EET 310|| Digital Design || Chapter 3 || Quine-McCluskey and the Min-term (F) || R.L. Jones 10/27/2012 PAGE - 71

Quine-McCluskey and the Max-Term (F)

Up until now we have only solved min-term equations with the Quine-McCluskey Tabular Reduction. We can also solve max-term expressions. The nice thing about this is nothing changes in the procedure from that of the SOP Quine-McCluskey until it is time to convert the PI's and EPI's into Boolean algebra terms including the fact that you still group the Max-terms by the # of 1's they contain.

Let's take a look at another example. Just as before, we have seen this expression k-mapped before:

Quine-McCluskey Max-term Example:

chauld he fairly converge

Problem Statement: Simplify the following Max-term list into its minimal POS expression.

 $f(A, B, C, D, E) = \prod M\left(\underbrace{0}_{0}, \underbrace{2}_{1}, \underbrace{5}_{2}, \underbrace{8}_{1}, \underbrace{10}_{2}, \underbrace{12}_{2}, \underbrace{16}_{1}, \underbrace{18}_{2}, \underbrace{23}_{4}, \underbrace{24}_{2}, \underbrace{26}_{3}, \underbrace{30}_{4}\right)$

By now you should be fairly conversant with the procedure so we will condense the solution of this problem to entire columns.				0,2(2)
	0 1' s	0	\checkmark	0,8(8)
The # of 1s has been performed on the provided list				0,16(16)
above.				2,10(8)
				2,18(16)
		2	\checkmark	8,10(2)
	1 1' s	8	\checkmark	8,12(4)
		16	\checkmark	8,24(16)
				16,18(2)
				16,24(8)
The "Groups-of-Two column is pretty self-explanatory for the		5	PI	
student who has studied the previous notes and understood the examples.		10	\checkmark	10,26(16)
Max-terms 5 and 23 were determined to be PIs since they were not used	2 1' s	12	\checkmark	18,26(8)
to build any group-of-two.		18	\checkmark	24,26(2)
		24	\checkmark	
	3 1' s	26		26,30(4)
	1 1/-	23	PI	\vee
Example Continues on the Next Page)	4 1's	30	\checkmark	
		I		I I

EET 310 Digital Design 10/27/2012	Chapt	er 3	Qu	ine-McCluskey and	d the Min-term (F) R.L	Jones PAGE -72
Example Continues)						
C	0 1's	0	\checkmark	0,2(2) √ 0,8(8) √ 0,16(16) √	0,2,8,10(2,8) 0,2,16,18(2,16) 0,8,2,10(8,2) 0,8,16,24(8,16) 0,16,2,18(16,2) 0,16,8,24(16,8)	
1	1 1's	8	\checkmark \checkmark	$\begin{array}{c c} 2,10(8) & \\ 2,18(16) & \\ 8,10(2) & \\ \hline 8,12(4) & PI \\ 8,24(16) & \\ 16,18(2) & \\ 16,24(8) & \end{array}$	8,10,24,26(2,16) 16,18,24,26(2,8) 2,10,18,26(8,16) 16,24,18,26(8,2) 2,18,10,26(16,8) 8,24,10,26(16,2)	
_	2 1's	18 24	PI √ √ √ √ √	10,26(16) $$ 18,26(8) $$ 24,26(2) $$	X	
3	3 1' s	26	\checkmark	26,30(4) PI	X	
2	4 1's	<mark>23</mark> 30	PI √	X	Х	

The "Group-of-Four" column again demonstrates that every term in that column has a duplicate. The duplicates HAVE to be lined out (NOT DELETED OR ERASED) before moving on.

Example Continues on the next page)

EET 310 Digital De	esian	Chapter 3 Qui	ine-McCluskey and th	e Min-term (F) R.L. Jones	
10/27/2012	5				AGE - 73
Example Continue	s)				
0 1' s	0 √	0,2(2) √ 0,8(8) √ 0,16(16) √	$\begin{array}{c c} 0,2,8,10(2,8) & \checkmark \\ 0,2,16,18(2,16) & \checkmark \\ \hline 0,8,2,10(8,2) \\ 0,8,16,24(8,16) & \checkmark \\ \hline 0,16,2,18(16,2) \\ \hline 0,16,8,24(16,8) \end{array}$	0,2,8,10,16,18,24,26(2,8,16) 0,2,16,18,8,10,24,26(2,16,8) 0,8,16,24,2,10,18,26(8,16,2)	PI
1 1's	2 √ 8 √ 16 √	$\begin{array}{c cccc} 2,10(8) & \\ 2,18(16) & \\ 8,10(2) & \\ \hline 8,12(4) & PI \\ 8,24(16) & \\ 16,18(2) & \\ 16,24(8) & \end{array}$	$8,10,24,26(2,16) \checkmark \\ 16,18,24,26(2,8) \checkmark \\ 2,10,18,26(8,16) \checkmark \\ \frac{16,24,18,26(8,2)}{2,18,10,26(16,8)} \\ \frac{8,24,10,26(16,2)}{2,18,10,26(16,2)} $		
2 1's	5 PI 10 √ 12 √ 18 √ 24 √	10,26(16) √ 18,26(8) √ 24,26(2) √	Х		
3 1' s	26 🗸	26,30(4) PI	Х		
4 1's	23 P: 30 V	I X	Х		

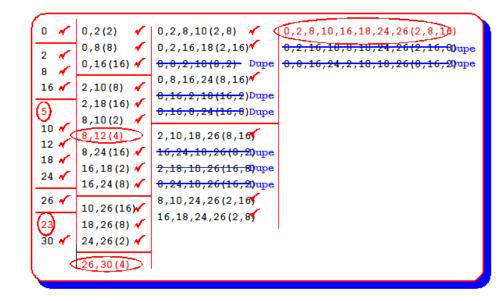
Note that this time the table has a "Group of Eight" column.

• As you learned in the last set of notes, just as the "Group-of-Four" column will have 'duplicates' of each new term, the 'Group-of-Eight' column will have 'triplicates' of each new term. Two of each triplicate needs to be lined out. And as always, if a term does not have a complete set of triplicates, then YOU HAVE MAD A MISTAKE!

Example Continues on the Next Page)

EET 310|| Digital Design || Chapter 3 || Quine-McCluskey and the Min-term (F) || R.L. Jones 10/27/2012 PAGE - 74

> • The **PI table** is still performed the same way as it would be if the terms were **minterms**.


			F	ΡΙ ΤΛ	ABLE									
			\checkmark	√										
			0	2	5	8	10	12	16	18	23	24	26	30
EPI	5				\mathbf{X}									
EPI	23										\mathbf{X}			
EPI	8,12	(4)				Х		\mathbf{X}						
EPI	26,30	(4)											Х	\mathbf{X}
EPI	0,2,8,10,16,18,24,26	(2,8,16)	X	X		Х	X		X	X		X	Х	

- The Boolean Conversion table is the 1st place in the example where things are done differently than it would be done with min-terms.
- Everything is the same until the terms are finally converted to Boolean. Then a 1 will give you a NOT'ed variable, while a 0 will give you a non-negated variable.
- The resulting set of terms are then ANDed together into a POS expression.

	Boolean Conversion Table										
		16 A	8	4	2	1					
		A	В	С	D	Ε	Boolean				
EPI	5	0	0	1	0	1	$\left(\mathbf{A}+\mathbf{B}+\overline{\mathbf{C}}+\mathbf{D}+\overline{\mathbf{E}}\right)$				
EPI	23	1	0	1	1	1	$\left(\overline{\mathbf{A}} + \mathbf{B} + \overline{\mathbf{C}} + \overline{\mathbf{D}} + \overline{\mathbf{E}}\right)$				
EPI	8,12(4)	0	1	_	0	0	$\left(\mathbf{A} + \overline{\mathbf{B}} + \mathbf{D} + \mathbf{E}\right)$				
EPI	26,30(4)	1	1	_	1	0	$\left(\overline{\mathbf{A}}+\overline{\mathbf{B}}+\overline{\mathbf{D}}+\mathbf{E}\right)$				
EPI	0,2,8,10,16,18,24,26(2,8,16)	-	-	0	-	0	(<i>C</i> + E)				

 $f(A,B,C,D,E) = (C+E)(A+B+\overline{C}+D+\overline{E})(\overline{A}+B+\overline{C}+\overline{D}+\overline{E})(A+\overline{B}+D+E)(\overline{A}+\overline{B}+\overline{D}+E)$

EET 310|| Digital Design || Chapter 3 || Quine-McCluskey and the Min-term (F) || R.L. Jones 10/27/2012 PAGE - 75

	Max–terms ⇒	V	V	V	V	V	V	V	V	V	V	V	V
	PI's U	0	2	5	8	10	12	16	18	23	24	26	30
EPI ⇒	0,2,8,10,16,18,	X			Y	X		$ \mathbf{X} $	∇		∇	Y	
	24, 26(2, 8, 16)						 			 	М		
${\tt EPI} \Rightarrow$	8,12(4)				Х		X						
$\texttt{EPI} \Rightarrow$	26, 30(4)		 		1 - - - 	 - - -						Х	\mathbb{X}
$\texttt{EPI} \Rightarrow$	5		1	X		 							
$EPI \Rightarrow$	23		 			 				\mathbf{X}			

Selected		16	8	4	2	1		
PI's↓		A	B	С	D	Ε		
0, 2, 8, 16, 18, 24, 26	(2, 8, 16)	×	×	0	×	0	C + E	
8,12	(4)	0	1	×	0	0	$A + \overline{B} + D + E$	
26, 30	(4)	1	1	×	1	0	$\overline{A} + \overline{B} + \overline{D} + E$	
5		0	0	1	0	1	$A + B + \overline{C} + D + \overline{E}$	
23		1	0	1	1	1	$\overline{A} + B + \overline{C} + \overline{D} + \overline{E}$	
The minimi	The minimized solution for the given function is:							
$f(A, B, C, D, E) = (C + E)(A + \overline{B} + D + E)(\overline{A} + \overline{B} + \overline{D} + E)$								
• $(A + B + \overline{C} + D + \overline{E})(\overline{A} + B + \overline{C} + \overline{D} + \overline{E})$								