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Question 1

Four massless rods of length L are hinged together at their ends to form a rhombus.
A particle of mass m is attached at each joint. The opposite corners of the rhombus
are joined by springs, each with spring constant k. In the equilibrium square config-
uration, the springs are unstretched. The motion is confined to a plane. Ignore the
motion of the center of mass and assume that the system does not rotate.
* The system has a single degree of freedom. Starting from the eight degrees of
freedom of four unconstrained masses, explain why this system only has one
degree of freedom.

¢ Choose a suitable generalized coordinate and obtain the Lagrangian.
* Deduce the equation of motion

* Obtain the frequency of small oscillations about the equilibrium configuration.

Answer. 1) We number the masses starting with 1 in the lower left corner and pro-
ceeding clockwise. The mass 1 is unconstrained (2 dof). Mass 2 is a distance L from
mass 1 and has 1 dof. Mass 4 is a distance L from mass 1 and therefore has 1 dof.
Mass 3 is a distance L from both mass 2 and 4 and thus has 0 dof. This gives us four
dof. Two concern the location of the center of mass. One concerns the rotation of the
system. This leaves us with 1 dof.

2) Choose 8 to be the lower left corner opening angle formed by mass 2 to mass 1
to mass 4. Then the positions of the four masses are

(x1,y1) = (0,0) (1)
(x2,¥2) = (Lcos@,Lsinf) (2)
(x3,y3) = (L+ Lcos8,Lsinf) (3)
(xa,y4) = (L0) (4)

and length of the springs between masses 2 and 4 and between masses 1 and 3 are

by = \/(L(1—cos6))? + [2sin?6 (5)
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= /212 —2[2cos6 (6)
= L4/2(1 —cos?) 7)
= 2Lsin6/2 (8)
iy = \/I2(1+ cos6)? + L2 sin26 )
= 1/2L%(1 + cos® (10)
= 2Lcosf/2 (11)

Now choose the CM as the origin. This gives new coordinates

(x1,y1) = (—%L(l—l—cos@),—%Lsin@) (12)
(x2,y2) — (—%L(l—cos@),%Lsin@) (13)
(x3,y3) — (%L(Hcose),%Lsine) (14)
(x3,y3) = (%L(l—cos@),—%LsinG) (15)

and velocities , .
X, = j:ELésine Vi = j:ELécosé

Thus 11 .
T = Em(ZL292)2(sin2 0 + cos?0) = ZmLzéz

where the factor of four comes from the four masses and
1 1
Vv = 5k(zL sinf/2 — v/2L)% + Ek(2L cos0/2 — \/2L)? (16)

= %kL2(4sin29/2—4\/§sin9/2+2—|—4c0529/2—4\/§C059/2+2) (17)
= %kL2(8—4\/§(sin9/2—|—c056/2)) (18)

where /2L is the unstretched length of the springs. Then the Lagrangian is

L= }LmLzéz + %kL24\/§(sin 6/2+ cosf/2)

where I omitted the constant term in V.
3) The equations of motion are thus

d (0L 1 _,. 0L ’ .
5 (8_6> = EmL 0= Vi V/2kL (cos0/2 —sinf/2)

4) For small oscillations, let 6 = 71/2 + 6. We need to expand cos0/2 and sin6/2
for small 6 using

F(x) = F(x0) + £ (x0)3x + o f" (x0) (62
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so that
cos(0/2) = cos(m/4+6'/2) = % — %%9’ - %%%9’2 +... (19)
= \% — 21%9’ — 8\1—@9’2 (20)
sin(8/2) = sin(r/4+6'/2) = % + 21%9’ - slﬁ 2 (21)
and o
cos(rt/4+0"/2) —sin(rt/4+6'/2) = —E.
Substituting in to the EOM we get
%mLzé' = V2kL? (—97,2) (22)
0 = —i—ké’ (23)

which by inspection gives a frequency of oscillation of

w=V2k/m
Question 2

A smooth wire is bent into the shape of a spiral helix. In cylindrical polar coordinates
(0, ¢, z) itis specified by equations p = R¢? and z = A¢?, where R and A are constants
and the z-axis is vertically up (and gravity is vertically down).
1. Using z as your generalized coordinate, write down the Lagrangian for a bead
of mass m threaded on the wire.

2. Find the Lagrange equations of motion and find from it the expression for the
bead’s vertical acceleration Z as a function of z and z.

3. Find the acceleration Z in two limits: (i) when R — 0 but A is fixed, and (ii)
when A — oo but R is fixed. Discuss if your results for Z in these limits make
sense.

Answer. 1) We start by writing the Lagrangian using all three corrdinates.
1 ;
L=T-V= Em(p2+p24)2+22) — mgz

and then use p = %z to get

1 R, R ,., .,
L= Em(ﬁz + 527 $°+z2°) —mgz
and then use
z = 2\ (24)
2 = 4N P* = 4Azg? (25)
. 72
¢ = (26)

41z
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to get £ solely in terms of z:

1 R*>, R> 2

L = 2m(}\zz +/\ZZ4AZ+Z) mgz| (27)
| R?> R?
2) we can now find the EOM
d (oL —mz(1+R2+ Rzz)—i—mz'z R> oL 1 2 R? .
at\oz )~ FERIVYE 39z 2™

We can now solve this for Z to get this ugly thing:

o 2R
o R2 | R2
1+A2+4A32

which should be really easy to solve. Or not.

3) (i) as R — 0, Z — —g. This makes sense because as R — 0 the sprial helix
becomes a straight vertical wire and the particle falls freely.

(ii) as A — oo for fixed R, we get exactly the same limit. This also makes sense,
because the vertical motion dominates and p changes very slowly.

Question 3

Two bodies move under the influence of the central-force potential V(r) = kr* where
7 is the relative coordinate and k and « are constants (ignore the center-of-mass mo-
tion).
1. Assume that 7(t) is a solution to the equations of motion. Show that 7/(t) =
A7(A%t) is also a solution to the equations of motion for any constant A, pro-
vided the exponent ¢ is suitably chosen. What is the value of ¢?

2. Apply the result from 1. to the cases « = 2 (harmonic oscillator) and « = —1
(Kepler problem). Comment on the results and on the properties you can derive
for them.

(Qualifier Problem)

Hint: This does not require a lot of complicated math, just some clever argument. If
you get stuck, email me — do NOT collaborate with your fellow students!

Answer. 1) We start by writing down the Lagrangian and the EOM:
_ K2 Koo 4 a
L= R ¢~ —kr

and
doL . dL

ator T o
The Lagrangian is cyclic in ¢ so that

= —kar* 1 + yrcj)z

ur’g =0
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We will assume that 7(t) is a solution to the EOM:
ui = kar* ! urg? (29)

and see whether 7 (t) = A7(A“t) can also be a solution.
We will first calculate the time derivatives of 7':

d7(t) d

T = ZOR0) = MFAH) = A7 (30)
d>7(t d dr/(t 5
dtg) - E—d(t) = A20F1F(A%Y) (31)
Similarly
§ =1

where the prefactor A of 7 does not affect ¢ but the different time dependence does.
Now we can substitute these into Eq 29 and see whether 7 can satisfy the EOM:

i(t) = ka(r(D))" +pr(£)(@11))? (32)
PAPTTLE(ATE) = kaA* T (r(A7E) T+ pAr(AT) A2 (¢(AE))? (33)
pi = A2 ey 4 ord? (34)

where I dropped the time dependence in Eq 34. This reduces to Eq 29 if
x—1-20-1=0

or if .
= —a—1
o 21x

2) Special cases: (i) Harmonic oscillator & = 2: In this case ¢ = 0 and the only
change in 7’ is multiplying the amplitude by A. This simply shows that the time-
dependence of the motion is independent of the amplitude, meaning for any solution
r(t), any multiple of that solution is also an allowed motion.

(ii) Gravity &« = —1: in this case ¢ = —3/2. This means that if we increase the
orbital distance by a factor of A, then we also increase the period by a factor of A3/2. In
other words, a o T3/2 or a? T3, which is Kepler’s 3rd law.




