
11/17/2011 1

EET 310
Counters

11/17/2011 2

Counters
• A counter is made up of a series of FF’s

(usually of the same type) which are
designed to pass thru a sequence of
output states. Sometimes there are one
or more inputs associated with the
counter as well.

11/17/2011 3

Counters
• A counter is made up of a series of FF’s

(usually of the same type) which are
designed to pass thru a sequence of
output states. Sometimes there are one
or more inputs associated with the
counter as well.

• The count is determined by the # of
states in the sequence with the upper
limit set by:

• where ‘n’ is the number of FF’s.

n2

11/17/2011 4

Ripple Counters
• A Ripple Counter is an Asynchronous
Counter.

11/17/2011 5

Ripple Counters
• A Ripple Counter is an Asynchronous
Counter.

• An Asynchronous Counter is one
where only the first FF is clocked
by the system clock.

11/17/2011 6

Ripple Counters
• A Ripple Counter is an Asynchronous
Counter.

• An Asynchronous Counter is one
where only the first FF is clocked
by the system clock.

• The next FF is clocked by the
output of the previous FF, and so on
and so on……

11/17/2011 7

Ripple Counter Timing

11/17/2011 8

Ripple Counter Timing

11/17/2011 9

Ripple Counter Timing

11/17/2011 10

Ripple Counter Timing

11/17/2011 11

Ripple Counter Timing

11/17/2011 12

Ripple Counter Timing

11/17/2011 13

Ripple Counter Timing

11/17/2011 14

Ripple Counter Timing

11/17/2011 15

Ripple Counter Timing

11/17/2011 16

Ripple Counter Timing

11/17/2011 17

Ripple Counter Timing

11/17/2011 18

Ripple Counter Timing

11/17/2011 19

Ripple Counter Timing

11/17/2011 20

Problem with Ripple Counters

• Ripple counters exhibit a problem at higher
frequencies of operation (no longer consider-
ing ideal devices).

11/17/2011 21

Problem with Ripple Counters

• Ripple counters exhibit a problem at higher
frequencies of operation (no longer consider-
ing ideal devices).

• Each FF has a propagation delay. The pro-
blem is that the propagation delay (PD) of
FF #1 will force FF#2 to be delayed.

11/17/2011 22

Problem with Ripple Counters

• FF #2’s PD will cause FF #3 to be delayed
even more (PD#1 + PD#2).

11/17/2011 23

Problem with Ripple Counters

• FF #2’s PD will cause FF #3 to be delayed
even more (PD#1 + PD#2).

• FF #3’s PD will cause its output to be further
delayed (PD#1 + PD#2 + PD#3)

11/17/2011 24

Problem with Ripple Counters

• FF #2’s PD will cause FF #3 to be delayed
even more (PD#1 + PD#2).

• FF #3’s PD will cause its output to be further
delayed (PD#1 + PD#2 + PD#3)

•This could cause STATE ERROR’s or Glitches.
(spurious states between the actual states)

11/17/2011 25

Synchronous Counters
• A Synchronous counter is a counter

where the clock is connected to ALL
FF’s.

11/17/2011 26

Synchronous Counters
• A Synchronous counter is a counter

where the clock is connected to ALL
FF’s.

• The design of this type of counter
usually requires the creation of a
state table.

11/17/2011 27

A 3-bit T-FF Synch Counter Design
Design a 3-bit synchronous counter using T-FF’s.

11/17/2011 28

A 3-bit T-FF Synch Counter Design
2 1 0

0 0 0
0 0 1
0 1 0
0

#
0
1
2
3
4

1 1
1 0 0
1 0 1
1 1 0

5
6

y y y

1 1 1 7

11/17/2011 29

A 3-bit T-FF Synch Counter Design
2 1 0 #

0
1
2

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

3
4
5

1 1 0

y y

6
7

y #
1

1 1 1



11/17/2011 30

A 3-bit T-FF Synch Counter Design
2 1 0

0 0 0 1
0 0 1
0 1 0
0 1 1
1 0

#
0
1
2
3
40

1 0 1
1 1

y y y #

2

5

7
0 6

1 1 1



11/17/2011 31

A 3-bit T-FF Synch Counter Design
2 1 0

0 0 0 1
0 0 1 2
0 1 0 3
0

#
0
1
2
3
4

1 1 4
1 0 0 5
1 0 1 6
1 1

5
60 7

1 0

y y y #

1 1 7



11/17/2011 32

A 3-bit T-FF Synch Counter Design
2 1 0 2 1 0

0 0 0 1
0 0 1 2
0 1 0 3
0 1 1 4
1 0

y y y # y y y
0

0 5
1 0 1

#
0
1
2
3
4
5 6

1 1 6

0 1

0 7
1 1 1 07

   

11/17/2011 33

A 3-bit T-FF Synch Counter Design
2 1 0 2 1 0y y y # y y y

0 0 1
0 1

0 0 0 1
0 0 1 2
0 1 0 3
0 1 1 4
1 0 0 5
1 0 1

#
0
1
2
3
4
5 6

1 1 0 7
1 07

0

6
1 1

   

11/17/2011 34

A 3-bit T-FF Synch Counter Design
2 1 0 2 1 0

0 0 0 1 0 0 1
0 0 1 2 0 1 0
0 1 0 3 0 1 1
0 1 1 4 1 0 0
1 0 0 5 1 0 1
1 0 1 6 1 1

y y y # # y

0
1 1

y y
0
1
2
3
4
5
60 7 1 1 1

1 1 1 7 0 0 0 0

   

11/17/2011 35

A 3-bit T-FF Synch Counter Design
22 1 0 2 1 0

0 0 1 0 1
0 0 1 2 0 1 0
0 1 0 3 0 1 1
0 1 1 4 1 0 0
1 0 0 5 1 0 1
1 0 1

y y y # # y y y
0
1
2
3
4
5 6 1 1 0

1 1 0 7 1 1 1
1

T

1

0 0

1
6
7 0 0 0 0

   

We now need to
focus on the design
of the T FF’s. We
start with the
MSB T-FF.

11/17/2011 36

A 3-bit T-FF Synch Counter Design
22 1 0 2 1 0

0 0 1 0 1
0 0 1 2 0 1 0
0 1 0 3 0 1 1
0 1 1 4 1 0 0
1 0 0 5 1 0 1
1 0 1

y y y # # y y y
0
1
2
3
4
5 6 1 1 0

1 1 0 7 1 1 1
1

T

1

0 0

1
6
7 0 0 0 0

   

p N

0 0 0
0 1 1
1

T Q Q

0 1
1 1 0

It might help now
to remember what
the T-FF’s truth
table looks like.

11/17/2011 37

A 3-bit T-FF Synch Counter Design
22 1 0 2 1 0

0 0 1 0 1
0 0 1 2 0 1 0
0 1 0 3 0 1 1
0 1 1 4 1 0 0
1 0 0 5 1 0 1
1 0 1

y y y # # y y y
0
1
2
3
4
5 6 1 1 0

1 1 0 7 1 1 1
1

T

1

0 0

1
6
7 0 0 0 0

   

Or better yet, lets
remodel the truth
table into some-
thing called the
Transition Table.

p N

0 0 0
0 1 1
1

Q Q T

0 1
1 1 0

11/17/2011 38

A 3-bit T-FF Synch Counter Design
22 1 0 2 1 0

0 0 1 0 1
0 0 1 2 0 1 0
0 1 0 3 0 1 1
0 1 1 4 1 0 0
1 0 0 5 1 0 1
1 0 1

y y y # # y y y
0
1
2
3
4
5 6 1 1 0

1 1 0 7 1 1 1
1

T

1

0 0

1
6
7 0 0 0 0

   

Or better yet, lets
remodel the truth
table into some-
thing called the
Transition Table.

p N

0 0 0
0 1 1
1

Q Q T

0 1
1 1 0

The T-FF Transition Table
tells us that in order for a
transition from a present
state of 0 to a next state
of 0, the T-FF’s input must
have been a 0.

11/17/2011 39

A 3-bit T-FF Synch Counter Design
22 1 0 2 1 0

0 0 1 0 1
0 0 1 2 0 1 0
0 1 0 3 0 1 1
0 1 1 4 1 0 0
1 0 0 5 1 0 1
1 0 1

y y y # # y y y
0
1
2
3
4
5 6 1 1 0

1 1 0 7 1 1 1
1

T

1

0 0

1
6
7 0 0 0 0

   

Or better yet, lets
remodel the truth
table into some-
thing called the
Transition Table.

Or that in order to have a
Transition from 0 to 1 or
from 1 to 0, the T-FF’s input
must have been a 1.

p N

0 0 0
0 1 1
1

Q Q T

0 1
1 1 0

11/17/2011 40

A 3-bit T-FF Synch Counter Design
22 1 0 2 1 0

0 0 1 0 1
0 0 1 2 0 1 0
0 1 0 3 0 1 1
0 1 1 4 1 0 0
1 0 0 5 1 0 1
1 0 1

y y y # # y y y
0
1
2
3
4
5 6 1 1 0

1 1 0 7 1 1 1
1

T

1

0 0

1
6
7 0 0 0 0

   

Or better yet, lets
remodel the truth
table into some-
thing called the
Transition Table.

And finally, in order to have a
Transition from 1 to 1, the
T-FF’s input must have
been a 0.

p N

0 0 0
0 1 1
1

Q Q T

0 1
1 1 0

11/17/2011 41

A 3-bit T-FF Synch Counter Design
2 1 0 2 1 0 2T
0 0 0
0 0 0
0 0

0 0 1 0 1
0 1 2 1 0
1 0 3 1 1

0 1 1 4 1 0 0
1 0 0 5 1 0 1
1 0 1 6 1

y y y # # y y y
0
1
2
3
4
5
6

1 0
1 1 0 7 1 1 1
1 1 1 0 0 0

0

07

   

Now, back to the
MSB columns of
both Present and
Next state.

We note that each of the 0
to 0 transitions must have
required the MSB T-FF’s
input to have been a 0.

p N

0 0 0
0 1 1
1

Q Q T

0 1
1 1 0

11/17/2011 42

A 3-bit T-FF Synch Counter Design
2 1 0 2 1 0 2

0 0 0 1 0 0 1
0 0 1 2 0 1 0
0 1 0 3 0 1 1
0 1 1 4 1 0 0

0 0 5

T
0
0
0

1 1 0
1

0 1
0 1 6 1 0

y y y # # y y y

1 0

0
1
2
3
4
5
6 7 1 1

1 0
1 1 0
1 1 1 7 0 0 0 0

   

We note the same thing with
each of the 1 to 1
transitions.

p N

0 0 0
0 1 1
1

Q Q T

0 1
1 1 0

11/17/2011 43

A 3-bit T-FF Synch Counter Design
2 1 0 2 1 20

0 0 0 1 0 0 1 0
0 0 1 2 0 1 0 0
0 1 0 3 0 1 1 0

1 1 4 0 0
1 0 0 5 1 0 1 0
1

y y y # # y y y
0
1
2
3
4
50 1 6 1 1 0 0

1 1 0 7 1 1 1 0

T

0 1 1

1 1 1
6
7 0 0 0 0

   

Now we see that the
transition from 0 to 1
required an input of 1 to
have occurred.

p N

0 0 0
0 1 1
1

Q Q T

0 1
1 1 0

11/17/2011 44

A 3-bit T-FF Synch Counter Design
2 1 0 2 1 20

0 0 0 1 0 0 1 0
0 0 1 2 0 1 0 0
0 1 0 3 0 1 1 0
0 1 1 4 1 0 0 1
1 0 0 5 1

y y y # # y y y
0
1
2
3
4
5

0 1 0
1 0 1 6 1 1 0 0
1 1 0 7 1 1 1 0

1 1

T

1 0 1
6

0 07 0

   

The same can be said about
the transition from 1 to 0 .

p N

0 0 0
0 1 1
1

Q Q T

0 1
1 1 0

11/17/2011 45

A 3-bit T-FF Synch Counter Design
2 1 0 2 1 20

0 0 0 1 0 0 1 0
0 0 1 2 0 1 0 0
0 1 0 3 0 1 1 0
0 1 1 4 1 0 0 1
1 0 0 5 1

y y y # # y y y
0
1
2
3
4
5

0 1 0
1 0 1 6 1 1 0 0
1 1 0 7 1 1 1 0

1 1

T

1 0 1
6

0 07 0

   

Now, K-map
the T2 column.

31

64

00 01 11 10

0

1

Y1Y0

1

1

2 1 0T y y

0 2

5 7

Y2

11/17/2011 46

A 3-bit T-FF Synch Counter Design

With the results
of the K-map,
start the
construction of
the circuit
diagram.

T0

Q

0Q

Clkclock

QClk

QClk

1Q

2Q

T1

T2

0y

1y

1 0y y

11/17/2011 47

A 3-bit T-FF Synch Counter Design
2 1 0 2 1 20 1

0 0 0 1 0 0 1 0
0 0 1 2 0 1 0 0
0 1 0 3 0 1 1 0
0 1 1 4 1 0 0 1
1 0 0 5 1 0 1 0
1 0 1 6 1 1 0

y y y # # y y

0
1 1 0 7

T T

1 1

y
0
1
2
3
4
5

1 0
1 1

6
71 0 0 0 0 1

   

Lets repeat
the process
for the
middle bit.

11/17/2011 48

A 3-bit T-FF Synch Counter Design
2 1 0 2 1 0 2 1

0 0 1 0 1 0
0 0 1 2 0 1 0 0
0 0 3 0 1 0

y y y # # y y y
0
1
2
3
4

T T
0 0 0

1 1 0

0 0 0
0 1 1 4 1 0 0 1
1 0 5 1 1 0
1 0 1 6 1 1 0 0
1 0 7 11 1 01 0
1 1 1

5
6
7 0 0 0 0 1

   

Using the same process as we
did with the MSB, we note that
all 0 to 0 and 1 to 1 transitions
required a 0 as the input of
the middle T-FF.

11/17/2011 49

A 3-bit T-FF Synch Counter Design
2 1 0 2 1 20 1

0 0 0 1 0 0 1 0 0
0 1 2 0 0 0
0 1 0 3 0 1 1 0 0
0 1 1 4 1 0 0 1
1 0 0 5

T T

0 1 1

0
1 0 1 0 0

1 1 6 1 0 01 1
1 1

y y y # # y y y
0
1
2
3
4

0 7 1 1 1 0 0
1 1 1

5
6
7 0 0 0 0 1

   

And all 0 to 1 transitions
required a 1 as the input of
the middle T-FF.

11/17/2011 50

A 3-bit T-FF Synch Counter Design
22 1 1 10 2 0

0 0 0 1 0 0 1 0 0
0 0 1 2 0 1 0 0 1
0 1 0 3 0 1 1 0 0
0 1 4 1 0 1
1 0 0 5 1 0 1 0 0
1 0 1 6 1 1 0

y y y # # y

0 1
1 1 0

y y
0
1
2
3
4
5
6 7 1 1 1 0 0

1

T T

1 0 1

1 1 0 0 0 17 0 1

   

And all 1 to 0 transitions
required a 1 as the input of
the middle T-FF.

11/17/2011 51

A 3-bit T-FF Synch Counter Design
22 1 1 10 2 0

0 0 0 1 0 0 1 0 0
0 0 1 2 0 1 0 0 1
0 1 0 3 0 1 1 0 0
0 1 1 4 1 0 0 1 1
1 0 0 5 1 0 1 0 0
1 0 1 6 1 1 0 0 1
1

y y y # # y y y

1 0 7 1 1 1

T T

0 0

0
1
2

1

3
4
5
6

1 1 0 0 1 17 0 0

   

Now, K-map
the T1 column.

1 0T y

11/17/2011 52

A 3-bit T-FF Synch Counter Design

Add the new
connection to
the circuit.

Q

0Q

Q

Q

1Q

2Q

0y

1y

1 0y y

2y

11/17/2011 53

A 3-bit T-FF Synch Counter Design
2 1 0 2 1 0 2 1 0

0 0 0 1 0 0 1 0 0
0 0 1 2 0 1 0 0 1
0 1 0 3 0 1 1 0 0
0 1 1 4 1 0 0 1 1
1 0 0 5 1

y y y # # y y y
0
1
2
3
4
5

0 1 0 0
1 0 1 6 1 1 0 0 1
1 1 0 7 1 1 1 0 0
1 1 1

6

T T T

7 0 0 0 0 1 1

   

Finally we focus
on the LSB
transitions.

11/17/2011 54

A 3-bit T-FF Synch Counter Design
2 1 0 2 2 1 01 0

0 0 1 0 0 0 0
0 0 1 2 0 1 0 0 1
0 1 3 0 1 0 0
0 1 1 4 1 0 0 1 1
1 0 5

T T T
0 1 1

0 1 1

0 1 11 0 0 0
1 0 1 6 1 1 0 0 1
1 1 0

y y y # # y y y
0
1
2
3
4
5
6 1 17 1 1 0 0

1 71 1 0 0 0 0 1 1

   

All of the 0 to 1 transitions
require that a 1 be placed on
the LSB T-FF’s input.

11/17/2011 55

A 3-bit T-FF Synch Counter Design
2 1 0 2 2 1 01 0

0 0 0 1 0 0 1 0 0 1
0 0 2 0 1 0 1
0 1 0 3 0 1 1 0 0 1
0 1 4 1 0 1 1
1 0 0 5 1 0 1 0 0 1
1 0 6 1

y

1

y y # # y y

0 1

T T T

1 0 1

1 0 1

1 0 1
1 1 0 7 1 1 1 0 0 1

y
0
1
2
3
4

1

5
6
71 1 0 0 0 1 10 1

   

All of the 1 to 0 transitions
require that a 1 be placed on
the LSB T-FF’s input.

11/17/2011 56

A 3-bit T-FF Synch Counter Design
2 1 0 2 2 1 01 0

0 0 0 1 0 0 1 0 0 1
0 0 2 0 1 0 1
0 1 0 3 0 1 1 0 0 1
0 1 4 1 0 1 1
1 0 0 5 1 0 1 0 0 1
1 0 6 1

y

1

y y # # y y

0 1

T T T

1 0 1

1 0 1

1 0 1
1 1 0 7 1 1 1 0 0 1

y
0
1
2
3
4

1

5
6
71 1 0 0 0 1 10 1

   

There is no need to actually K-map the LSB
column because it is obvious “by inspection”
that the result would be T0 = 1

11/17/2011 57

The Circuit

Q

0Q

Q

Q

1Q

2Q

0y

1y

1 0y y

2y

11/17/2011 58

The Timing Diagram

11/17/2011 59

The Timing Diagram
Add in the T0=1 line and the initial
states of 111

11/17/2011 60

The Timing Diagram
Based on the T0 signal, note that T1 is
the same thing as y0.

11/17/2011 61

The Timing Diagram
Based on y0 add in the T1 signal.

11/17/2011 62

The Timing Diagram
Since y1 is solely dependent on T1, we
can now create the entire y1 signal.

11/17/2011 63

The Timing Diagram
Since y1 is solely dependent on T1, we
can now create the entire y1 signal.

11/17/2011 64

The Timing Diagram
Since y1 is solely dependent on T1, we
can now create the entire y1 signal.

11/17/2011 65

The Timing Diagram
Since y1 is solely dependent on T1, we
can now create the entire y1 signal.

11/17/2011 66

The Timing Diagram
Since y1 is solely dependent on T1, we
can now create the entire y1 signal.

11/17/2011 67

The Timing Diagram
Since y1 is solely dependent on T1, we
can now create the entire y1 signal.

11/17/2011 68

The Timing Diagram
Since y1 is solely dependent on T1, we
can now create the entire y1 signal.

11/17/2011 69

The Timing Diagram
Since y1 is solely dependent on T1, we
can now create the entire y1 signal.

11/17/2011 70

The Timing Diagram
Since y1 is solely dependent on T1, we
can now create the entire y1 signal.

11/17/2011 71

The Timing Diagram
Since y1 and y0 are known, we can now
determine the T2 signal.

Clk
‘0’
‘1’

y0

y1

y2

7
T0

T1=y0

T2=y1y0

The only time that T2 can be high is if
both y1 AND y0 are high.

11/17/2011 72

The Timing Diagram
With T2 known, we can now determine y2.

On the 1st trigger T2 was a 1 so y2 toggles.
It stays low for 3 clock cycles because T2
is low during that time.

11/17/2011 73

The Timing Diagram
With T2 known, we can now determine y2.

On the 5th trigger T2 was a 1 again so y2
toggles high. Again it stays there for.
3 clock cycles because T2is low during
that time.

11/17/2011 74

The Timing Diagram
With T2 known, we can now determine y2.

Finally, T2 is high again and y2 toggles low
so the state goes back to 000.

11/17/2011 75

The ‘Mod-n’ Counter
• A counters Modulus or ‘Mod’ number
is the total number of states which
are counted.

11/17/2011 76

The ‘Mod-n’ Counter
• A counters Modulus or ‘Mod’ number
is the total number of states which
are counted.

• For example, a 4-bit counter will be
a Mod-16 counter (unless prevented
from being so) since it counts from
0-15.

11/17/2011 77

The ‘Mod-n’ Counter
• A counters Modulus or ‘Mod’ number
is the total number of states which
are counted.

• For example, a 4-bit counter will be
a Mod-16 counter (unless prevented
from being so) since it counts from
0-15.

• We have seen this before in the
form of:

 

n 42 2 16
n # of FF's

 



11/17/2011 78

The ‘Mod-n’ Counter
• A counter does not have to be
allowed to count up to its maximum
possible count however.

11/17/2011 79

The ‘Mod-n’ Counter
• A counter does not have to be
allowed to count up to its maximum
possible count however.

• A circuit designer can add in a
decoder circuit to ‘decode’ the
output of the counter and send a
reset signal (or Clear) to the
counter when the desired count is
reached.

11/17/2011 80

Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.

11/17/2011 81

Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– First step is to understand that the
counter will count from 0 to 4 and then
reset on a 5.

11/17/2011 82

Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– First step is to understand that the
counter will count from 0 to 4 and then
reset on a 5.

– Since all states above a 5 will never be
allowed to occur, the designer can use
them as ‘Don’t Cares’.

11/17/2011 83

Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– First step is to understand that the
counter will count from 0 to 4 and then
reset on a 5.

– Since all states above a 5 will never be
allowed to occur, the designer can use
them as ‘Don’t Cares’.

– The “active-level” of the reset or
clear needs to be known. In this case
we are using a JK FF with active-low
CLR’s.

11/17/2011 84

Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– Create a 4-bit K-map.

11/17/2011 85

Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– Create a 4-bit K-map.
– We are looking for an active-low signal
to reset the circuit then we are going
to be looking for a 0 out when a count
of 5 is reached.

11/17/2011 86

Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– So, a 0 is placed in Cell 5 of the k-
map.

3 20 1

7 64 5

00 01 11 10

15 1412 13

11 108 9

00

01

11

10

AB

0

CD

11/17/2011 87

Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– Since 6 thru 15 will never occur, we
add in the don’t cares

3 20 1

7 64 5

00 01 11 10

15 1412 13

11 108 9

00

01

11

10

AB

0

CD

X

X

X

XX

X

X

X

XX

11/17/2011 88

Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– Now group the answer.

3 20 1

7 64 5

00 01 11 10

15 1412 13

11 108 9

00

01

11

10

AB

0

CD

X

X

X

XX

X

X

X

XX

11/17/2011 89

Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– And the answer is:

3 20 1

7 64 5

00 01 11 10

15 1412 13

11 108 9

00

01

11

10

AB

0

CD

X

X

X

XX

X

X

X

XX

 f A,B,C,D B D

BD

 



11/17/2011 90

Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– The Final Circuit:

U1A

74LS76N

1J4 1Q 15

~1Q 141K16

~1CLR

3

1CLK1

~1PR

2 U1B

74LS76N

1J4 1Q 15

~1Q 141K16

~1CLR

3

1CLK1

~1PR

2 U2A

74LS76N

1J4 1Q 15

~1Q 141K16

~1CLR

3

1CLK1

~1PR

2

VCC
5V

U5

V1
10 Hz
5 V

U3B

74LS76N

1J4 1Q 15

~1Q 141K16

~1CLR

3

1CLK1

~1PR

2

U4

NAND2

X3

 2.5 V

1

VCC

2

0

6

3 5
4

D
B

11/17/2011 91

Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– Note that the NAND maintains a 0 on
CLR till a 5 is reached.

U1A

74LS76N

1J4 1Q 15

~1Q 141K16

~1CLR

3

1CLK1

~1PR

2 U1B

74LS76N

1J4 1Q 15

~1Q 141K16

~1CLR

3

1CLK1

~1PR

2 U2A

74LS76N

1J4 1Q 15

~1Q 141K16

~1CLR

3

1CLK1

~1PR

2

VCC
5V

U5

V1
10 Hz
5 V

U3B

74LS76N

1J4 1Q 15

~1Q 141K16

~1CLR

3

1CLK1

~1PR

2

U4

NAND2

X3

 2.5 V

1

VCC

2

0

6

3 5
4

D
B

11/17/2011 92

Mod-5 example
• The Timing diagram:

– Shows the count from 0 – 4, resetting
on 5 and starting over.

11/17/2011 93

Mod-5 example
• The Timing diagram:

– Note the GLITCH which quite often is
a result of this type of MOD-Counter
design.

11/17/2011 94

Mod-n design warning
• Be aware that some counters have a
delay between a count and the
reset.

11/17/2011 95

Mod-n design warning
• Be aware that some counters have a
delay between a count and the
reset.

• For instance, lab 7 in EET 315 has
a circuit with a D-FF in the reset
circuitry. This causes a delay of 1
clock pulse so a different value is
needed when you are looking for the
count value to decode.

11/17/2011 96

Synchronous Circuit Disadvantage

• Because of the propagation delay of
the gates which are supplying the
control signals to each FF input, there
can be delays which cause state
errors.

11/17/2011 97

Synchronous Circuit Disadvantage

• Because of the propagation delay of
the gates which are supplying the
control signals to each FF input, there
can be delays which cause state
errors.

• The problem gets even worse if the
propagation delay seen by each input
is different from the other inputs.

11/17/2011 98

Synchronous Circuit Disadvantage
• Because of the propagation delay of

the gates which are supplying the
control signals to each FF input, there
can be delays which cause state
errors.

• The problem gets even worse if the
propagation delay seen by each input
is different from the other inputs.

• These problems can cause state
glitches. (spurious states between
the actual states)

