OLD DOMINION UNIVERSITY

Homework #1 Solutions

Course: Classical Mechanics (Physics 603), Prof. Weinstein

Spring 2021

Question 1

Consider a marble on a vinyl record, constrained to follow the groove.

a)

Answer. The marble slides inward from R; to R in a spiral, taking N rotations around

the record. This means that

r:Rz—(Rz—Rl)%:Rz—a(P

where « = (Ry — R1)/(27N). Using

rcos ¢
= rsin¢g

we get

= (Rp—a¢)cos¢
= (Ry—ua¢)sing

b) taking the derivative,

${—acosp — [Ry — ag]sing}
¢ {—asing + [Ry — ag] cos ¢}

and

T = 2+

= %q'bz{zxz cos? ¢+ 2a(Ry — agp) sin ¢ cos ¢ + (Ry — agp)?sin” ¢
+a?sin? ¢ — 20(Ry — agp) sin ¢ cos ¢ + (Ry — wgp)? cos? ¢}

_ o Mm.r, 2 2
= 5‘1’(“ +17)

where r is defined in terms of ¢ in Eq. 1.
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¢) the generalized force

B 0x ay
= Fy[—acos¢p — (Ry —ag)sing| + Fy[—asing + (R, —a¢p)cos¢p]  (14)
d) the general equations of motion:
d (0T oT
= (a@) 5, =9 (15)
which gives
o (a—¢) = = <m [oc + (R — agp) D (16)
= me [(x2 + (R — zxcp)z] + m?(—2a(Ry — agp)) (17)
and 3T 1
05 = " R(R — a9 (~) 18)
and d (dT oT
a (ofy _ob 2 V2] 2 _ _
i (55) — 5 = o+ (Ra— 002 = mg? (R —ap)a] = Qp (1)
Question 2
Equations of motion in a rotating coordinate system
Answer. a: (this part should be trivial.)
T - %m(xz + ) (20)
mj = F, (22)
b: Now transform to
g1 = Xxcoswt+ ysinwt (23)
g2 = —xsinwt+ ycoswt (24)

We can solve for x and y by cross multiplying the above equations for q; and g, and

adding them together to solve for y and for x:

gisinwt +gapcoswt = y
gicoswt —gpsinwt = x

(25)
(26)
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or we can recognize that this is just a rotation by wt and that the inverse rotation is to

rotate by —wt. Diffentiating, we get:

X = {gpcoswt— qiwsinwt — go sinwt — gow cos wt (27)
Yy = {qpsinwt+ giw coswt + g cos wt — qrw sin wt (28)
EAy = i+ qe i+ g0+ (g - qn)l ]+ (4292 = ag2) -] (29)
+(142 = d1d2) [ ] = (@192 — ua2) -] — 2wd192 + 2wq142 (30)
1 - . L
T = Sm(di+45+2w(qd2 — q142) + (g5 + 73) (31)
where the [...] are irrelevant terms multiplying stuff that cancels. The generalized
forces and equations of motion are
Q1 = Fycoswt+ Fysinwt (32)
Q2 = —Fysinwt+ F coswt (33)
d (0T oT
i (ai) o = © ‘34’
giving the equations of motion
d, . 1 :
E(mql — mwqy) — Em(quz +20%q1) = O (35)
d, . 1 :
E(qu + mwqq) — Em(—szh +20%q) = Qo (36)
which can be rearranged to look like:
mijy — 2mwgy — mw?q; = Fycoswt + F, sin wt (37)
miy 4 2mwd; — mw?qy = —Fysinwt + F, cos wt (38)
Question 3
] Reduced mass ‘
Answer. We start with the definitions:
R — Ml mor (39)
my + mp
V = R (40)
M = my+m (41)
1 1
T = Emzv% + zmzv% (42)

We now write T in terms of V and v (the center of mass and relative velocities) and

work to recover the equation for T in terms of v; and v;:

1 1
T = -MV?*4 —u?
YT
. 1 (m1v1+m2v2)2 1 9
= 2(1711-{-7712) (m1+m2)2 +2"I/l(V1 Vz)

2.2 2.2
myvy + 2mymyvy - Va + m50; n 1

my + my

Ey(v% —2vq -V + v%)

(43)

(44)

(45)
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where we need the v; - v, terms to cancel. This gives the constraint that

nmimyvy - Vo

_ Vo =0 46
my + 11 HUvy - va (46)

or that u = mymy/(my + my). We still need to show that T is the same as before.
Substituting this back into the expression for T, we have:

1m30? +m3v3 1 mymy
T - 1muptmu; 1 2, .2 47

2 my + s 2m1+m2(01+02) (47)

_ 1mivd +mympvd 1 m30v5 + mymyv3

= = +5 (48)
2 my + my 2 my + my
1 1

= Emlv% + Emzv% (49)

Note that you can also solve this problem starting with Eq. 1.31 T = %M V24 %ml (0))*+
+3my(vh)? instead.

Question 4

Two masses on a spring after a collision

Answer. From problem 3 we know that T = 1MV}?

v =t = (X2 — X1). The potential energy is

; + 3uv? where Viy = R and

V= %k(r —L)?
and we have
my = miy+m (50)
M = m+m;+m (61)
_ mm
and
L=T-V
giving the equations of motion:
d (oL oL .
0 = %(a—R)—ﬁ—MR—O (53)
d (oL oL ,

which gives R equals a constant, which must equal the initial CM (center of mass)

velocity:
mog
Vt(())t - M
M
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by conservation of momentum.
We also have .
P=——(r—1L)
K
which gives
r—L = Acoswt+ Bsinwt
where w = /k/ .
Using the boundary conditions:
l.r=Latt=0gives A =0
2. v = (—mvgy)/mjatt = 0gives B= —vom/(wm))
Question 5
Rocket with a drag force
Answer. a: using conservation of momentum
dP dPgr dPr
ar = oar ar )
) dmp(t
— (e me()o+ |- | (- 56)
= (mg +mp(t))o — uy = —Av? (57)

so that we get the differential equation:

Uy — Av?
 mg + me(t)

b: when moving at constant speed, v = 0 and

uy = — Av®

c: After the rocket runs out of fuel, v = 0 and mp = 0, giving

, Av?
0= ——
mR
which can be rearranged to give
dv

which can be integrated to give

o(t) = (at +b) !
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where we use the fact thatv = vpatt = 0 to give b = 1/vp and

-1 A
(at+b)2  mpg

togivea = A/mg.

d: bonus This is the more interesting part. In time dt, the rocket will pass through
a volume 71R?vdt and hit a number of particles dn = N7tR?vdt.

In the reference frame of the rocket, the particles hit with velocity v.= —v% and
bounce off isotropically in the y — z plane. This means that the average change in
momentum in both  and Z averages to zero, and the change in momentum in the £
direction is

dp = —mvdn = —mNR>*v*dt

and

d—P = —mN7R%*v?
dt

giving a drag force proportional to v> with a proportionality constant

A = mN7R?




