
PHYS 603: Classical Mechanics Penn Rogers

1 Lecture Notes Week 1

1.1 Introduction

With the exception of Thermodynamics and Statistical Mechanics, which suffer from limited
information, all physical theories may be classified according to whether or not they are
special relativistic (Rel), whether or not they are quantized, and, finally, the number of
degrees of freedom (DoF) that they have (finite or infinite). (see Table 1)

Table 1: Classification of Physical Theories
Finite DoF Infinite Dof

Rel
Q Rel QM Rel QFT
Non Q Special Rel EM

Non Rel
Q QM QFT
Non Q Classical Fluids

1.2 Mechanics of a Single Particle

1.2.1 Motion of a Single Particle

Consider a particle of constant mass m at a position r in an inertial (non-accelerating) frame
of reference. The velocity of the particle is given by the time derivative of the position v = ṙ,
and its momentum is simply p = mv. If F is the force exerted on the particle and a = v̇ = r̈
is its acceleration, then Newton’s Second Law (in linear form) gives its equation of motion

F = ṗ

=
d

dt
(mv)

= mv̇

= ma (1)

Therefore, if F = 0, then the momentum p is conserved.

Similarly, the angular momentum of the particle about a specific origin is defined to be
L = r × p, and the torque about the same origin exerted on the particle is defined to be
N = r×F . So, Newton’s Second Law (in rotational form) follows and gives its equation of
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motion

N = r × F

= r × ṗ

= r × d

dt
(mv)

= v × (mv) + r × d

dt
(mv)

= ṙ × (mv) + r × d

dt
(mv)

=
d

dt
(r × (mv̇))

= L̇ (2)

Therefore, if N = 0, then the angular momentum L is conserved.

1.2.2 Work and Energy

The work done on a particle by a force F as it moves from position r1 to position r2 along
some given path is

W12 =

∫ r2

r1

F · ds

= m

∫ t2

t1

v · dv
dt

dt

=
1

2
m

∫ r2

r1

d

dt

(
v2
)
dt

=
1

2
m
(
v22 − v21

)
(3)

Noting that the kinetic energy is T = 1
2
mv2, we have the so-called work-energy theorem:

W12 = T2 − T1.

When W12 is path independent, then F is a conservative force. In this case, along any
closed path,

W12 =

∮ r2

r1

F · ds

= 0

This is logically equivalent to the existence of a potential V (r), which is unique up to
addition of a constant C and satisfies

F = −∇V (r) (4)

Note that energy is only conserved if the potential V does not explicitly depend on
the time t. If this is the case, and the potential does not depend explicitly on time, then
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dW + dV = 0 which implies upon integrating that T + V = E with E constant.

On the other hand, in the case in which the potential does depend explicitly on time,
V = V (r, t) so that

dW = F · ds

= −∂V

∂s
ds

̸= −dV

= −∂V

∂s
ds− ∂V

∂t
dt

1.3 Mechanics of a System of Particles

Consider a system of N particles and suppose the ith particle has constant mass mi and
position ri in an inertial (non-accelerating) frame of reference. Its velocity is given by the
time derivative of its position vi = ṙi, and its momentum is simply pi = mvi. If F ij is

the force exerted on the ith particle by the jth and F
(ext)
i is the net external force on the ith

particle a = v̇ = r̈ is its acceleration, then Newton’s Second Law (in linear form) gives its
equation of motion considering the total force on it∑

j

F ij + F
(ext)
i = ṗi (5)

Assuming the weak version of Newton’s Third Law (action/reaction), F ij = −F ji, and

defining the total external force on the system F (ext) =
∑

i F
(ext)
i , the total massM =

∑
i mi,

and the center of mass R =
∑

imiri/M so that P = MṘ, Newton’s Second Law for the
system reads

F (ext) = Ṗ (6)

Therefore, if F (ext) = 0, then the total momentum P of the system is conserved.

The total angular momentum of the system about a specific origin is defined to be L =∑
i ri ×pi, but its treatment is slightly more complicated. First, define rij = ri − rj. Then,

assuming a stronger version of Newton’s Third Law (action/reaction), that the internal forces
F ij||rij, and taking the time derivative of L,

L̇ =
∑
i,j

ri × F ij +
∑
i

ri × F
(ext)
i

=
1

2

∑
i,j

(ri − rj)× F ij +
∑
i

ri × F
(ext)
i

=
∑
i,j

rij × F ij +
∑
i

ri × F
(ext)
i

=
∑
i

ri × F
(ext)
i
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So, further defining N
(ext)
i = ri × F

(ext)
i and N (ext) =

∑
iN

(ext)
i , the rotational form of

Newton’s Second Law for a system of particles is

N (ext) = L̇ (7)

Therefore, if N (ext) = 0, then the total angular momentum L of the system is conserved.

Furthermore, defining the relative position of the ith particle in the center of mass frame
to be r′

i = ri −R so that the relative velocity is v′
i = vi − V , the total angular momentum

may be written as

L =
∑
i

(R+ r′
i)×mi (V + v′

i)

=
∑
i

R×miV +
∑
i

r′
i ×miv

′
i

+
∑
i

R×miv
′
i +
∑
i

r′
i ×miV

=
∑
i

R×miV +
∑
i

r′
i ×miv

′
i

= R×MV +
∑
i

r′
i × p′

i

1.3.1 Work and Energy

The work done on the system by all net forces F i on each in a system to move it from some
initial configuration 1 to a final configuration 2 is

W12 =

∫ 2

1

∑
i

F i · dsi

=
∑
i

mi

∫ t2

t1

vi ·
dvi

dt
dt

=
∑
i

T i
2 − T i

1 (8)

When F
(ext)
i is a conservative force, it can be written as the gradient of some potential

F
(ext)
i = −∇V

(ext)
i (9)

Similarly, when F ij is a conservative force it can also be written as the gradient of some
potential

F ij = −∇iVij (10)

If the strong version of Newton’s Third Law (action/reaction) is also assumed, then this
potential has the form Vij = Vij (|ri − rj|)
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If all of the internal and external forces are conservative, then the total potential of the
system is

V =
∑
i

V
(ext)
i +

1

2

∑
i,j

Vij

Then the net force on the ith particle is simply

F i = −∇V

1.4 Forces of Constraint

Suppose that the set of positions of the N particles {r1, ..., rN} are not independent. Then
they are constrained, and there exist forces of constraint.

We primarily focus on holonomic constraints, that is constraints that can be expressed
as f (r1, ..., rN , t) = 0.

Examples of holonomic constraints include: a particle on the plane x = 5 or a particle
on the ellipse x2/A2 + y2/B2 = C2.

An example of a non-holonomic constraint is a particle inside of the circle x2 + y2 < a2.

Note that we may not know what the forces are, but we do know what they do to the
particles in the system. For instance, we may know that a constraint force confines a particle
to a plane or a bead to a wire, but we may not know what the force actually is.

Since there are N particles in the system inhabiting three-dimensional space, there are
3N original position coordinates. If we have k constraints, then there we have n = 3N − k
degrees of freedom. And, each of our positions (in fact, each coordinate of each position)
may be written as a functions of our choice in n = 3N − k generalized coordinates: ri =
ri (q1, ..., qn, t). These coordinates may not form 3-vectors and may not be lengths.

1.5 d’Alembert’s Principle and Lagrange’s Equations

Let the net force on the ith particle be given by F i = F a
i +f i, where F

a
i is the applied force

and f i is the force of constraint, and consider a virtual infinitesimal displacement δri from
some static equilibrium F i = 0. We want to choose systems in which constraint forces do
no work. Then, since F i · δri = 0,

F i · δri = F a
i · δri + f i · δri

= F a
i · δri

= 0
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For a dynamic equilibrium, we still choose systems in which the constraint forces do no
work, so ∑

i

(F i − ṗi) · δri =
∑
i

(F a
i − ṗi) · δri = 0 (11)

Now, we transform to our choice of generalized coordinates so that ri = ri (q1, ..., qn, t).
Using the chain rule, the velocity and displacement are

vi = ṙi =
∑
j

∂ri

∂qj
q̇j +

∂ri

∂t

δri = ṙi =
∑
j

∂ri

∂qj
δqj +

∂ri

∂t

This allows us to define a generalized force

Qj =
∑
i

F a
i ·

∂ri

∂qj

From which it follows that∑
i

F a
i · δri =

∑
i

∑
j

F a
i ·

∂ri

∂qj
δqj =

∑
j

Qjδqj (12)

Thus, Qjqj has units of work.

On the other hand, note the relations

d

dt

(
∂ri

∂qj

)
=
∑
k

∂2ri

∂qj∂qk
q̇k +

∂2ri

∂qj∂t
=

∂vi

∂qj

∂vi

∂q̇j
=
∑
k

∂ri

∂qk
δjk =

∂ri

∂qj

These imply that∑
i

mir̈i ·
∂ri

∂qj
=
∑
i

[
d

dt

(
miṙi ·

∂ri

∂qj

)
−miṙi ·

d

dt

(
∂ri

∂qj

)]
=
∑
i

[
d

dt

(
mivi ·

∂vi

∂q̇j

)
−mivi ·

∂vi

∂qj

]

=
d

dt

∂

∂q̇j

(∑
i

1

2
miv

2
i

)
− ∂

∂qj

(∑
i

1

2
miv

2
i

)

=
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
(13)
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From which it follows ∑
i

ṗi · δri =
∑
i

∑
j

mir̈i ·
∂ri

∂qj
δqj

=
∑
j

[
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj

]
δqj

But, then combining equations 12 and 13 and substituting into equation 11,∑
i

(F i − ṗi) · δri =
∑
j

[
Qj −

(
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj

)]
δqj = 0

We arrive at Lagrange’s equations. For, j = 1, ..., n,

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
= Qj (14)

If we know that the applied forces on each particle are conservative, then for the total
potential of the system V , the generalized force for j = 1, ..., n may be written

Qj =
∑
i

F a
i ·

∂ri

∂qj
= −

∑
i

∇iV · ∂ri

∂qj
= −∂V

∂qj

And, if we further know that V does not depend on any velocities, then for j = 1, ..., n,

∂V

∂q̇j
= 0

Then finally defining the Lagrangian of the system to be L = T − V , we have the final
form of Lagrange’s equations, for j = 1, ..., n,

d

dt

(
∂L
∂q̇j

)
− ∂L

∂qj
= 0 (15)
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