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Homework #1 Solutions

Course: Classical Mechanics (Physics 603), Prof. Weinstein
Spring 2021

Question 1

Consider a marble on a vinyl record, constrained to follow the groove.

a)

Answer. The marble slides inward from R2 to R1 in a spiral, taking N rotations around
the record. This means that

r = R2 − (R2 − R1)
φ

2πN
= R2 − αφ (1)

where α = (R2 − R1)/(2πN). Using

x = r cos φ (2)
y = r sin φ (3)

we get

x = (R2 − αφ) cos φ (4)
y = (R2 − αφ) sin φ (5)

b) taking the derivative,

ẋ = φ̇ {−α cos φ− [R2 − αφ] sin φ} (6)
ẏ = φ̇ {−α sin φ + [R2 − αφ] cos φ} (7)

(8)

and

T =
m
2
(ẋ2 + ẏ2) (9)

=
m
2

φ̇2{α2 cos2 φ + 2α(R2 − αφ) sin φ cos φ + (R2 − αφ)2 sin2 φ (10)

+α2 sin2 φ− 2α(R2 − αφ) sin φ cos φ + (R2 − αφ)2 cos2 φ} (11)

=
m
2

φ̇2(α2 + r2) (12)

where r is defined in terms of φ in Eq. 1.
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c) the generalized force

Qφ = Fx
∂x
∂φ

+ Fy
∂y
∂φ

(13)

= Fx[−α cos φ− (R2 − αφ) sin φ] + Fy[−α sin φ + (R2 − αφ) cos φ] (14)

d) the general equations of motion:

d
dt

(
∂T
∂q̇j

)
− ∂T

∂qj
= Qj (15)

which gives

d
dt

(
∂T
∂φ̇

)
=

d
dt

(
mφ̇

[
α2 + (R2 − αφ)2

])
(16)

= mφ̈
[
α2 + (R2 − αφ)2

]
+ mφ̇2(−2α(R2 − αφ)) (17)

and
∂T
∂φ

=
1
2

mφ̇2[2(R2 − αφ)(−α)] (18)

and
d
dt

(
∂T
∂φ̇

)
− ∂T

∂φ
= mφ̈[α2 + (R2 − αφ)2]−mφ̇2[(R2 − αφ)α] = Qφ (19)

Question 2

Equations of motion in a rotating coordinate system

Answer. a: (this part should be trivial.)

T =
1
2

m(ẋ2 + ẏ2) (20)

mẍ = Fx (21)
mÿ = Fy (22)

b: Now transform to

q1 = x cos ωt + y sin ωt (23)
q2 = −x sin ωt + y cos ωt (24)

We can solve for x and y by cross multiplying the above equations for q1 and q2 and
adding them together to solve for y and for x:

q1 sin ωt + q2 cos ωt = y (25)
q1 cos ωt− q2 sin ωt = x (26)
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or we can recognize that this is just a rotation by ωt and that the inverse rotation is to
rotate by −ωt. Diffentiating, we get:

ẋ = q̇1 cos ωt− q1ω sin ωt− q̇2 sin ωt− q2ω cos ωt (27)
ẏ = q̇1 sin ωt + q1ω cos ωt + q̇2 cos ωt− q2ω sin ωt (28)

ẋ2 + ẏ2 = q̇2
1 + q2

1ω2 + q̇2
2 + q2

2ω2 + (q̇1q1 − q̇1q1)[. . .] + (q̇2q2 − q̇2q2)[. . .] (29)
+(q̇1q̇2 − q̇1q̇2)[. . .]−ω2(q1q2 − q1q2)[. . .]− 2ωq̇1q2 + 2ωq1q̇2 (30)

T =
1
2

m(q̇2
1 + q̇2

2 + 2ω(q1q̇2 − q̇1q2) + ω2(q2
1 + q2

2) (31)

where the [. . .] are irrelevant terms multiplying stuff that cancels. The generalized
forces and equations of motion are

Q1 = Fx cos ωt + Fy sin ωt (32)
Q2 = −Fx sin ωt + Fy cos ωt (33)

d
dt

(
∂T
∂q̇i

)
− ∂T

∂qi
= Qi (34)

giving the equations of motion

d
dt
(mq̇1 −mωq2)−

1
2

m(2ωq̇2 + 2ω2q1) = Q1 (35)

d
dt
(mq̇2 + mωq1)−

1
2

m(−2ωq̇1 + 2ω2q2) = Q2 (36)

which can be rearranged to look like:

mq̈1 − 2mωq̇2 −mω2q1 = Fx cos ωt + Fy sin ωt (37)

mq̈2 + 2mωq̇1 −mω2q2 = −Fx sin ωt + Fy cos ωt (38)

——————–

Question 3

Reduced mass

Answer. We start with the definitions:

R =
m1r1 + m2r2

m1 + m2
(39)

V = Ṙ (40)
M = m1 + m2 (41)

T =
1
2

m2v2
1 +

1
2

m2v2
2 (42)

We now write T in terms of V and v (the center of mass and relative velocities) and
work to recover the equation for T in terms of v1 and v2:

T =
1
2

MV2 +
1
2

µv2 (43)

=
1
2
(m1 + m2)

(m1v1 + m2v2)2

(m1 + m2)2 +
1
2

µ(v1 − v2)
2 (44)

=
m2

1v2
1 + 2m1m2v1 · v2 + m2

2v2
2

m1 + m2
+

1
2

µ(v2
1 − 2v1 · v2 + v2

2) (45)
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where we need the v1 · v2 terms to cancel. This gives the constraint that

m1m2v1 · v2

m1 + m2
− µv1 · v2 = 0 (46)

or that µ = m1m2/(m1 + m2). We still need to show that T is the same as before.
Substituting this back into the expression for T, we have:

T =
1
2

m2
1v2

1 + m2
2v2

2
m1 + m2

+
1
2

m1m2

m1 + m2
(v2

1 + v2
2) (47)

=
1
2

m2
1v2

1 + m1m2v2
1

m1 + m2
+

1
2

m2
2v2

2 + m1m2v2
2

m1 + m2
(48)

=
1
2

m1v2
1 +

1
2

m2v2
2 (49)

Note that you can also solve this problem starting with Eq. 1.31 T = 1
2 MV2 + 1

2 m1(v′1)
2 +

+1
2 m2(v′2)

2 instead.
——————–

Question 4

Two masses on a spring after a collision

Answer. From problem 3 we know that T = 1
2 MV2

tot +
1
2 µv2 where Vtot = Ṙ and

v = ṙ = (ẋ2 − ẋ1). The potential energy is

V =
1
2

k(r− L)2

and we have

m′1 = m1 + m (50)
M = m + m1 + m2 (51)

µ =
m′1m2

M
(52)

and
L = T −V

giving the equations of motion:

0 =
d
dt

(
∂L
∂Ṙ

)
− ∂L

∂R
= MR̈− 0 (53)

0 = =
d
dt

(
∂L
∂ṙ

)
− ∂L

∂r
= µr̈ + k(r− L) (54)

which gives Ṙ equals a constant, which must equal the initial CM (center of mass)
velocity:

V0
tot =

mv0

M
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by conservation of momentum.
We also have

r̈ = − k
µ
(r− L)

which gives
r− L = A cos ωt + B sin ωt

where ω =
√

k/µ.
Using the boundary conditions:

1. r = L at t = 0 gives A = 0

2. v = (−mv0)/m′1 at t = 0 gives B = −v0m/(ωm′1)

——————–

Question 5

Rocket with a drag force

Answer. a: using conservation of momentum

dP
dt

=
dPR

dt
+

dPF

dt
(55)

= (mR + mF(t))v̇ +

[
−dmF(t)

dt

]
(−u) (56)

= (mR + mF(t))v̇− uγ = −Av2 (57)

so that we get the differential equation:

v̇ =
uγ− Av2

mR + mF(t)

b: when moving at constant speed, v̇ = 0 and

uγ = −Av2

c: After the rocket runs out of fuel, γ = 0 and mF = 0, giving

v̇ = −Av2

mR

which can be rearranged to give

dv
v2 = −(A/mR)dt

which can be integrated to give

v(t) = (at + b)−1
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where we use the fact that v = v0 at t = 0 to give b = 1/v0 and

v̇ =
−1

(at + b)2 =
−Av2

mR

to give a = A/mR.
d: bonus This is the more interesting part. In time dt, the rocket will pass through

a volume πR2vdt and hit a number of particles dn = NπR2vdt.
In the reference frame of the rocket, the particles hit with velocity v = −vx̂ and

bounce off isotropically in the y − z plane. This means that the average change in
momentum in both ŷ and ẑ averages to zero, and the change in momentum in the x̂
direction is

dp = −mvdn = −mNπR2v2dt

and
dp
dt

= −mNπR2v2

giving a drag force proportional to v2 with a proportionality constant

A = mNπR2


