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Question 1

Four massless rods of length L are hinged together at their ends to form a rhombus.
A particle of mass m is attached at each joint. The opposite corners of the rhombus
are joined by springs, each with spring constant k. In the equilibrium square config-
uration, the springs are unstretched. The motion is confined to a plane. Ignore the
motion of the center of mass and assume that the system does not rotate.

• The system has a single degree of freedom. Starting from the eight degrees of
freedom of four unconstrained masses, explain why this system only has one
degree of freedom.

• Choose a suitable generalized coordinate and obtain the Lagrangian.

• Deduce the equation of motion

• Obtain the frequency of small oscillations about the equilibrium configuration.

Answer. 1) We number the masses starting with 1 in the lower left corner and pro-
ceeding clockwise. The mass 1 is unconstrained (2 dof). Mass 2 is a distance L from
mass 1 and has 1 dof. Mass 4 is a distance L from mass 1 and therefore has 1 dof.
Mass 3 is a distance L from both mass 2 and 4 and thus has 0 dof. This gives us four
dof. Two concern the location of the center of mass. One concerns the rotation of the
system. This leaves us with 1 dof.

2) Choose θ to be the lower left corner opening angle formed by mass 2 to mass 1
to mass 4. Then the positions of the four masses are

(x1, y1) = (0, 0) (1)
(x2, y2) = (L cos θ, L sin θ) (2)
(x3, y3) = (L + L cos θ, L sin θ) (3)
(x4, y4) = (L, 0) (4)

and length of the springs between masses 2 and 4 and between masses 1 and 3 are

l24 =
√
(L(1− cos θ))2 + L2 sin2 θ (5)
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=
√

2L2 − 2L2 cos θ (6)

= L
√

2(1− cos θ) (7)

= 2L sin θ/2 (8)

l13 =
√

L2(1 + cos θ)2 + L2 sin2 θ (9)

=
√

2L2(1 + cos θ (10)

= 2L cos θ/2 (11)

Now choose the CM as the origin. This gives new coordinates

(x1, y1) = (−1
2

L(1 + cos θ),−1
2

L sin θ) (12)

(x2, y2) = (−1
2

L(1− cos θ),
1
2

L sin θ) (13)

(x3, y3) = (
1
2

L(1 + cos θ),
1
2

L sin θ) (14)

(x3, y3) = (
1
2

L(1− cos θ),−1
2

L sin θ) (15)

and velocities
ẋi = ±

1
2

Lθ̇ sin θ ẏi = ±
1
2

Lθ̇ cos θ

Thus
T =

1
2

m(
1
4

L2θ̇2)2(sin2 θ + cos2 θ) =
1
4

mL2θ̇2

where the factor of four comes from the four masses and

V =
1
2

k(2L sin θ/2−
√

2L)2 +
1
2

k(2L cos θ/2−
√

2L)2 (16)

=
1
2

kL2(4 sin2 θ/2− 4
√

2 sin θ/2 + 2 + 4 cos2 θ/2− 4
√

2 cos θ/2 + 2) (17)

=
1
2

kL2(8− 4
√

2(sin θ/2 + cos θ/2)) (18)

where
√

2L is the unstretched length of the springs. Then the Lagrangian is

L =
1
4

mL2θ̇2 +
1
2

kL24
√

2(sin θ/2 + cos θ/2)

where I omitted the constant term in V.
3) The equations of motion are thus

d
dt

(
∂L
∂θ̇

)
=

1
2

mL2θ̈ =
∂L
∂θ

=
√

2kL2(cos θ/2− sin θ/2)

4) For small oscillations, let θ = π/2 + θ′. We need to expand cos θ/2 and sin θ/2
for small θ′ using

f (x) = f (x0) + f ′(x0)δx +
1
2

f ′′(x0)(δx)2
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so that

cos(θ/2) = cos(π/4 + θ′/2) =
1√
2
− 1√

2
1√
2

θ′ − 1
4

1√
2

1
2

θ′2 + . . . (19)

=
1√
2
− 1

2
√

2
θ′ − 1

8
√

2
θ′2 (20)

sin(θ/2) = sin(π/4 + θ′/2) =
1√
2
+

1
2
√

2
θ′ − 1

8
√

2
θ′2 (21)

and

cos(π/4 + θ′/2)− sin(π/4 + θ′/2) = − θ′√
2

.

Substituting in to the EOM we get

1
2

mL2θ̈′ =
√

2kL2
(
− θ′√

2

)
(22)

θ̈′ = −2k
m

θ′ (23)

which by inspection gives a frequency of oscillation of

ω =
√

2k/m

Question 2

A smooth wire is bent into the shape of a spiral helix. In cylindrical polar coordinates
(ρ, φ, z) it is specified by equations ρ = Rφ2 and z = λφ2, where R and λ are constants
and the z-axis is vertically up (and gravity is vertically down).

1. Using z as your generalized coordinate, write down the Lagrangian for a bead
of mass m threaded on the wire.

2. Find the Lagrange equations of motion and find from it the expression for the
bead’s vertical acceleration z̈ as a function of z and ż.

3. Find the acceleration z̈ in two limits: (i) when R → 0 but λ is fixed, and (ii)
when λ → ∞ but R is fixed. Discuss if your results for z̈ in these limits make
sense.

Answer. 1) We start by writing the Lagrangian using all three corrdinates.

L = T −V =
1
2

m(ρ̇2 + ρ2φ̇2 + ż2)−mgz

and then use ρ = R
λ z to get

L =
1
2

m(
R2

λ2 ż2 +
R2

λ2 z2φ̇2 + ż2)−mgz

and then use

ż = 2λφφ̇ (24)
ż2 = 4λ2φ2φ̇2 = 4λzφ̇2 (25)

φ̇2 =
ż2

4λz
(26)
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to get L solely in terms of z:

L =
1
2

m(
R2

λ2 ż2 +
R2

λ2 z
ż2

4λz
+ ż2)−mgz] (27)

=
1
2

mż2(1 +
R2

λ2 +
R2

4λ3 z)−mgz (28)

2) we can now find the EOM

d
dt

(
∂L
∂ż

)
= mz̈(1 +

R2

λ2 +
R2

4λ3 z) + mż2 R2

4λ3 =
∂L
∂z

=
1
2

mż2 R2

4λ3 −mg

We can now solve this for z̈ to get this ugly thing:

z̈ =
−g− ż2 R2

8λ3

1 + R2

λ2 +
R2

4λ3 z

which should be really easy to solve. Or not.
3) (i) as R → 0, z̈ → −g. This makes sense because as R → 0 the sprial helix

becomes a straight vertical wire and the particle falls freely.
(ii) as λ → ∞ for fixed R, we get exactly the same limit. This also makes sense,

because the vertical motion dominates and ρ changes very slowly.

Question 3

Two bodies move under the influence of the central-force potential V(r) = krα where
~r is the relative coordinate and k and α are constants (ignore the center-of-mass mo-
tion).

1. Assume that ~r(t) is a solution to the equations of motion. Show that ~r′(t) =
λ~r(λσt) is also a solution to the equations of motion for any constant λ, pro-
vided the exponent σ is suitably chosen. What is the value of σ?

2. Apply the result from 1. to the cases α = 2 (harmonic oscillator) and α = −1
(Kepler problem). Comment on the results and on the properties you can derive
for them.

(Qualifier Problem)
Hint: This does not require a lot of complicated math, just some clever argument. If
you get stuck, email me – do NOT collaborate with your fellow students!

Answer. 1) We start by writing down the Lagrangian and the EOM:

L =
µ

2
ṙ2 +

µ

2
r2φ̇2 − krα

and
d
dt

∂L
∂ṙ

= µr̈ =
∂L
∂r

= −kαrα−1 + µrφ̇2

The Lagrangian is cyclic in φ so that

µr2φ̈ = 0
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We will assume that~r(t) is a solution to the EOM:

µr̈ = kαrα−1 + µrφ̇2 (29)

and see whether~r′(t) = λ~r(λσt) can also be a solution.
We will first calculate the time derivatives of r′:

d~r′(t)
dt

=
d
dt
(λ~r(λσt)) = λλσ~̇r(λσt) = λσ+1~̇r(λσt) (30)

d2~r′(t)
dt2 =

d
dt

d~r′(t)
dt

= λ2σ+1~̈r(λσt) (31)

Similarly
φ̇′ = λσφ̇

where the prefactor λ of~r′ does not affect φ̇ but the different time dependence does.
Now we can substitute these into Eq 29 and see whether~r′ can satisfy the EOM:

µr̈′(t) = kα(r′(t))α−1 + µr′(t)(φ̇′(t))2 (32)

µλ2σ+1 r̈(λσt) = kαλα−1(r(λσt))α−1 + µλr(λσt)λ2σ(φ̇(λσt))2 (33)

µr̈ = λα−1−2σ−1rα−1kα + µrφ̇2 (34)

where I dropped the time dependence in Eq 34. This reduces to Eq 29 if

α− 1− 2σ− 1 = 0

or if
σ =

1
2

α− 1

2) Special cases: (i) Harmonic oscillator α = 2: In this case σ = 0 and the only
change in r′ is multiplying the amplitude by λ. This simply shows that the time-
dependence of the motion is independent of the amplitude, meaning for any solution
r(t), any multiple of that solution is also an allowed motion.

(ii) Gravity α = −1: in this case σ = −3/2. This means that if we increase the
orbital distance by a factor of λ, then we also increase the period by a factor of λ3/2. In
other words, a ∝ T3/2 or a2 ∝ T3, which is Kepler’s 3rd law.


