i . Therefore we note that

d

dt

(∑
i

~pi · ~ri

)
=
∑
i

~Fi · ~ri + 2T (33)

Taking the time average of everything we see that

1

τ

∫ τ

0

dG

dt
dt =

dG

dt
= 2T +

∑
i

~Fi · ~ri (34)

The bar on top of the terms denotes time average. Now solving the integral gives the equation

2T +
∑
i

~Fi · ~ri =
1

τ
(G(τ)−G(0)) (35)
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If the motion is periodic or bounded then ∆G is finite and τ →∞. Therefore the right hand side of
the equation becomes zero. This leaves us with the Virial Theorem

T = −1

2

∑
i

~Fi · ~ri (36)

If the force is conservative it can be written as ~F = −~∇V and the Virial theorem becomes

T =
1

2

∑
i

~∇V · ~ri (37)

In the case of a single particle in a central potential V = V (r)

T =
1

2

∂V

∂r
r (38)

If the potential is of the common form V = arn+1 then ∂V
∂r r = (n + 1)V and we can solve the virial

theorem for two familiar cases.
The first case is the harmonic oscillator, where n = 1. This yields a virial theorem of T = 1

2V .

The second case is for gravity, where n = −2. This yields a virial theorem of T = − 1
2V . This

shows that in order to reach escape velocity one must double the kinetic energy. In other words the
escape velocity is equal to

√
2 Circular velocity. This exact theory is actually used in determining

galaxy cluster mass. If we know the average kinetic energy from redshift data we can find the mass
using the virial theorem.

5 Orbits Part II: The Orbiting

Now we will be using m instead of µ. Everything will still be in terms of reduced mass but we will
just represent it by m now. We will also be dropping the z in `z for convenience. In this section we
will work to first find r(θ) and then find r(t) and θ(t) later.

We start by considering the conserved angular momentum ` = mr2 dθ
dt . Separating time and angle

we come the the equation d
dt = `

mr2
d
dθ . Now that we have established a relationship between a time

derivative and a derivative with respect to θ we can manipulate the equation of motion.

m
d2r

dt2
− `

mr3
= f(r)→ `

r2
d

dθ

(
`

mr2
dr

dθ

)
− `

mr3
= f(r) (39)

We define U = 1
r and f = −∂V∂r = −dV

dr = −dV
dU

dU
dr = U2 dV

dU . Now the complex differential term of our
equation of motion becomes

`2

m
U2 d

dθ

(
U2 d1/U

dθ

)
=
`2

m
U2 d

dθ

[
U2

(
−U−2 dV

dθ

)]
= −`

2U2

m

d2V

dθ2
(40)

Plugging this back into the full equation of motion

d2U

dθ2
+ U = −m

`2
d

dU
V (1/U) (41)

Notice how this equation of motion is symmetric in θ

If we chose θ = 0 at a turning point, where r is a max or min, then U0 = U(0) and dU
dθ

∣∣∣∣
0

= 0.

Returning now to our integral to solve for time, equation(19), and using our time θ relation we derived
earlier.
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θ = θ0 −
∫ U

U0

dU[
2m
`2 (E − V )− U2

]1/2 (42)

If the potential is the familiar V = arn+1 then for n = 1,−2,−3 we get trig function solutions and
for n = 5, 3, 0, 7 we get elliptical functions as special cases of generalized hypergeometric functions.

6 Closed Orbits (Bertrand’s Theorem)

Now we deal with the problem of finding out which orbits are closed. We start by looking at only
small perturbations U = U0 +G cosβθ. If β is a rational number then the orbit will be closed.

The treatment of big perturbations is a bit more complex. They only result in closed orbits only
for r2 and r−1 potentials which are the familiar Harmonic Oscillator and gravity. Since orbits are
closed only for exponent exactly -1, this shows that the gravitational force ∝ r−2 exactly which means
that space has exactly 3 dimensions (not 2.95 or 3.01).

7 The Kepler Problem

For gravity we have F = −k
r2 and V = −kr . Plugging this back into our integral for theta

θ = θ′ −
∫ U

U0

dU[
2mE
`2 + 2mk

` U − U2
]1/2 (43)

Looking up a similar integral we see that
∫

dx
(α+βx+γx2)1/2

= 1√
−γ cos−1(−β+2γα√

q ) where q = β2− 4αγ.

Now using this on our equation we see that

θ = θ′ − cos−1

 `2U/mk − 1[
1 + 2E`2

mk2

]1/2
 (44)

Inverting and solving for U

U =
1

r
=
mk

`2

(
1 +

[
1 +

2E`2

mk2

]1/2)
cos(θ − θ′) (45)

where θ′ is the turning angle. E,`, and θ′ are three of the four constraints of motion, or ”integration”.
This equation matches that of a conic with one focus at the origin 1

r = C [1 + e cos(θ − θ′)]. Relating

this to our equation above gives the eccentricity e =
[
1 + 2E`2

mk2

]1/2
. Referring back to the beginning

of the orbits section we have

E > 0→ e > 1 hyperbolic

E = 0→ e = 1 parabola

E < 1→ e < 1 ellipse

E =
−mk2

2`2
→ e = 0 circle

(46)

For a circular orbit we can apply the virial theorem and since the radius never changes the time
average is unnecessary E = T + V = −V2 + V . Therefore E = − k

2r0
and we can see the relationship

k
r20

= `2

mr30
and therefore r0 = `2

mk . So the energy can be written as E = −mk2`2 Now we can see the

relationships between r, `, and E. If r increases, ` increases, and E decreases.
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Figure 3: The relation between aphelion, perihelion, and eccentricity

Moving on to working with other conics we introduce some new variables. First, a is defined as
the semimajor axis and is defined as 1

2 (r1 + r2), where r1 is the perihelion and r2 is the aphelion. At
the points of perihelion and aphelion the velocity is zero. We once again return to the equation of

motion E = `2

2mr2 −
k
r . We can easily change this into a quadratic equation for r: r2 + k

E −
`2

2mE = 0.
Solving the quadratic formula yields

r1,2 =
− k
E ±

√
k2

E2 − 4 `2

2mE

2
(47)

Remember that the energy of bound orbits is negative so this wont yield any complex solutions.
We can also see from this equation that 1

2 (r1 + r2) = − k
2E = a and this is completely independent of

`. Substituting this energy into the eccentricity equation

e =

[
1− `2

mka

]1/2
(48)

For 0 < e < 1 we get an ellipse. we can use this to solve for the radius now.

r =
a(1− e2)

1 + e cos(θ − θ′)
(49)

If cos(θ) = 1 then r = a(1− e) and if cos(θ) = −1 then r = a(1 + e).This is demonstrated in figure 4
above.

Looking at turning points, which are perihelion and aphelion, the radial velocity is zero. This
means that at perihelion vθ is maximum and at aphelion vθ is minimum. This difference in velocity
is a direct example of Kepler’s second law.

Returning now to the time integral of before and using θ′ as a turning point.

t =

√
m

2

∫ r

r0

dr[
k
r −

`2

2mr2 + E
]1/2 =

`3

mk2

∫ θ

θ0

dθ

[1 + e cos(θ − θ′)]2
(50)

From these equations we can solve for t(r) and t(θ), which end up being quite ugly functions. Inverting
these functions we can get r(t) and θ(t), which are even uglier functions.

Instead of trying to solve these ugly equations instead we can analyze special cases. First we will
look at the case of a parabola, where e = 1. Choosing θ′ = 0 and using the trigonometric identity
1 + cos(θ) = 1

2cos
2
(
θ
2

)
we get simplified integral
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t =
`3

4mk2

∫ θ

θ0

sec4
(
θ

2

)
dθ (51)

This integral can be solve with some trig substitution. Setting x = tan
(
θ
2

)
and therefore dx =

1
2 sec2

(
θ
2

)
dθ the integral reduces to

t =
`3

2mk2

∫ tan( θ2 )

0

(1 + x2)dx (52)

Yielding the equation

t =
`3

2mk2

[
tan

(
θ

2

)
+

1

3
tan3

(
θ

2

)]
(53)

where the range of θ is given by −π2 < θ < π
2 and the range of time is −∞ < t <∞.

Next we look at the special case of the ellipse, when e < 1. We start by defining the variable ψ so
that r = a(1− e cos(ψ)). At perihelion ψ = θ = 0 and at aphelion ψ = θ = π. Integrating over ψ now
becomes simple

t =

√
ma3

k

∫ ψ

0

(1− e cos(ψ))dψ (54)

This integral provides the expression of the period if we consider ψ to be over a full orbit 0 → 2π.
solving then gives the period of the orbit.

τ = 2πa3
√
m

k
(55)

And we see the oh so important conclusion of Kepler’s second law one more time τ2 ∝ a3.
Applying this to our own solar system we see that in the relationship of Kepler’s second law the

constant multiplied by a3 is given by the sum of mass of the sun and the mass of the planet by which
you are calculating the orbit off. Kepler’s proportionality works perfectly if we ignore the mass of the
planet and only consider the mass of the sun. We consider the relative mass of the planet as the error
in Kepler’s relationship. For Jupiter this is the most apparent with

Mjupiter

Msun
= 10−3.
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