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1 Lecture 3/4

1.1 Equations of Motion for Rigid Bodies

For most problems we can write the kinetic energy as:

T = Tcm + Trel (1)

And similarly with the potential energy:

V = Vcm + Vrel (2)

Where the subscript cm refers to center of mass part, and rel refers to the
relative part, as usual. We also have the center of mass coordinates (X,Y,Z)
and we can also have Euler coordinates for the rotation (φ, θ, ϕ)

We can write our angular momentum as:

~L =
∑
i

mi(~ri × ~vi) (3)

Let’s rewrite this angular momentum using ~ω

~L =
∑
i

mi[~ri × (~ω · ~ri)] (4)

If we use the vector identity A× (B × C) = B(A · C) + C(A · B) we can write
equation (4) as:

~L = mi(~ω~ri
2 − ~ri(~ω · ~ri)) (5)

And here in equation 5 we are implying summation.
Now lets look at the x-component of the angular momentum. We can write it
as:

Lx = mi[ωxr
2
i − ωxx2i − ωyxiyi − ωzxizi] (6)

Simplifying, we can rewrite this as:

Lx = Ixxωx + Ixyωy + Ixzωz (7)

1



And, we can use this to define the tensor Iij , and this allows us to write:

~L =
←→
I ~ω (8)

Some interesting points about this tensor I:
-It Operates on ~ω
-It has dimension (versus the dimensionless rotation matrix we were looking at
before)
-In general, the determinant |I| 6= 1
Now we want to look more closely at the actual elements of this matrix I. We
will start first with the diagonal elements:

Ixx = mi(r
2
i − x2i )

Then the off diagonals:
Ixy = −mixiyi

We call the diagonal elements the ”Moment of Inertia Coefficients” and the off-
diagonal elements the ”products of inertia”.
When we have a continuous system, we simply integrate instead of sum :

Ixx =

∫
dm(r2 − x2) =

∫
ρ(~r)(r2 − x2)d3r (9)

Ijk =

∫
ρ(~r)(r2δjk − xjxk)d3r (10)

(There is a potential source of confusion here: This is a slightly different nota-
tion from Goldstein’s textbook)

1.2 Math Note: Tensors

Before we continue with the talk on the Inertia Tensor, here is a brief section
on tensors and vectors. We start with the different types of tensors:
Rank 1 Tensor: This is a vector (at least for our purposes)
Rank 2 Tensor: This is a matrix (again, at least for our purposes)
A tensor T transforms in the following way:

↔
T
′

=
↔
A
↔
T
↔
A
−1

=
↔
A
↔
T
↔
A
T

(11)

(Here we are using A as a rotation matrix) Now we can write T’ as:

T ′ij =
∑
k,l

aikTkla
T
lj =

∑
k,l

aikTklajl (12)

Now if we have two vectors ~f,~g we know that the dot product of these two
vectors gives us a scalar:

~f · ~g = scalar
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We can write these vectors as column vectors of the form:

~f =


fi
.
.
.
fn

 (13)

And in doing this, we can define our rank 2 tensor using 2 vectors:

←→
T = ~f~gT =


fi
.
.
.
fn

(g1 ... gn
)

=


f1g1 ... f1gn
. . .
. . .

fng1 ... fngn

 (14)

We now wish to see if this matrix we constructed transforms like a tensor. We
already know that f and g transform as vectors, so lets look at T. If we look at
3-Dimensions, we can write:

T ′xy =

3∑
i=1

3∑
j=1

axiTijayj = axifiayjgj = f ′xg
′
y (15)

And this shows us that T transforms like a tensor.
Now that we have established these ideas, we can go back to the Inertia tensor.

1.3 The Inertia Tensor

Again we will start with the kinetic energy:

T =
1

2
miv

2
i =

1

2
m~vi · (~ω × ~ri) (16)

Now if we use the vector relation A · (B ×C) = B · (C ×A) we can rewrite this
as:

T =
~ω

2
·mi(~ri × ~vi) =

~ω · ~L
2

=
~ωT
←→
I ~ω

2
(17)

We can then write, if we let ~ω = ωn̂:

T =
ω2

2
n̂T
←→
I n̂ =

1

2
Iω2 (18)

Where here we define I ≡ n̂T
←→
I n̂, and this is a scalar quantity, so we know

that it does not change under a rotation. Finally, we can write the following:

I = mi(~ri
2 − (~ri · n̂))2 (19)

And you might recall this is actually the definition we would find in a introduc-
tory physics course, when we look from the point of view of n̂ (the rotation).
We will return to the Inertia tensor in a moment, but first let’s discuss the
Parallel Axis Theorem.
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1.4 Parallel Axis Theorem

If we look at this image from Goldstein figure 5.4, we can see how we have a
vector ~ri and a center of mass. We can write the vector ~ri = ~R + ~ri

′. So the
moment of Inertia around an axis a is given by

Ia = mi(~ri × n̂)2 = mi[(~ri
′ +R)× n̂]2 (20)

Expanding this expression using M as the total mass we can say:

Ia = M(~R× n̂)2 +mi(~ri
′ × n̂)2 + 2(mi(~R× n̂) · (~ri′ × n̂)) (21)

We can actually say that the last term in the above expression is zero, if we
write it as 2(~R× n̂) · (Σm~ri′× n̂), noting that this is zero because we are looking
at 2 parallel axes with one containing the center of mass.

So we can rewrite this whole expression as

Ia = I − b+M(~R× n̂)2 = Ib +MR2 sin2 θ (22)

where in this expression we note that MR2sin2θ is the perpendicular displace-
ment of the axis.

1.5 Return to the Inertia Tensor

Recall that we have written

T =
1

2
mi(~ω × ~ri)

2 (23)

We can expand this and write:

T =
1

2
ωαωβmi(δαβr

2
i − riαriβ) (24)
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where i is the particle number and α, β are the indices (x,y,z). Then we can
write

T =
1

2
Iαβωαωβ (25)

Then we can say that an individual element of the Inertia tensor is given by:

Iαβ =

∫
(δαβr

2 − rαrβ)dm (26)

where here dm is the usual mass element. Now we are ready to try a few
examples!

1.5.1 Example 1: Homogeneous Cube of side a

Consider a cube of side length a. We wish to find the Inertia tensor for this.
If we start with the diagonal elements we have:

Ixx = ρ

∫ a

0

∫ a

0

∫ a

0

(r2 − x2)dxdydz (27)

This isn’t a particularly interesting integral, so well skip to the results.

Ixx = ρa(
zy3

3
+
yz3

a
)

∣∣∣∣a
0

=
2

3
ρa5 =

2

3
ma2 (28)

Similarly with the other elements:

Ixy = −
∫ a

0

∫ a

0

∫ a

0

ρ(xy)dxdydz (29)

If we evaluate this we end up with

Ixy = −1

4
a5ρ = −1

4
a2m (30)

So now we actually have all we need to form our Inertia tensor for this problem!

←→
I = ma2

 2/3 −1/4 −1/4
−1/4 2/3 −1/4
−1/4 −1/4 2/3

 (31)
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1.5.2 Example 2.1: Hoop of radius R and mass M

Now consider a hoop of radius R and mass M laying in the x-y plane.

Let’s also define λ = M
2πR . The individual elements of the Inertia tensor are

given by:

Iab =

∫
(r2δab − rarb)dm = λ

∫
(r2δab − rarb)Rdθ (32)

Now we can find the elements of this tensor.

Iab =

∫
(r2δab − rarb)dm (33)

Here dm = λRdθ, So:

Iab = λ

∫
(r2δab − rarb)Rdθ (34)

where:
rx = Rcosθ, ry = Rsinθ, rz = 0

Now we have a few integrals we have to compute to find these elements.

Ixx = λ

∫ 2π

0

(R2−R2cos2θ)Rdθ = λ

∫ 2π

0

R3sin2θdθ = λR3

∫ 2π

0

1

2
(1−cos(2θ))dθ =

1

2
2πλR3 =

1

2
MR2

(35)
Next

Iyy = λ

∫ 2π

0

(R2 −R2cos2θ)Rdθ =
1

2
MR2 (36)

Izz = λ

∫ 2π

0

(r2 − 0)Rdθ = MR2 (37)

Finally

Ixy = Iyx = λ

∫ 2π

0

(R2cosθsinθR)dθ = 0 (38)
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This allows us to write our tensor as:

←→
I = MR2

1/2 0 0
0 1/2 0
0 0 1/2

 (39)

For our next example we will look at what happens if we tilt the hoop.

1.5.3 Example 2.2: Tilted Hoop

We have the same hoop as in the previous example, except now its rotated to-
wards the z axis at an angle α. We know define:
x = Rcosθcosα
y = Rsinθ
z = −Rsinαcosα We have to do the following integrals to determine our ele-
ments now:

Ixx = λ

∫ 2π

0

(R2−R2cos2θcos2α)Rdθ = 2πλR3−
∫ 2π

0

= 2πλR3−
∫ 2π

0

R3cos2α
1

2
(1+cos2θ)dθ

(40)
Computing this integral gives us that

Ixx =
1

2
MR2(2− cos2α) (41)

From here, I am going to skip some steps for the integrals to save some paper.
The remaining terms are:

Iyy =
1

2
MR2 (42)

Izz = λ

∫ 2pi

0

(R2(1− cos2 θ sin2 α))Rdθ =
1

2
MR2(2− sin2 α) (43)

Iyz ∝ Ixy ∝
∫
sinθcosθdθ = 0 (44)
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Ixz = λ

∫ 2pi

0

−R2 cos2 θ sinαcosαRdθ = −λR2 sinα cosα

∫ 2π

0

1

2
(1+cos 2θ)dθ =

1

2
MR2 sinα cosα

(45)
So we can write the Inertia tensor as:

←→
I =

1

2
MR2

2− cos2α 0 − 1
2sin2α

0 1 0
− 1

2sinα 0 2− sin2α

 (46)

and we can rotate our coordinate system by α around y to make I diagonal, as
expected.

1.6 Eigenvalues of I and Principal Axes

We know that I is symmetric: Iij = Iji so we have 6 degrees of freedom. We
also know that I depends on the origin and axis of rotation. There also exists
some combination of origin and axis such that I is diagonal.
In general we can write:

~LT = (I1ω1, I2ω2, I3ω3) (47)

And furthermore, if I is diagonal we can write the kinetic energy as:

T =
~ωT
↔
I ~ω

2
=

1

2
(I1ω

2
1 + I2ω

2
2 + I3ω

2
3) (48)

Now, consider an axis through the center of mass. We can choose a rotation R
such that

ID =
↔
R
↔
I
↔
R
T

=

I1 0 0
0 I2 0
0 0 I3

 (49)

Then the eigenvectors will lie along x̂′, ŷ′, ŷ′ as defined by ID. This is called
the Principal moment of inertia tensor. The directions of x̂′, ŷ′, ŷ′ are called the

principal axes. We can then find any other intertia tensor
↔
I through the center

of mass using an Euler Angle rotation:

I =
↔
S
↔
ID
↔
S
T

(50)

Then, using the parallel axis theroem, we can translate.
Next we want to know what the eigenvectors are. We can find them using the
determinant: ∣∣∣∣∣∣

Ixx − Ii Ixy Izx
Ixy Iyy − Ii Iyz
Izx Iyz Izz − Ii

∣∣∣∣∣∣ = 0 (51)

The eigenvectors are given by:

(
↔
I − Ii1)~ai = 0 (52)
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And example of this are solids of rotation.
Note that the principal moments of inertia cannot be negative, so it follows that

Ixx = mi(y
2
i + z2i ) ≥ 0 (53)

If we then the direction of the cosines of the axes to be α, β, γ we can write:

n̂ = αî+ βĵ + γk̂ (54)

We can now write I as:

I = n̂T
↔
I n̂ = Ixxα

2 + Iyyβ
2 + Izzγ

2 + 2Ixyαβ + 2Iyzβγ + 2Izxγα (55)

If we define ρ = n̂√
I

we can then write this as:

1 = Ixxρ
2
1 + Iyyρ

2
2 + Izzρ

2
3 + 2Ixyρ1ρ2 + 2Iyzρ2ρ3 + Izxρ3ρ1 (56)

We can always rotate this so that we can have this equation in the form:

1 = I1ρ
′2
1 + I2ρ

′2
2 + I3ρ

′2
3 (57)

And this equation describes a 3-D elliptical surface. If we want to find the
radious of the gyration, we have that

R2
0 =

I

M
(58)

And we can werite the vector ~ρ as

~ρ =
n̂

R0

√
M

(59)

2 Lecture 3/9

Now we can finally start solving some problems using some of the methods we
developed in the last lecture.

2.1 Solving Rigid Body Problems

First a few general comments:
-If we have a non-holonomic constraint, we have to use Lagrange Multipliers.
An example of this is an object rolling.
-If we have a holonomic constriaint, we know that the constraints depend on the
positions f({qi}) = 0. This means that we need to choose a set of independent
{qi}.
-If the axis of rotation is fixed, angles are easy.
-If axis is not fixed, we can either use fixed points (use that point for the origin)
or no fixed point, where we would use the center of mass as the origin.
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-Use principal axes for coordinate system in the body system.
Now recall that

d~L

dt space
=
d~L

dt body
+ ~ω × ~L = ~N (60)

We also know that:
Lj = Ijωj (61)

Here there is no summation, and this is also not a dot product.
From here on, we are mostly only going to work in the body system. So now
we can write:

dLi
dt

= εijkωjLk = Ni (62)

Now we can plug in L, and get 3 equations.

I1ω̇1 − ω2ω3(I2 − I3) = N1 (63)

I2ω̇2 − ω3ω1(I3 − I1) = N2 (64)

I3ω̇3 − ω1ω2(I1 − I2) = N3 (65)

These 3 equations show us that something cannot spin without torque at a
constant ~ω unless ~ω is parallel to n̂i , which is any one of the three principal
axes. An example of this is tire balancing, where one needs a principal axis to
be parallel to the axis of rotation.

2.2 Torque Free Motion

Now lets look at a specific case: Torque Free Motion Here ~N = 0, and the object
we are looking at is symmetric where I1 = I2. If we now look at the equations
of motion we have:

I3ω̇3 = 0 (66)

Since we know I1 = I2, this allows us to have the following two equations:

ω̇1 + βω3ω2 = 0 (67)

ω̇2 = βω1ω3 = 0 (68)

Where we defined β = I3−I1
I1

. If we solve this system, we get the following

ω̈1 + βω3ω̇2 = ω̈1 + β2ω2
3ω1 = 0 (69)

This gives us
ω1 = Acos(βω3t+ θ)

ω2 = Asin(βω3t+ θ)

And we can define the total angular velocity as:

ω = (ω2
3 +A2)

1
2 (70)
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This shows us that we have precession in this example, as well as the fact that
the instaneous axis of rotation traces a cone in the body system. This body
cone has the 1/2 angle αb, where

tanαb =
A

ω3

We can then find that
A = ωsinαb

And thus
ω3 = ωcosαb

And now we see that hte body is rotating around an axis that is itself rotating.
Since ~L is constant, we can also write:

cosαs =
~ω · ~L
ωL

=
~ωT
↔
I ~ω

ωL
=

2T

ωL
(71)

where the subscript s here referes to the space system, and this equation
gives us the space cone, in the space frame. We can determine the shape of
these objects, by comparing αb and αs:
-If αb < αs it is prolate (or cigar-shaped). Here I3 > I1 = I2
-If αb > αs it is oblate (or disc shaped). Here I3 < I1 = I2

2.3 Nondegenerate I

When we have nondegenerate I, we know I1 6= I2 6= I3.
We also know now that rotation is stable if ~ω is parallel to n̂i. Let’s now think
about pertubations.
Let’s discuss the case where ω3 >> ω1, ω2:
We know that ω̇3 ∝ ω1ω2. This is 2nd order terms that we will neglect it. We
can, in the same was as before, solve for ω1 and ω2.

ω1 = A[I2(I3 − I2)]1/2cos(βω3t+ θ) (72)

ω2 = A[I1(I3 − I1)]1/2sin(βω3t+ θ) (73)

where we defined

β = [
(I3 − I1)(I3 − I2)

I1I2
]1/2

We can discuss three different cases with this solution.
Case 1: I3 > I1, I2
Here β is a real number, and the solution is stable.
Case 2: I3 < I1, I2
Here β is again a real number, and again we have a stable solution.
Case 3: I1 < I3 < I2
This is the interesting case. Here β is complex. The sine and cosine functions
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in the solution turn into exponenentials, and the solution becomes unstable.
An example of this is a tennis racket, and you can convince yourself of this by
thinking about the three rotational axes of the racket, and the stability of them,
perhaps by throwing a spinning tennis racket in the air. In that case we should
be able to see wich of the three axes the spin is stable.

Let’s now look in a more general way. Recall the three equations of motion
we got before:

I1ω̇1 − ω2ω3(I2 − I3) (74)

I2ω̇2 − ω3ω1(I3 − I1) (75)

I3ω̇3 − ω1ω2(I1 − I2) (76)

Now let’s define the following:

~ρ =
n̂√
I

=
~ω

ω
√
I

=
~ω√
2T

(77)

T =
~ω~L

2
=
~ωT
↔
I ~ω

2
=
ω2

2
n̂T In̂ =

1

2
Iω2 (78)

Now we can also define:

F (~ρ) = ~ρT
↔
I ~ρ = ρ2i Ii (79)

Here we again are impliying summation
If F (~ρ) = 1, we have defined an Inertia ellipsoid.
Now, as n̂ and ~ω change, ~ρ is also going to change, however the tip of ρ stays
on the inertia ellipsoid. Also, ∇F is normal to the ellipsoid. We can then write:

~∇ρF = 2
↔
I ρ =

√
2

T
~L (80)

And since ~L is constant, ~∇F is fixed. ~ω and ~ρ are constrined to move such that
the normal to the ellipsoid points parallel to ~L. The ellipsoid then movevs to
keep the connection between ~ω and ~L.
The distance from the origin of the ellipsoid and the plane tangent to the ellip-
soid at ρ:

~ρ · ~L
L

=
~ω · ~L
L
√

2π
=

√
2T

L
= constant (81)
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Goldstein has a nice image of this. In the image we can see that L has a fixed
direction, tangent to the invariable plane. The ellipsoid rolls without slipping
on the invariable plane as well. Some termonology from the image:
-Polhode is the curve traced out by the point of contact on the ellipsoid
-Herpolhode is the curve on the invariable plane.
We also know that the direction of the angular velocity ω is given by the direction
of ~ρ, and the orientation of the ellipsoid gives the orientation of the body.
If we go back to the special case where I1 = I2, we call the inertia ellipsoid the
ellipsoid of rotation. The Polehode is thus a circle around the symmetry axis.
We then know that ~ω precesses around the axis of symmetry as well.
Now, if we look generally, and we want to describe the mostion of ~L with respect
to the body, we start with the fact that:

T =
∑ 1

2

L2
i

Ii
= constant (82)

This tells us that L is an ellipsoid that has the equation:

L2
1

2TI1
+

L2
2

2TI2
+

L2
3

2TI3
= 1 (83)

Conseration of angular momentum, L, gives us that:

L2
1 + L2

2 + L2
3 = L2 (84)

L must therefore lie on the sphere-ellipsoid intersection, meaning:√
2TI3 ≤ L ≤

√
2TI1 (85)

If we consider stability of motion:

Lx : L2 = 2TI1 − ε (86)
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This gives closed figures around Lx.

Lz : L2 = 2TI3 + ε (87)

This gives us closed figures around Lz.
Finally we have no closed figures around Ly, meaning there is unstable motion.
Goldstein Figure 5.5 show this well:

Finally if we go back to the symmetric case I1 = I2, we can have the following
solutions for ω1 and ω2

ω1 = Acos(βω3t+ θ) (88)

ω2 = Asin(βω3t+ θ) (89)

Where β = I3−I1
I1

.
A nice example of this is the precession of the Earth due to the Tidal bulge.
This bulge is about 30 km at the equator, and accounts for about 0.5% of the
radius of the Earth. We would then have :

I3 − I1
I1

3× 10−3.

If β is small, precession is small. The period is about 300 days, so we would
expect precession around the axis with period ' 300 days. However, what we
actually see is deviations in latitude ' 10m. There is also annual variation
(seaonal) that can be attributed to the heating of air.
We also have a 420 day period, which could be due to this precession. However,
this would mean that the earth is not rigid, which would imply the existance of
a fluid core, which is not unexpected.
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