EET 310 Counters

Counters

• A counter is made up of a series of FF's (usually of the same type) which are designed to pass thru a sequence of output states. Sometimes there are one or more inputs associated with the counter as well.

Counters

- A counter is made up of a series of FF's (usually of the same type) which are designed to pass thru a sequence of output states. Sometimes there are one or more inputs associated with the counter as well.
- The count is determined by the # of states in the sequence with the upper limit set by:

2ⁿ

• where 'n' is the number of FF's.

Ripple Counters

• A Ripple Counter is an Asynchronous Counter.

Ripple Counters

- A Ripple Counter is an Asynchronous Counter.
- An Asynchronous Counter is one where only the first FF is clocked by the system clock.

Ripple Counters

- A Ripple Counter is an Asynchronous Counter.
- An Asynchronous Counter is one where only the first FF is clocked by the system clock.
- The next FF is clocked by the output of the previous FF, and so on and so on.....

Ripple Counter Timing LSB **MSB** b₀ b_1 b₂ J J J Q Q Q clock • Clk Clk Clk Κ Κ Κ QC Q QC Clk time bo b_1 **b**₂

Ripple Counter Timing LSB **MSB** b₀ b_1 b₂ J J J Q Q Q clock • Clk Clk Clk Κ Κ Κ QC Q Q Clk time bo b_1 **b**₂ \bigcap

 Ripple counters exhibit a problem at higher frequencies of operation (no longer considering ideal devices).

- Ripple counters exhibit a problem at higher frequencies of operation (no longer considering ideal devices).
- Each FF has a propagation delay. The problem is that the propagation delay (PD) of FF #1 will force FF#2 to be delayed.

• FF #2's PD will cause FF #3 to be delayed even more $(PD_{#1} + PD_{#2})$.

- FF #2's PD will cause FF #3 to be delayed even more $(PD_{#1} + PD_{#2})$.
- FF #3's PD will cause its output to be further delayed (PD#1 + PD#2 + PD#3)

- FF #2's PD will cause FF #3 to be delayed even more $(PD_{#1} + PD_{#2})$.
- FF #3's PD will cause its output to be further delayed (PD#1 + PD#2 + PD#3)
- This could cause STATE ERROR's or Glitches.
 (spurious states between the actual states)

Synchronous Counters

 A Synchronous counter is a counter where the clock is connected to ALL FF's.

Synchronous Counters

- A Synchronous counter is a counter where the clock is connected to ALL FF's.
- The design of this type of counter usually requires the creation of a state table.

Design a 3-bit synchronous counter using T-FF's.

Y 2	Y 1	Yo	#	
0	0	0	0	
0	0	1	1	
0	1	0	2	
0	1	1	3	
1	0	0	4	
1	0	1	5	
1	1	0	¦ 6	
1	1	1	7	
/17/201	11			

0 0 0 1 0 0 1 1 0 1 0 2 0 1 1 3 1 0 0 4 1 0 1 5
0 1 1 0 1 0 2 0 1 1 3 1 0 0 4 1 0 1 5
0 1 0 2 0 1 1 3 1 0 0 4 1 0 1 5
0 1 1 3 1 0 0 4 1 0 1 5
1 0 0 4 1 1 0 1 5 1
1 0 1 5
1 1 0 6
1 1 1 7

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0 1 1 2 0 1 0 2 0 1 1 3 1 0 0 4 1 0 1 5 1 1 0 6
0 1 0 2 0 1 1 3 1 0 0 4 1 0 1 5 1 1 0 6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 0 0 4 1 0 1 5 1 1 0 6
1 0 1 5 1 1 1 1 0 6 1 1 1

Y 2	Y 1	Yo	#	#+	
0	0	0	0	1	
0	0	1	1	2	
0	1	0	2	3	
0	1	1	3	4	
1	0	0	4	5	
1	0	1	5	6	
1	1	0	6	7	
1	1	1	7	0	
147167					

Y 2	Y 1	Yo	#	#+	Y ₂ ⁺	\mathbf{y}_1^+	Y ₀ ⁺	
0	0	0	0	1	0	0	1	
0	0	1	1	2	 			
0	1	0	2	3	 			
0	1	1	3	4	 			
1	0	0	4	5	 			
1	0	1	5	6	 			
1	1	0	6	7	 			
1	1	1	7	0	 			

Y 2	Y 1	Yo	#	#+	Y ₂ ⁺	\mathbf{y}_1^+	y ₀ ⁺					
0	0	0	0	1	0	0	1		_			
0	0	1	1	2	0	1	0					
0	1	0	2	3	 							
0	1	1	3	4	 							
1	0	0	4	5								
1	0	1	5	6	 							
1	1	0	6	7	 							
1	1	1	7	0	 							
/17/201	1											

Y 2	Y 1	Yo	#	#+	y ₂ ⁺	Y ₁ ⁺	Y ₀ ⁺	
0	0	0	0	1	0	0	1	
0	0	1	1	2	0	1	0	
0	1	0	2	3	0	1	1	
0	1	1	3	4	1	0	0	
1	0	0	4	5	1	0	1	
1	0	1	5	6	1	1	0	
1	1	0	6	7	1	1	1	
1	1	1	7	0	0	0	0	

36

 \mathbf{O}

1

We note that each of the 0 to 0 transitions must have required the MSB T-FF's input to have been a 0. Now, back to the MSB columns of both Present and Next state.

Y 2	Y 1	Yo	#	#+	Y ₂ ⁺	Y ₁ ⁺	y ₀ ⁺	T ₂	
0	0	0	0	1	0	0	1	0	
0	0	1	1	2	0	1	0	0	
0	1	0	2	3	0	1	1	0	
0	1	1	3	4	1	0	0		
1	0	0	4	5	1	0	1	0	
1	0	1	5	6	1	1	0	0	
1	1	0	6	7	1	1	1	0	
1	1	1	7	0	0	0	0		

We note the same thing with each of the 1 to 1 transitions. $\begin{array}{c|c|c} Q_{p} & Q_{N} & T \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & - 1 & 0 \end{array}$

Y 2	Y 1	Yo	#	#+	Y ₂ ⁺	Y ₁ ⁺	Y ₀ ⁺	T ₂	
0	0	0	0	1	0	0	1	0	
0	0	1	1	2	0	1	0	0	
0	1	0	2	3	0	1	1	0	
0	1	1	3	4	1	0	0	1	
1	0	0	4	5	1	0	1	0	
1	0	1	5	6	1	1	0	0	
1	1	0	6	7	1	1	1	0	
1	1	1	7	0	0	0	0		

Now we see that the transition from 0 to 1 required an input of 1 to have occurred. $\begin{array}{c|c|c|c|c|c|c|c|c|} Q_{p} & Q_{N} & T \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 0 \end{array}$

Y 2	Y 1	Yo	#	#+	Y ₂ ⁺	Y ₁ ⁺	y ₀ ⁺	T ₂			
0	0	0	0	1	0	0	1	0			
0	0	1	1	2	0	1	0	0			
0	1	0	2	3	0	1	1	0		 	
0	1	1	3	4	1	0	0	1			
1	0	0	4	5	1	0	1	0			
1	0	1	5	6	1	1	0	0			
1	1	0	6	7	1	1	1	0			
1	1	1	7	0	0	0	0	1			
T +}	The same can be said about the transition from 1 to 0.										

11/17/2011

QN

Ó

Qp

1 => 0

11/17/2011

With the results of the K-map, start the construction of the circuit diagram.

Lets repeat the process for the middle bit.

Y 2	Y 1	Yo	#	#*	y ₂ ⁺	Y ₁ ⁺	Y ₀ ⁺	T ₂	T ₁	
0	0	0	0	1	0	0	1	0	0	
0	0	1	1	2	0	1	0	0	 	
0	1	0	2	3	0	1	1	0	0	
0	1	1	3	4	1	0	0	1	 	
1	0	0	4	5	1	0	1	0	0	
1	0	1	5	6	1	1	0	0		
1	1	0	6	7	1	1	1	0	0	
1	1	1	7	0	0	0	0	1		

Using the same process as we did with the MSB, we note that all 0 to 0 and 1 to 1 transitions required a 0 as the input of the middle T-FF.

Y 2	Y 1	Yo	#	#+	y ₂ ⁺	Y ₁ ⁺	Y ₀ ⁺	T ₂	T ₁	
0	0	0	0	1	0	0	1	0	0	
0	0	1	1	2	0	1	0	0	1	
0	1	0	2	3	0	1	1	0	0	
0	1	1	3	4	1	0	0	1	 	
1	0	0	4	5	1	0	1	0	0	
1	0	1	5	6	1	1	0	0	1	
1	1	0	6	7	1	1	1	0	0	
1	1	1	7	0	0	0	0	1	 	

And all 0 to 1 transitions required a 1 as the input of the middle T-FF.

Y 2	Y 1	Yo	#	#*	y ₂ ⁺	Y ₁ ⁺	Y ₀ ⁺	T ₂	T ₁	
0	0	0	0	1	0	0	1	0	0	
0	0	1	1	2	0	1	0	0	1	
0	1	0	2	3	0	1	1	0	0	
0	1	1	3	4	1	0	0	1	1	
1	0	0	4	5	1	0	1	0	0	
1	0	1	5	6	1	1	0	0	1	
1	1	0	6	7	1	1	1	0	0	
1	1	1	7	0	0	0	0	1	1	

And all 1 to 0 transitions required a 1 as the input of the middle T-FF.

A 3-bit T-FF Synch Counter Design **y**₀ | **#** #+ $\mathbf{y}_1^+ \quad \mathbf{y}_0^+ \quad \mathbf{T}_2 \quad \mathbf{T}_1 \quad \mathbf{T}_1$ **y**₂⁺ **Y**1 **Y**₂ Now, K-map 1 | 1 the T1 column. 6 1 1 1 | 7 | 1 1 0 6 $\mathbf{Y}_1\mathbf{Y}_0$ **Y**₂ $T_1 = y_0$

11/17/2011

Add the new connection to the circuit.

Finally we focus on the LSB transitions.

Y 2	Y 1	Yo	#	#+	Y ₂ ⁺	Y ₁ ⁺	Y ₀ ⁺	T ₂	T ₁	
0	0	0	0	1	0	0	1	0	0	1
0	0	1	1	2	0	1	0	0	1	
0	1	0	2	3	0	1	1	0	0	1
0	1	1	3	4	1	0	0	1	1	
1	0	0	4	5	1	0	1	0	0	1
1	0	1	5	6	1	1	0	0	1	
1	1	0	6	7	1	1	1	0	0	1
1	1	1	7	0	0	0	0	1	1	

All of the 0 to 1 transitions require that a 1 be placed on the LSB T-FF's input.

Y 2	Y 1	Yo	#	#+	Y ₂ ⁺	Y ₁ ⁺	Y ₀ ⁺	T ₂	T ₁	
0	0	0	0	1	0	0	1	0	0	1
0	0	1	1	2	0	1	0	0	1	1
0	1	0	2	3	0	1	1	0	0	1
0	1	1	3	4	1	0	0	1	1	1
1	0	0	4	5	1	0	1	0	0	1
1	0	1	5	6	1	1	0	0	1	1
1	1	0	6	7	1	1	1	0	0	1
1	1	1	7	0	0	0	0	1	1	1

All of the 1 to 0 transitions require that a 1 be placed on the LSB T-FF's input.

Y 2	Y 1	Yo	#	#*	Y ₂ ⁺	Y ₁ ⁺	Y ₀ ⁺	T ₂	T ₁	To
0	0	0	0	1	0	0	1	0	0	1
0	0	1	1	2	0	1	0	0	1	1
0	1	0	2	3	0	1	1	0	0	1
0	1	1	3	4	1	0	0	1	1	1
1	0	0	4	5	1	0	1	0	0	1
1	0	1	5	6	1	1	0	0	1	1
1	1	0	6	7	1	1	1	0	0	1
1	1	1	7	0	0	0	0	1	1	1

There is no need to actually K-map the LSB column because it is obvious "by inspection" that the result would be $T_0 = 1$

11/17/2011

The Timing Diagram Based on the T_0 signal, note that T1 is the same thing as y_0 . Clk ^{'1'} **Y**2**↓ Y**1 **↓** Yo₄- $T_2 = y_1 y_0$ $T_1 = y_0$

The Timing Diagram

The only time that T_2 can be high is if both y_1 AND y_0 are high.

 A counters Modulus or 'Mod' number is the total number of states which are counted.

- A counters Modulus or 'Mod' number is the total number of states which are counted.
- For example, a 4-bit counter will be a Mod-16 counter (unless prevented from being so) since it counts from 0-15.

- A counters Modulus or 'Mod' number is the total number of states which are counted.
- For example, a 4-bit counter will be a Mod-16 counter (unless prevented from being so) since it counts from 0-15.
- We have seen this before in the form of: $2^n = 2^4 = 16$

$$(n = # of FF's)$$

 A counter does not have to be allowed to count up to its maximum possible count however.

- A counter does not have to be allowed to count up to its maximum possible count however.
- A circuit designer can add in a decoder circuit to 'decode' the output of the counter and send a reset signal (or Clear) to the counter when the desired count is reached.

 Design a Mod-5 counter using a 4bit ripple counter.

- Design a Mod-5 counter using a 4bit ripple counter.
 - First step is to understand that the counter will count from 0 to 4 and then reset on a 5.

- Design a Mod-5 counter using a 4bit ripple counter.
 - First step is to understand that the counter will count from 0 to 4 and then reset on a 5.
 - Since all states above a 5 will never be allowed to occur, the designer can use them as 'Don't Cares'.

- Design a Mod-5 counter using a 4bit ripple counter.
 - First step is to understand that the counter will count from 0 to 4 and then reset on a 5.
 - Since all states above a 5 will never be allowed to occur, the designer can use them as 'Don't Cares'.
 - The "active-level" of the reset or clear needs to be known. In this case we are using a JK FF with active-low CLR's.

- Design a Mod-5 counter using a 4bit ripple counter.
 - Create a 4-bit K-map.

- Design a Mod-5 counter using a 4bit ripple counter.
 - Create a 4-bit K-map.
 - We are looking for an active-low signal to reset the circuit then we are going to be looking for a 0 out when a count of 5 is reached.

- Design a Mod-5 counter using a 4bit ripple counter.
 - So, a O is placed in Cell 5 of the kmap.

- Design a Mod-5 counter using a 4bit ripple counter.
 - Since 6 thru 15 will never occur, we add in the don't cares

- Design a Mod-5 counter using a 4bit ripple counter.
 - Now group the answer.

 Design a Mod-5 counter using a 4bit ripple counter.

- And the answer is:

- Design a Mod-5 counter using a 4bit ripple counter.
 - The Final Circuit:

U5

- Design a Mod-5 counter using a 4bit ripple counter.
 - Note that the NAND maintains a Ouson CLR till a 5 is reached.

- The Timing diagram:
 - Shows the count from 0 4, resetting on 5 and starting over.

- The Timing diagram:
 - Note the GLITCH which quite often is a result of this type of MOD-Counter design.

Mod-n design warning

 Be aware that some counters have a delay between a count and the reset.

Mod-n design warning

- Be aware that some counters have a delay between a count and the reset.
- For instance, lab 7 in EET 315 has a circuit with a D-FF in the reset circuitry. This causes a delay of 1 clock pulse so a different value is needed when you are looking for the count value to decode.

Synchronous Circuit Disadvantage

 Because of the propagation delay of the gates which are supplying the control signals to each FF input, there can be delays which cause state errors.

Synchronous Circuit Disadvantage

- Because of the propagation delay of the gates which are supplying the control signals to each FF input, there can be delays which cause state errors.
- The problem gets even worse if the propagation delay seen by each input is different from the other inputs.

Synchronous Circuit Disadvantage

- Because of the propagation delay of the gates which are supplying the control signals to each FF input, there can be delays which cause state errors.
- The problem gets even worse if the propagation delay seen by each input is different from the other inputs.
- These problems can cause state glitches. (spurious states between the actual states)