
 EET 310 || Chapter 1 || Computer Codes (H)
1/15/2014	 PAGE 61

Computer Codes (H)
 Codes are a systematic and standardized method of representing information. You

use codes every day. Written and spoken language is a code. There are 3 important

categories of computer codes:

 Numeric,

 Character, and

 Error detection and correction.

We have already studied an example of a numeric code; the BCD code. There are

many other numeric code systems, but we will leave those for communication course’s

to look at.

Character Codes
 A string of bits need not represent a number. In fact, most of the information

processed by computers today is non-numerical. The most common non-numeric data is

‘text’, strings of characters from a character set. The most common character code is

ASCII (pronounced ASS key), (American Standard Code for Information

Interchange).

ASCII code represents each character by a 7 bit string, a total of 128 different

characters as shown in the textbook. In addition, there is a copy of the ASCII code

on my homepage which will be included on tests if needed.

 EET 310 || Chapter 1 || Computer Codes (H)
1/15/2014	 PAGE 62

Table 2, ASCII Character Code

 C6C5C4

C3C2C1C0 000 001 010 011 100 101 110 111

0000 NUL DLE SP 0 @ P ` p

0001 SOH DC1 ! 1 A Q a q

0010 STX DC2 “ 2 B R b r

0011 ETX DC3 # 3 C S c s

0100 EOT DC4 $ 4 D T d t

0101 ENQ NAK % 5 E U e u

0110 ACK SYN & 6 F V f v

0111 BEL ETB ’ 7 G W g w

1000 BS CAN (8 H X h x

1001 HT EM) 9 I Y i y

1010 LF SUB * ; J Z j z

1011 VT ESC + : K [k {

1100 FF FS ` < L \ l |

1101 CR GS - = M] m }

1110 S0 RS . > N ^ n ~

1111 S1 US / ? O _ o DEL

Let’s check out the code on the following page for an example!

 EET 310 || Chapter 1 || Computer Codes (H)
1/15/2014	 PAGE 63

ASCII Example 1
Code the following phrase: “Ditto _Head!” in ASCII:

 binary
(col) (row)

Hex
form

D 100 0100 44

i 110 1001 69

t 111 0100 74

t 111 0100 74

o 110 1111 6F

space 010 0000 20

H 100 1000 48

e 110 0101 65

a 110 0001 61

d 110 0100 64

! 010 0001 21

You would write the answer as follows:
2044 69 74 74 6F

48 65 61 64 21

 EET 310 || Chapter 1 || Computer Codes (H)
1/15/2014	 PAGE 64

ASCII Command or Action Codes

 In addition to codes for letters, there are also ASCII codes for:

 ACTIONS,

 CONDITIONS, and

 STATES

Examples of such codes are:

STX Start of text

ETX End of text

EOT End of transmission

ACK Acknowledge

NAK Negative acknowledge

CAN Cancel

CR Carriage return

LF Line feed

ASCII - 2

 As stated before, ASCII is 7 bits long which allow for 128 characters. There is

an extended ASCII called ASCII 2 which is 8 bits long. This provides for more

command codes. Since both codes require 7 or 8 bits to represent a number, it’s

not good for numbers.

 EET 310 || Chapter 1 || Computer Codes (H)
1/15/2014	 PAGE 65

GRAY CODE

Gray code is an example of a cyclic code which requires that 2 consecutive numbers can

only differ in 1 bit position. Let’s look at why we use it.

Figure 1: Gray Code vs Binary Code

A copy of this graphic is included on the course homepage.

Simplified Gray Code error illustration
in shaft position encoders

Contact brushes in a fixed
position slide along the surface
of the rotating conductive rings

Binary Code

101

001100 010011

000

110 111

Gray Code

001110

010

011

000

100

101

111

 EET 310 || Chapter 1 || Computer Codes (H)
1/15/2014	 PAGE 66

Encoder Example:

 Consider three concentric conductive rings segmented into eight sectors as shown

on the previous page. The more sectors it is divided into, the higher the position

accuracy. Each sector is fixed at a high-level or a low level (magnetically or by some

other method). As the rings rotate, they make contact with a brush arrangement that is

“fixed” in space. The contents of the sector are read by the brushes and the data is

sent to the output lines. As the shaft rotates 360 ̊, a 3 bit output indicates shaft

position.

Binary coded sectors
 Let’s look at what happens when the sectors are coded in Binary Order. When the

brushes are in the shaded sectors they will output a “1" and the clear areas will output a

“0". If one brush is slightly ahead of the others during the segment to segment

translation, a false output will occur.

Binary Coded Example: Brushes are at “111", entering “000". If the MSB brush is

slightly ahead, the position would read “011", instead of “111" or “000". Since it is

impossible to maintain perfect brush alignment, LARGE errors will occur.

Gray Coded Sectors

 Let’s change the way we encode the sectors now. The method will be called Gray

code order. The gray code assures that only one bit will change between adjacent

sectors. This means that even though brushes may not be in alignment, there will NEVER

be a transitional error.

GRAY Coded Example:
 Brushes again are at ‘111' moving into ‘101'. There are only 2 possible outputs, no

matter if the brushes are misaligned or not! (111,101).

 EET 310 || Chapter 1 || Computer Codes (H)
1/15/2014	 PAGE 67

Conversion between Systems

Binary-to-Gray Conversion Example 1
1. The MSB in Gray Code is the same as the MSB in Binary.

2. Going from left to right, add each adjacent pair of binary bits to get the next Gray

code bit. Discard all carries.

2

2

2

2

g

1 0

1
0 1

1
1 1

0

1 : 1 1 0

2 : 1 1 0

3 : 1 0 0

4 : 1 0 1

1

1 1

1 1 1

1 1 1 0

ans 11101

1 0

1





















Binary-to-Gray Conversion Example 2

2

2

g

gray code Convert into .
1 1 0 0 0 1 1 0

Problem: 11000110

1 0 1 0 0 1 0 1

 EET 310 || Chapter 1 || Computer Codes (H)
1/15/2014	 PAGE 68

Gray-to-Binary Conversion Example 1
I. The MSB’s are the same.

II. Add each binary code bit generated to the

gray bit in the next adjacent position.

Discard all carries.

Gray-to-Binary Conversion Example 2
g

g

2

binary code Convert into .
1 0 1 0 1 1 1

Problem: 10101111

1 1 0

0 1 0 1
1

0

Gray code is normally used with asynchronous systems. If you don’t want to use

gray code but you still want accuracy, there is one way to improve the accuracy of the

Binary coded wheel. With the addition of a strobe signal which allows the reading of the

wheel only in the middle of a sector, it would take a pretty big misalignment of the

brushes to cause the error to be noticed.

g

g

g

g

2

1 : 1 0 1 1

2 : 1 1 1 1

3 :
1

1 0

1 0 0

ans 10010

1

1 0
0

0 0
1

0 1

1 1 0 1

3 : 1 1 0 1 1

1 0

  

   

 

 

 

   



    



 EET 310 || Chapter 1 || Computer Codes (H)
1/15/2014	 PAGE 69

ERROR DETECTION &/OR CORRECTION CODES

Parity codes

 A parity bit (P) is added to an information string. If EVEN parity is desired, the

total # of 1's INCLUDING the parity bit must be EVEN. So, if the total # of 1's

before the parity is added is already even, then P=0, else P=1. We can follow the same

thought process for ODD parity. The parity bit may be added at the beginning of the

word or at the end of the word. The only requirement is that all the equipment using

the code must understand how the code is set up. The book places its parity bits at

the end of the word to the right of the LSB. I tend to follow the industry standard and

place the parity bit at the beginning of the word to the left of the MSB. If the

parity/word combination is going to be shifted as discussed earlier, the parity bit is left

out of the shift. The shift itself may cause an overflow condition or a discard of a “1" in

the word which will show up as a parity error.

 Let’s take a look at a data string which is the ASCII code for T. We desire an

ODD parity.

(p) 0 1 0 1 0 1 0 0asc

We see that the number of 1's was already odd so we make the parity bit equal to 0.

 EET 310 || Chapter 1 || Computer Codes (H)
1/15/2014	 PAGE 70

With the parity system, single error detection is easy. But you have to know

ahead of time whether it is ODD or EVEN parity and where the parity bit is located.

Communications protocols require that in order for the receiver to be synced up with the

transmitter, both systems must know the protocol ahead of time. When an ODD parity

protocol data stream is received, the 1's are counted and if it turns out to be an EVEN

number, then there is an error. The problem here is that you don’t know which bit has

the error. Also, what happens if there are 2 errors? In this case, you wouldn’t even

see the error and it would be sent on through.

 One way of being able to locate an error in a group of words is to use vertical and

horizontal parity redundancy checking. In this case, each word has a parity bit. Then the

group of words has a parity bit for each column of bits. In the example below, each row

has EVEN parity and each column has odd parity.

Multiple Parity Example
 This example has 5 words of data and 1 word of parity bits. Each word,

including the parity word has a parity bit as the left most bit. You should be able to

see that the error is in the second row, the third bit from the right.

1 0 1 0 1 1
1 1 0 0 0
1 0 0 0 0 0
0 1 1 1 1 1
0 0 0 1 0 1

even
0
1 0
1
1
0

odd 0 0 1 1 0 1 0

