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Counters
• A counter is made up of a series of FF’s 

(usually of the same type) which are 
designed to pass thru a sequence of 
output states.  Sometimes there are one 
or more inputs associated with the 
counter as well.
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Counters
• A counter is made up of a series of FF’s 

(usually of the same type) which are 
designed to pass thru a sequence of 
output states.  Sometimes there are one 
or more inputs associated with the 
counter as well.

• The count is determined by the # of 
states in the sequence with the upper 
limit set by:

• where ‘n’ is the number of FF’s.

n2
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Ripple Counters
• A Ripple Counter is an Asynchronous 
Counter.
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by the system clock.  
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Ripple Counters
• A Ripple Counter is an Asynchronous 
Counter.

• An Asynchronous Counter is one 
where only the first FF is clocked 
by the system clock.  

• The next FF is clocked by the 
output of the previous FF, and so on 
and so on……
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Ripple Counter Timing
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Problem with Ripple Counters

• Ripple counters exhibit a problem at higher
frequencies of operation (no longer consider-
ing ideal devices).
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Problem with Ripple Counters

• Ripple counters exhibit a problem at higher
frequencies of operation (no longer consider-
ing ideal devices).

• Each FF has a propagation delay.  The pro-
blem is that the propagation delay (PD) of
FF #1 will force FF#2 to be delayed.   
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Problem with Ripple Counters

• FF #2’s PD will cause FF #3 to be delayed
even more (PD#1 + PD#2).
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Problem with Ripple Counters

• FF #2’s PD will cause FF #3 to be delayed
even more (PD#1 + PD#2).

• FF #3’s PD will cause its output to be further
delayed (PD#1 + PD#2 + PD#3)

•This could cause STATE ERROR’s or Glitches.
(spurious states between the actual states)
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Synchronous Counters
• A Synchronous counter is a counter 

where the clock is connected to ALL 
FF’s.
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Synchronous Counters
• A Synchronous counter is a counter 

where the clock is connected to ALL 
FF’s.

• The design of this type of counter 
usually requires the creation of a 
state table.
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A 3-bit T-FF Synch Counter Design
Design a 3-bit synchronous counter using T-FF’s.
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A 3-bit T-FF Synch Counter Design
2 1 0

0 0 0
0 0 1
0 1 0
0

#
0
1
2
3
4

1 1
1 0 0
1 0 1
1 1 0

5
6

y y y

1 1 1 7
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A 3-bit T-FF Synch Counter Design
2 1 0 #

0
1
2

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

3
4
5

1 1 0

y y

6
7

y #
1

1 1 1


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A 3-bit T-FF Synch Counter Design
2 1 0

0 0 0 1
0 0 1
0 1 0
0 1 1
1 0

#
0
1
2
3
40

1 0 1
1 1

y y y #

2

5

7
0 6

1 1 1


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A 3-bit T-FF Synch Counter Design
2 1 0

0 0 0 1
0 0 1 2
0 1 0 3
0

#
0
1
2
3
4

1 1 4
1 0 0 5
1 0 1 6
1 1

5
60 7

1 0

y y y #

1 1 7


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A 3-bit T-FF Synch Counter Design
2 1 0 2 1 0

0 0 0 1
0 0 1 2
0 1 0 3
0 1 1 4
1 0

y y y # y y y
0

0 5
1 0 1

#
0
1
2
3
4
5 6

1 1 6

0 1

0 7
1 1 1 07

   
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A 3-bit T-FF Synch Counter Design
2 1 0 2 1 0y y y # y y y

0 0 1
0 1

0 0 0 1
0 0 1 2
0 1 0 3
0 1 1 4
1 0 0 5
1 0 1

#
0
1
2
3
4
5 6

1 1 0 7
1 07

0

6
1 1

   



11/17/2011 34

A 3-bit T-FF Synch Counter Design
2 1 0 2 1 0

0 0 0 1 0 0 1
0 0 1 2 0 1 0
0 1 0 3 0 1 1
0 1 1 4 1 0 0
1 0 0 5 1 0 1
1 0 1 6 1 1

y y y # # y

0
1 1

y y
0
1
2
3
4
5
60 7 1 1 1

1 1 1 7 0 0 0 0

   
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A 3-bit T-FF Synch Counter Design
22 1 0 2 1 0

0 0 1 0 1
0 0 1 2 0 1 0
0 1 0 3 0 1 1
0 1 1 4 1 0 0
1 0 0 5 1 0 1
1 0 1

y y y # # y y y
0
1
2
3
4
5 6 1 1 0

1 1 0 7 1 1 1
1

T

1

0 0

1
6
7 0 0 0 0

   

We now need to 
focus on the design 
of the T FF’s.  We 
start with the
MSB T-FF.
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A 3-bit T-FF Synch Counter Design
22 1 0 2 1 0

0 0 1 0 1
0 0 1 2 0 1 0
0 1 0 3 0 1 1
0 1 1 4 1 0 0
1 0 0 5 1 0 1
1 0 1

y y y # # y y y
0
1
2
3
4
5 6 1 1 0

1 1 0 7 1 1 1
1

T

1

0 0

1
6
7 0 0 0 0

   

p N

0 0 0
0 1 1
1

T Q Q

0 1
1 1 0

It might help now 
to remember what 
the T-FF’s truth 
table looks like.
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A 3-bit T-FF Synch Counter Design
22 1 0 2 1 0

0 0 1 0 1
0 0 1 2 0 1 0
0 1 0 3 0 1 1
0 1 1 4 1 0 0
1 0 0 5 1 0 1
1 0 1

y y y # # y y y
0
1
2
3
4
5 6 1 1 0

1 1 0 7 1 1 1
1

T

1

0 0

1
6
7 0 0 0 0

   

Or better yet, lets 
remodel the truth 
table into some-
thing called the 
Transition Table.

p N

0 0 0
0 1 1
1

Q Q T

0 1
1 1 0
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A 3-bit T-FF Synch Counter Design
22 1 0 2 1 0

0 0 1 0 1
0 0 1 2 0 1 0
0 1 0 3 0 1 1
0 1 1 4 1 0 0
1 0 0 5 1 0 1
1 0 1

y y y # # y y y
0
1
2
3
4
5 6 1 1 0

1 1 0 7 1 1 1
1

T

1

0 0

1
6
7 0 0 0 0

   

Or better yet, lets 
remodel the truth 
table into some-
thing called the 
Transition Table.

p N

0 0 0
0 1 1
1

Q Q T

0 1
1 1 0

The T-FF Transition Table
tells us that in order for a 
transition from a present 
state of 0 to a next state 
of 0,  the T-FF’s input must 
have been a 0.
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A 3-bit T-FF Synch Counter Design
22 1 0 2 1 0

0 0 1 0 1
0 0 1 2 0 1 0
0 1 0 3 0 1 1
0 1 1 4 1 0 0
1 0 0 5 1 0 1
1 0 1

y y y # # y y y
0
1
2
3
4
5 6 1 1 0

1 1 0 7 1 1 1
1

T

1

0 0

1
6
7 0 0 0 0

   

Or better yet, lets 
remodel the truth 
table into some-
thing called the 
Transition Table.

Or that in order to have a 
Transition from 0 to 1 or 
from 1 to 0, the T-FF’s input 
must have been a 1.

p N

0 0 0
0 1 1
1

Q Q T

0 1
1 1 0
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A 3-bit T-FF Synch Counter Design
22 1 0 2 1 0

0 0 1 0 1
0 0 1 2 0 1 0
0 1 0 3 0 1 1
0 1 1 4 1 0 0
1 0 0 5 1 0 1
1 0 1

y y y # # y y y
0
1
2
3
4
5 6 1 1 0

1 1 0 7 1 1 1
1

T

1

0 0

1
6
7 0 0 0 0

   

Or better yet, lets 
remodel the truth 
table into some-
thing called the 
Transition Table.

And finally, in order to have a  
Transition from 1 to 1, the 
T-FF’s input must have 
been a 0.

p N

0 0 0
0 1 1
1

Q Q T

0 1
1 1 0
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A 3-bit T-FF Synch Counter Design
2 1 0 2 1 0 2T
0 0 0
0 0 0
0 0

0 0 1 0 1
0 1 2 1 0
1 0 3 1 1

0 1 1 4 1 0 0
1 0 0 5 1 0 1
1 0 1 6 1

y y y # # y y y
0
1
2
3
4
5
6

1 0
1 1 0 7 1 1 1
1 1 1 0 0 0

0

07

   

Now, back to the 
MSB columns of 
both Present and 
Next state.

We note that each of the 0
to 0 transitions must have 
required the MSB T-FF’s
input to have been a 0.

p N

0 0 0
0 1 1
1

Q Q T

0 1
1 1 0
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A 3-bit T-FF Synch Counter Design
2 1 0 2 1 0 2

0 0 0 1 0 0 1
0 0 1 2 0 1 0
0 1 0 3 0 1 1
0 1 1 4 1 0 0

0 0 5

T
0
0
0

1 1 0
1

0 1
0 1 6 1 0

y y y # # y y y

1 0

0
1
2
3
4
5
6 7 1 1

1 0
1 1 0
1 1 1 7 0 0 0 0

   

We note the same thing with  
each of the 1 to 1
transitions.

p N

0 0 0
0 1 1
1

Q Q T

0 1
1 1 0
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A 3-bit T-FF Synch Counter Design
2 1 0 2 1 20

0 0 0 1 0 0 1 0
0 0 1 2 0 1 0 0
0 1 0 3 0 1 1 0

1 1 4 0 0
1 0 0 5 1 0 1 0
1

y y y # # y y y
0
1
2
3
4
50 1 6 1 1 0 0

1 1 0 7 1 1 1 0

T

0 1 1

1 1 1
6
7 0 0 0 0

   

Now we see that the 
transition from 0 to 1
required an input of 1 to 
have occurred.

p N

0 0 0
0 1 1
1

Q Q T

0 1
1 1 0
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A 3-bit T-FF Synch Counter Design
2 1 0 2 1 20

0 0 0 1 0 0 1 0
0 0 1 2 0 1 0 0
0 1 0 3 0 1 1 0
0 1 1 4 1 0 0 1
1 0 0 5 1

y y y # # y y y
0
1
2
3
4
5

0 1 0
1 0 1 6 1 1 0 0
1 1 0 7 1 1 1 0

1 1

T

1 0 1
6

0 07 0

   

The same can be said about 
the transition from 1 to 0 .

p N

0 0 0
0 1 1
1

Q Q T

0 1
1 1 0
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A 3-bit T-FF Synch Counter Design
2 1 0 2 1 20

0 0 0 1 0 0 1 0
0 0 1 2 0 1 0 0
0 1 0 3 0 1 1 0
0 1 1 4 1 0 0 1
1 0 0 5 1

y y y # # y y y
0
1
2
3
4
5

0 1 0
1 0 1 6 1 1 0 0
1 1 0 7 1 1 1 0

1 1

T

1 0 1
6

0 07 0

   

Now, K-map
the T2 column.

31

64

00 01 11 10

0

1

Y1Y0

1

1

2 1 0T y y

0 2

5 7

Y2



11/17/2011 46

A 3-bit T-FF Synch Counter Design

With the results 
of the K-map, 
start the 
construction of 
the circuit 
diagram.

T0

Q

0Q

Clkclock

QClk

QClk

1Q

2Q

T1

T2

0y

1y

1 0y y



11/17/2011 47

A 3-bit T-FF Synch Counter Design
2 1 0 2 1 20 1

0 0 0 1 0 0 1 0
0 0 1 2 0 1 0 0
0 1 0 3 0 1 1 0
0 1 1 4 1 0 0 1
1 0 0 5 1 0 1 0
1 0 1 6 1 1 0

y y y # # y y

0
1 1 0 7

T T

1 1

y
0
1
2
3
4
5

1 0
1 1

6
71 0 0 0 0 1

   

Lets repeat 
the process 
for the 
middle bit.



11/17/2011 48

A 3-bit T-FF Synch Counter Design
2 1 0 2 1 0 2 1

0 0 1 0 1 0
0 0 1 2 0 1 0 0
0 0 3 0 1 0

y y y # # y y y
0
1
2
3
4

T T
0 0 0

1 1 0

0 0 0
0 1 1 4 1 0 0 1
1 0 5 1 1 0
1 0 1 6 1 1 0 0
1 0 7 11 1 01 0
1 1 1

5
6
7 0 0 0 0 1

   

Using the same process as we 
did with the MSB, we note that 
all 0 to 0 and 1 to 1 transitions 
required a 0 as the input of 
the middle T-FF.
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A 3-bit T-FF Synch Counter Design
2 1 0 2 1 20 1

0 0 0 1 0 0 1 0 0
0 1 2 0 0 0
0 1 0 3 0 1 1 0 0
0 1 1 4 1 0 0 1
1 0 0 5

T T

0 1 1

0
1 0 1 0 0

1 1 6 1 0 01 1
1 1

y y y # # y y y
0
1
2
3
4

0 7 1 1 1 0 0
1 1 1

5
6
7 0 0 0 0 1

   

And all 0 to 1 transitions 
required a 1 as the input of 
the middle T-FF.
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A 3-bit T-FF Synch Counter Design
22 1 1 10 2 0

0 0 0 1 0 0 1 0 0
0 0 1 2 0 1 0 0 1
0 1 0 3 0 1 1 0 0
0 1 4 1 0 1
1 0 0 5 1 0 1 0 0
1 0 1 6 1 1 0

y y y # # y

0 1
1 1 0

y y
0
1
2
3
4
5
6 7 1 1 1 0 0

1

T T

1 0 1

1 1 0 0 0 17 0 1

   

And all 1 to 0 transitions 
required a 1 as the input of 
the middle T-FF.
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A 3-bit T-FF Synch Counter Design
22 1 1 10 2 0

0 0 0 1 0 0 1 0 0
0 0 1 2 0 1 0 0 1
0 1 0 3 0 1 1 0 0
0 1 1 4 1 0 0 1 1
1 0 0 5 1 0 1 0 0
1 0 1 6 1 1 0 0 1
1

y y y # # y y y

1 0 7 1 1 1

T T

0 0

0
1
2

1

3
4
5
6

1 1 0 0 1 17 0 0

   

Now, K-map
the T1 column.

1 0T y
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A 3-bit T-FF Synch Counter Design

Add the new 
connection to 
the circuit.

Q

0Q

Q

Q

1Q

2Q

0y

1y

1 0y y

2y
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A 3-bit T-FF Synch Counter Design
2 1 0 2 1 0 2 1 0

0 0 0 1 0 0 1 0 0
0 0 1 2 0 1 0 0 1
0 1 0 3 0 1 1 0 0
0 1 1 4 1 0 0 1 1
1 0 0 5 1

y y y # # y y y
0
1
2
3
4
5

0 1 0 0
1 0 1 6 1 1 0 0 1
1 1 0 7 1 1 1 0 0
1 1 1

6

T T T

7 0 0 0 0 1 1

   

Finally we focus 
on the LSB 
transitions.
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A 3-bit T-FF Synch Counter Design
2 1 0 2 2 1 01 0

0 0 1 0 0 0 0
0 0 1 2 0 1 0 0 1
0 1 3 0 1 0 0
0 1 1 4 1 0 0 1 1
1 0 5

T T T
0 1 1

0 1 1

0 1 11 0 0 0
1 0 1 6 1 1 0 0 1
1 1 0

y y y # # y y y
0
1
2
3
4
5
6 1 17 1 1 0 0

1 71 1 0 0 0 0 1 1

   

All of the 0 to 1 transitions 
require that a 1 be placed on 
the LSB T-FF’s input.
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A 3-bit T-FF Synch Counter Design
2 1 0 2 2 1 01 0

0 0 0 1 0 0 1 0 0 1
0 0 2 0 1 0 1
0 1 0 3 0 1 1 0 0 1
0 1 4 1 0 1 1
1 0 0 5 1 0 1 0 0 1
1 0 6 1

y

1

y y # # y y

0 1

T T T

1 0 1

1 0 1

1 0 1
1 1 0 7 1 1 1 0 0 1

y
0
1
2
3
4

1

5
6
71 1 0 0 0 1 10 1

   

All of the 1 to 0 transitions 
require that a 1 be placed on 
the LSB T-FF’s input.
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A 3-bit T-FF Synch Counter Design
2 1 0 2 2 1 01 0

0 0 0 1 0 0 1 0 0 1
0 0 2 0 1 0 1
0 1 0 3 0 1 1 0 0 1
0 1 4 1 0 1 1
1 0 0 5 1 0 1 0 0 1
1 0 6 1

y

1

y y # # y y

0 1

T T T

1 0 1

1 0 1

1 0 1
1 1 0 7 1 1 1 0 0 1

y
0
1
2
3
4

1

5
6
71 1 0 0 0 1 10 1

   

There is no need to actually K-map the LSB 
column because it is obvious “by inspection” 
that the result would be T0 = 1
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The Circuit

Q

0Q

Q

Q

1Q

2Q

0y

1y

1 0y y

2y
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The Timing Diagram
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The Timing Diagram
Add in the T0=1 line and the initial 
states of 111
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The Timing Diagram
Based on the T0 signal, note that T1 is
the same thing as y0.
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The Timing Diagram
Based on y0 add in the T1 signal.
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The Timing Diagram
Since y1 is solely dependent on T1, we
can now create the entire y1 signal.
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The Timing Diagram
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The Timing Diagram
Since y1 is solely dependent on T1, we
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The Timing Diagram
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The Timing Diagram
Since y1 is solely dependent on T1, we
can now create the entire y1 signal.
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The Timing Diagram
Since y1 is solely dependent on T1, we
can now create the entire y1 signal.
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The Timing Diagram
Since y1 is solely dependent on T1, we
can now create the entire y1 signal.
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The Timing Diagram
Since y1 is solely dependent on T1, we
can now create the entire y1 signal.
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The Timing Diagram
Since y1 is solely dependent on T1, we
can now create the entire y1 signal.
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The Timing Diagram
Since y1 and y0 are known, we can now
determine the T2 signal.

Clk
‘0’
‘1’

y0

y1

y2

7
T0

T1=y0

T2=y1y0

The only time that T2 can be high is if
both y1 AND y0 are high.
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The Timing Diagram
With T2 known, we can now determine y2.

On the 1st trigger T2 was a 1 so y2 toggles.
It stays low for 3 clock cycles because T2
is low during that time.
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The Timing Diagram
With T2 known, we can now determine y2.

On the 5th trigger T2 was a 1 again so y2
toggles high.  Again it stays there for.
3 clock cycles because T2is low during 
that time.
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The Timing Diagram
With T2 known, we can now determine y2.

Finally, T2 is high again and y2 toggles low
so the state goes back to 000.
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The ‘Mod-n’ Counter
• A counters Modulus or ‘Mod’ number 
is the total number of states which 
are counted.
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The ‘Mod-n’ Counter
• A counters Modulus or ‘Mod’ number 
is the total number of states which 
are counted.

• For example, a 4-bit counter will be 
a Mod-16 counter (unless prevented 
from being so) since it counts from 
0-15.  
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The ‘Mod-n’ Counter
• A counters Modulus or ‘Mod’ number 
is the total number of states which 
are counted.

• For example, a 4-bit counter will be 
a Mod-16 counter (unless prevented 
from being so) since it counts from 
0-15.  

• We have seen this before in the 
form of:

 

n 42 2 16
n #  of FF's

 


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The ‘Mod-n’ Counter
• A counter does not have to be 
allowed to count up to its maximum 
possible count however.
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The ‘Mod-n’ Counter
• A counter does not have to be 
allowed to count up to its maximum 
possible count however.

• A circuit designer can add in a 
decoder circuit to ‘decode’ the 
output of the counter and send a 
reset signal (or Clear) to the 
counter when the desired count is 
reached.
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Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
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Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– First step is to understand that the 
counter will count from 0 to 4 and then 
reset on a 5.
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Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– First step is to understand that the 
counter will count from 0 to 4 and then 
reset on a 5.

– Since all states above a 5 will never be 
allowed to occur, the designer can use 
them as ‘Don’t Cares’.
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Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– First step is to understand that the 
counter will count from 0 to 4 and then 
reset on a 5.

– Since all states above a 5 will never be 
allowed to occur, the designer can use 
them as ‘Don’t Cares’.

– The “active-level” of the reset or 
clear needs to be known.  In this case 
we are using a JK FF with active-low 
CLR’s.
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Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– Create a 4-bit K-map. 
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Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– Create a 4-bit K-map. 
– We are looking for an active-low signal 
to reset the circuit then we are going 
to be looking for a 0 out when a count 
of 5 is reached.
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Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– So, a 0 is placed in Cell 5 of the k-
map.

3 20 1

7 64 5

00 01 11 10

15 1412 13

11 108 9

00

01

11

10

AB

0

CD
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Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– Since 6 thru 15 will never occur, we 
add in the don’t cares

3 20 1

7 64 5

00 01 11 10

15 1412 13

11 108 9

00

01

11

10

AB

0

CD

X

X

X

XX

X

X

X

XX
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Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– Now group the answer.

3 20 1

7 64 5

00 01 11 10

15 1412 13

11 108 9

00

01

11

10

AB

0

CD

X

X

X

XX

X

X

X

XX
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Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– And the answer is:

3 20 1

7 64 5
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Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– The Final Circuit:
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Mod-5 example
• Design a Mod-5 counter using a 4-
bit ripple counter.
– Note that the NAND maintains a 0 on 
CLR till a 5 is reached.
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Mod-5 example
• The Timing diagram:

– Shows the count from 0 – 4, resetting 
on 5 and starting over.



11/17/2011 93

Mod-5 example
• The Timing diagram:

– Note the GLITCH which quite often is 
a result of this type of MOD-Counter 
design.
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Mod-n  design warning
• Be aware that some counters have a 
delay between a count and the 
reset.
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Mod-n  design warning
• Be aware that some counters have a 
delay between a count and the 
reset.

• For instance, lab 7 in EET 315 has 
a circuit with a D-FF in the reset 
circuitry.  This causes a delay of 1 
clock pulse so a different value is 
needed when you are looking for the 
count value to decode.
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Synchronous Circuit Disadvantage

• Because of the propagation delay of 
the gates which are supplying the 
control signals to each FF input, there 
can be delays which cause state 
errors.
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Synchronous Circuit Disadvantage
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• The problem gets even worse if the 
propagation delay seen by each input 
is different from the other inputs.
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Synchronous Circuit Disadvantage
• Because of the propagation delay of 

the gates which are supplying the 
control signals to each FF input, there 
can be delays which cause state 
errors.

• The problem gets even worse if the 
propagation delay seen by each input 
is different from the other inputs.

• These problems can cause state 
glitches. (spurious states between 
the actual states)


