
 EET 310 || Chapter 4 Lesson Notes (C) || Multiplexers || R.L. Jones
10/26/2011	 1 OF 19

Multiplexers (Data Selectors) Introduction

 A multiplexer (MUX) is a logic component that has several inputs but only a single

output (might have a 2nd output which is the complement of the 1st.) With the

addition of the MUX, the designer has the capability to direct one of the inputs to the

output. For instance, take the figure in example 4-10. One might have several pulse

trains on the 4 inputs, each with a different set of characteristics. Then the MUX can

direct each signal one at a time onto a single transmission wire. At the other end, a de-

MUX can sort the signals back out onto 4 lines. The only requirement is that each end

must be sync’ed together so that the signals are sorted correctly.

The Generic MUX

 In the digital MUX, any signal or logic level can be

placed on any of the inputs. Binary numbers placed on

the Select (S) lines determine which input will be

connected to the output. The select lines are selecting

the subscript associated with the desired input. It is

a ONE WAY DEVICE.

 One use for this would be to place several different frequencies and/or wave-

shapes as inputs to the MUX. Then, a different input signal can be selected by just

changing the “S” lines. (Note: The S, or ‘Select’, lines are sometimes called the

‘Control’ lines).

I3

I2

I1

I0
S1 S0

Y

W

M
U
X

Inputs
(Usually
active
High)

Select Inputs
(Usually
active
High)

Output

Complement
of

Output

Generic MUX

 EET 310 || Chapter 4 Lesson Notes (C) || Multiplexers || R.L. Jones
10/26/2011	 2 OF 19

The 74153 dual 4/1 MUX

 The first MUX we will discuss is the 74153 (dual 4/1 MUX). (As shown in the

previous example.) While this is indeed a DUAL MUX, the two MUX’s share the select

lines so you wouldn’t be able to use the two for two different purposes. You can

either use a single MUX or you can put the two MUX’s together to create a single 8 to 1

MUX. Note that this chip doesn’t have a “Complement of Y” output.

1

2
3

4

5

6

7

8

16

15

14

13

12

11

10

9

1I1

1Y

1G

Gnd

Vcc

S0

7
4
1
5
3

S1 2G

1I0

1I2

1I3

2I1

2I0

2I2

2I3

2Y

1I3

1I2

1I1

1I0

1Y

2I3

2I2

2I1

2I0

2Y

S0S1

S0S1

74153

2G

1G

 EET 310 || Chapter 4 Lesson Notes (C) || Multiplexers || R.L. Jones
10/26/2011	 3 OF 19

Example 4-10

(The select lines controlled the duty cycle shown on the output of the
Mux)

 EET 310 || Chapter 4 Lesson Notes (C) || Multiplexers || R.L. Jones
10/26/2011	 4 OF 19

The 74151 8/1 MUX

This MUX is a single 8/1

MUX with an active low

Chip Enable input. Since

it has 8 input lines to

select between, it has 3

select lines.

Other Multiplexer Applications:
 One very important use for the MUX is to be able to implement switching

functions. Unlike the decoder which also was used for this purpose, the MUX has the

entire truth table effectively programmed into it. The best way to understand this

process is via examples.

1

2
3

4

5

6

7

8

16

15

14

13

12

11

10

9

I3

I2

I1

I0

Y

W

G

Gnd

Vcc

I4

I5

I6

I7

S0

7
4
1
5
1
A S1

S2

I3

I7

I6

I5

I4

I2

I1

I0

S2 S1 S0

Y

W

7
4
1
5
1
A

G

 EET 310 || Chapter 4 Lesson Notes (C) || Multiplexers || R.L. Jones
10/26/2011	 5 OF 19

Switching Function Implementation Example 1:

Implement a 3 variable switching function with an 8/1 MUX

Implement , , , , ,a b c 0f 2m 3 5

with an 8/1 MUX.

A B C Y

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

The order of the variables

on the select lines is VERY

important!

I3

I7

I6

I5

I4

I2

I1

I0 S2 S1 S0

Y

W

7
4
1
5
1
A

G

A
B

C

Order is
very

important!

Vcc

Example 4.11.1

 EET 310 || Chapter 4 Lesson Notes (C) || Multiplexers || R.L. Jones
10/26/2011	 6 OF 19

Type number

 The type number of a MUX circuit will be a function of the # of variables in the

switching function and the # of inputs on the MUX. For example, a three variable

function coupled with an 8:1 MUX will create a Type 0 implementation. A four variable

function coupled with a 4:1 MUX will result in a Type 2 implementation. The equation

for this process is:

type size of Mux(#var #)2

 The circuit in the last example is a Type “0" Implementation of the switching

function. The Type # indicates the # of variables which will go into the Input lines

(Ix). Since all three variables go into the ‘Select lines’ and ‘0’(None) inputs go into the

input lines here, this circuit is a Type “0" implementation.

 EET 310 || Chapter 4 Lesson Notes (C) || Multiplexers || R.L. Jones
10/26/2011	 7 OF 19

MUX Example 2

 Implement the following switching expression using a 4:1 MUX. Work the problem

two different ways. First give a Type “1" implementation using “c” as an input and

then using ‘a’ as an input.

ab c c a a bc
abc abc abc m

f a b c ab bc
abc

7 6 5 1

(1,5
()(, ,

,
(

6)
))

, 7

 Select lines

Row a b c Y

0 0 0 0 0
Io = C1 0 0 1 1

2 0 1 0 0
I1 = 03 0 1 1 0

4 1 0 0 0
I2 = C5 1 0 1 1

6 1 1 0 1
I3 = 17 1 1 1 1

Example 4.11.3

 EET 310 || Chapter 4 Lesson Notes (C) || Multiplexers || R.L. Jones
10/26/2011	 8 OF 19

MUX Example 2 a different way

Next, rework the problem but this time use (variable ‘a’)(the MSB) as the input instead of

(variable ‘c’) (the LSB).

 MSB Select
lines

Out

Rows a b c Y

0 0 0 0 0 Io = ‘0’
1 0 0 1 1 I1 = ‘1’
2 0 1 0 0 I2 = ‘a’
3 0 1 1 0 I3 = ‘a’
4 1 0 0 0 I0 = ‘0’
5 1 0 1 1 I1 = ‘1’
6 1 1 0 1 I2 = ‘a’
7 1 1 1 1 I3 = ‘a’

This circuit will work just as well as the previous one. The difference is that the

designer had to work harder to find the answer since the equivalent rows were no longer

adjacent. The harder the job, the easier it is to make a mistake!

Example 4.11.3.1

 EET 310 || Chapter 4 Lesson Notes (C) || Multiplexers || R.L. Jones
10/26/2011	 9 OF 19

Question: Then why do it at all? Why not always choose the lowest significance
bits to go into the input structure of the MUX (not the Select lines)?

Answer: Because the job of the designer isn’t to make life easier on himself.

His job is to design the simplest, most reliable, and least expensive
systems he can. If using a different set of columns will result in a
better design, then he better do it. This example doesn’t turn out any
better but it is a good practice problem.

 So, if this new method makes it easier to make mistakes, it is also the job of the

designer to apply the METHODICAL engineering thought process to make it simpler and

ensure that there won’t be any errors. The thing to do is to reorder the table based on

the values in the columns going into the select lines. Let’s look at the example again.

 EET 310 || Chapter 4 Lesson Notes (C) || Multiplexers || R.L. Jones
10/26/2011	 10 OF 19

MUX Example 2 still again!
 You should note that this process of reordering the rows results in the same

circuit inputs to each Ix line but it is clearer what each input should be! Note that we

moved the MSB line over to the right to be next to the output line so we could perform

an easier comparison. But the ‘a’ column is STILL the MSB.

 Select
Lines

msb

Row b c a Y

0 0 0 0 0 I0 = 0
 4 0 0 1 0

1 0 1 0 1 I1 = 1
 5 0 1 1 1

2 1 0 0 0 I2 = a
 6 1 0 1 1

3 1 1 0 0 I3 = a
 7 1 1 1 1

 EET 310 || Chapter 4 Lesson Notes (C) || Multiplexers || R.L. Jones
10/26/2011	 11 OF 19

MUX Example 2 one last time

 Now, let’s rework the problem but this time

we will design a type 2 system. Since there are 3

variables, the MUX size would be:

 Select
line

 Out

Rows a b c Y

0 0 0 0 0

I bc0 1 0 0 1 1

2 0 1 0 0

3 0 1 1 0

4 1 0 0 0

I b c1
5 1 0 1 1

6 1 1 0 1

7 1 1 1 1

MUX size

MUX size
MUX size
MUX size to MUX

of variables - type

3 - 2

1

 2 - - 1

2

2
2 2

0I bc

1I b c

 EET 310 || Chapter 4 Lesson Notes (C) || Multiplexers || R.L. Jones
10/26/2011	 12 OF 19

MUX Example 3

Implement the following switching expression using a Type 1 implementation.

f A B C D m
(#var-type# 3) (4 1)Siz

(, , ,) (0,1,3, 4,7,9,10,13,14)
2 2e of M 82 ux

Always take as many of the most significant variables as you have select

switches.

Example 4.11.4

S2 S1 S0

A B C D Y

0 0 0 0 1

Io = 1 0 0 0 1 1

0 0 1 0 0

I1 = D 0 0 1 1 1

0 1 0 0 1

I2 = D’ 0 1 0 1 0

0 1 1 0 0

I3 = D 0 1 1 1 1

1 0 0 0 0

I4 = D 1 0 0 1 1

1 0 1 0 1

I5 = D’ 1 0 1 1 0

1 1 0 0 0

I6 = D 1 1 0 1 1

1 1 1 0 1

I7 = D’ 1 1 1 1 0

 EET 310 || Chapter 4 Lesson Notes (C) || Multiplexers || R.L. Jones
10/26/2011	 13 OF 19

MUX Example 4

Implement the same function as before
except use a 4:1 MUX.

0I C D

I1 and I2 were found by “Observation”.

Example 4.11.4.1

01

0

1

2

3

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1

0 0

0 0

0 0

0 0

0 1

0 1

0 1

0 1

1

1

0

1

1

1 0

1 0

1 0

1

0 0

0 1

1 0

1 1

0

0

1

0

1

1

0

0

1 0

1

1

0

1 1

1 1

1 1

1 1

SS

A B

I C D

I C D

I C D

I

D Y

C

C

D

 EET 310 || Chapter 4 Lesson Notes (C) || Multiplexers || R.L. Jones
10/26/2011	 14 OF 19

Type numbers greater than 2

 Type 3 and above implementations are normally too complicated. Normally it is

better to design the logic circuit straight out. (Law of Diminishing Return) (at least,

they are too hard to teach in class)

 EET 310 || Chapter 4 Lesson Notes (C) || Multiplexers || R.L. Jones
10/26/2011	 15 OF 19

MUX’s used as Logic Elements

Implement a 74153 as both an OR gate and an AND gate:

Note that the example shows A = 0 and B = 1 with the corresponding

correct OR and AND outputs.

 EET 310 || Chapter 4 Lesson Notes (C) || Multiplexers || R.L. Jones
10/26/2011	 16 OF 19

Multisim Example for XOR and XNOR 74153 implementation

Implement a 74153 as both an XOR gate and an XNOR gate:

Multisim 74153 Implement of a NAND and NOR gate

 EET 310 || Chapter 4 Lesson Notes (C) || Multiplexers || R.L. Jones
10/26/2011	 17 OF 19

The 74150 16/1 MUX

One last MUX which needs to be mentioned is the 74150, 16 to 1 MUX as shown below.

Unlike the other MUX’s, instead of having an

ACTIVE HIGH Y output, it has ONLY an ACTIVE

LOW ‘W’ output. This device could have been

used to create a TYPE ‘0' implementation of the

previous 4 bit example.

 EET 310 || Chapter 4 Lesson Notes (C) || Multiplexers || R.L. Jones
10/26/2011	 18 OF 19

Demultiplexer (Data Distributer)

 Now that we have discussed the Multiplexer end of the process,

remember that at the other end of the trail was a Demultiplexer. A

Demultiplexer is essentially a Decoder which is drawn differently.

Select
Switches

3:8
Decoder

C

B

A

Gate
or

Strobe

G

7

6
5

4
3
2
1

0

Data G

Demux

0

1
2
3

5

4

6

7

CBA

The Demultiplexer will connect a single data line with one of (n) output

lines. The specific output line is determined by the select switches.

 EET 310 || Chapter 4 Lesson Notes (C) || Multiplexers || R.L. Jones
10/26/2011	 19 OF 19

Example:

The purpose of this circuit would be to share a single channel to transmit 16
separate signal channels to another location and then to split them back out
to individual channels at the other end. The inverter is used to match the
bubbles. When this occurs, the output lines will effectively be active
HIGH not active LOW! An additional caution must be taken to take into
account the delay time between the two sides when syncing them together.
And finally it should be noted that there is a cost to performing this MUX -
DEMUX operation. While we have saved on wire, system utility has been
reduced. Each signal is now only available one at a time instead of all at the
same time.

