
 EET 310 || Digital Design || Chapter 8 Lesson Notes (A) || RL Jones || State Machines
11/13/2014	 1 OF 13

Sequential Machines

 Up until now, all we have dealt with is static logic. Next we will work

with Active (Sequential) logic.

Figure 1 (Moore Machine)

 Figure 1 is an example of a Moore Machine. In a Moore Machine, the

output is purely dependent on the Present State (y). Nothing happens until

the clock pulse. Note that the Present State is fed back from the

Memory to the Input logic. Hopefully this makes sense. Why would

Present State be the result of feedback? If you want to know where you

are or what you are doing, you think back to how you got there.

 EET 310 || Digital Design || Chapter 8 Lesson Notes (A) || RL Jones || State Machines
11/13/2014	 2 OF 13

Figure 2 (Mealy Machine)

Figure 2 represents the other simple machine, the Mealy machine.

The Mealy machine doesn’t just depend just on the present state. It is

also a function of the inputs. Therefore, it isn’t necessarily synchronous

since the output can change at any time dependent on the input as well

as the present state.

 Note that each circuit has a memory element. This element is naturally

made up of some kind of Flip-flop and we will assume that it is either leading

or trailing edge triggered. Which edge is very important to the answer

and needs to be determined as early in the problem as possible.

 EET 310 || Digital Design || Chapter 8 Lesson Notes (A) || RL Jones || State Machines
11/13/2014	 3 OF 13

EXAMPLE 1: Let’s look at an example of a simple machine.

X
D Q

clk

Pre

Clr
Q

'1'

'1'

clock

y

y

y

X

xy

xy

x y

Input
Logic

Memory Output
Logic

z xy

Figure 3: Example 1

 EET 310 || Digital Design || Chapter 8 Lesson Notes (A) || RL Jones || State Machines
11/13/2014	 4 OF 13

Next, we determine the Boolean equations:

Y D x
z

y x y x y
x y

Q: What kind of machine is this?

A: Since the output (z) depends on the input as well as the present

state, this new machine must be a Mealy machine.

Let’s build a state table:

(The input is ALWAYS the MSB)

As long as the input (x) is a ‘0’, the

output (z) is a ‘0’. However, when (x) is

a 1, the output toggles with every

clock pulse.

Q: What other device does this describe?

A: The T-flip flop with the additional feature of an output (z).

 EET 310 || Digital Design || Chapter 8 Lesson Notes (A) || RL Jones || State Machines
11/13/2014	 5 OF 13

 Next, draw the state diagram. Since we are reverse engineering, we

already know what the output states are; (0, 1). If we are doing it as a

forward engineering problem, we could assign state variables, such as (A, B)

vice (0, 1).

To economize, the author likes to combine the state table with the k-

maps all into one k-map (pg510-516). I believe that this complicates the

issue so DON’T follow his example!

 EET 310 || Digital Design || Chapter 8 Lesson Notes (A) || RL Jones || State Machines
11/13/2014	 6 OF 13

Example 2: Forward Engineering (Synthesis) Example

Specifications:

When x = 0 counts 0 - 1 - 2 - 0 - 1 -
 When x = 1 counts 3 - 0 - 2 - 3 - 0 -
 z = 1 when in state 3
Use the following State
Assignment Table:

State Diagram:

The State Diagram which results from the provided
design specifications is provided to the right.

Note that the state diagram plainly demonstrates that
the output (z) BELONGS TO PRESENT STATE.

Q: Have we forgotten any transitions that the specs didn’t cover?
A: Yes

Q: How do we know?
A: Quick check for any missing transitions:

inputs

1
of arrows which should exi

therefor
t eve

e,
2 #

 2
ry s

2
tate

 exits.

Checking the state machine, it is noted that all the
states except state 1 and 3 are correct. These are
the only states which only have a single arrow exiting it.
All of the others have two, whic

h was

We will treat these transitions as illegal states and define
the

required by the

m in the design

equation

proc

.

ess.

A(0) B(1)

C(2)D(3)

x/z

0/0

0/0

1/01/1

0/0

1/0

0
1
2
3

State State
Variable

A
B
C
D

 EET 310 || Digital Design || Chapter 8 Lesson Notes (A) || RL Jones || State Machines
11/13/2014	 7 OF 13

State Table
Q: How many rows do we need?
A: 4 states x 2 exits per state = 8 arrows = 8 rows

Q: But we only have an (x) and a (y). What do we do?

A: You need 2 flip-flops for 4 states, so you have 2 bit state variables (y1y0).

We will start out the design process using two D-ff’s to provide the two state
variables. Note the presence of the two blank rows in the table resulting from the
two states which were not defined in the specifications.

Input Present
state

Next
state

Output Control

Circuitry

x y1 y0 Y1 Y0 z D1 D0

0 0 0 0 1 0 0 1

0 0 1 1 0 0 1 0

0 1 0 0 0 0 0 0

0 1 1 X X

1 0 0 1 0 0 1 0

1 0 1 X X

1 1 0 1 1 0 1 1

1 1 1 0 0 1 0 0

 Next, let’s perform some k-maps in
order to get the Boolean expressions for
the output and the next states.

 1st thing to note here is the presence of the Don’t Cares in the illegal states 3 and
5. They will either be used as 0’s or as 1’s. We will not be able to solve for the
equation for Z until we determine how we are going to use the Don’t Cares because
in order for Z to be high, the system must be in state 3. We will not know all of
the state 3’s until we determine how we are going to use the Don’t Cares.

0
00x

y1y0

1 3 2

4 5 7 6

01 11 10

0

1

1

1

0
00x

y1y0

1 3 2

4 5 7 6

01 11 10

0

1
1

1

1

X

X

X

X

 EET 310 || Digital Design || Chapter 8 Lesson Notes (A) || RL Jones || State Machines
11/13/2014	 8 OF 13

 The next thing to note is the XOR solution for D0 if we use
the two Don’t Cares as 1’s. We don’t teach XOR k-maps in
this course. You will have to wait until EET 420 to
recognize that the K-map will result in the given expression.
However, let’s take a look at a truth table and see if it
really does result in this equation.

o As you should note, the states in the table which have
1’s in the D0 column either have a 1 or an X in the D0
k-map!

o We can see the same thing if

we use Multisim’s Logic
Converter to create a state
table.

 So, if we intend on using the XOR equation for D0, then all of the X’s in the two k-
maps are being used as 1’s except for cell 5 in the D1 k-map which is being used as a
0.

o Let’s now take the state table and make those adjustments.

Input Present

state

Next

state

Output Control

Circuitry
x y1 y0 Y1 Y0 z D1 D0

0 0 A 0 0 B 1 0 0 1
0 0 B 1 1 C 0 0 1 0
0 1 C 0 0 A 0 0 0 0
0 1 D 1 1 D 1 1 1 1
1 0 A 0 1 C 0 0 1 0
1 0 B 1 0 B 1 0 0 1
1 1 C 0 1 D 1 0 1 1
1 1 D 1 0 A 0 1 0 0

 Note that since the D column will always look like the next
state column, we can also update those blank spaces.

 Finally we can place a 1 in the Z column for present state 3
and find an equation for Z (actually, since Z belongs to
present state, we could have done this at the beginning!)

0
1 0 0

1 0

0 0 0 1 1 0
0 0 1 0 0 1
0 1 0 1 0 2
0 1 1 0 1 3
1 0 0 1 0 4
1 0 1 0 1 5
1 1 0 1 1 6
1 1 1 0 0 7

D
X y y y cell

x y y

0
00x

y1y0

1 3 2

4 5 7 6

01 11 10

0

1
1

1

 EET 310 || Digital Design || Chapter 8 Lesson Notes (A) || RL Jones || State Machines
11/13/2014	 9 OF 13

 And now, we add in the two missing arrows onto the

state diagram. The resulting circuit follows.

The resulting circuit is shown here.

Q: Is this a Moore or a
Mealy machine?

A: Moore. Z does not have
any input terms in it.

Before you get too excited however, as will be shown on the following page, there is
a potential problem with the design results!

A(0) B(1)

C(2)D(3)

x/z

0/0

0/0

1/01/1

0/0

1/0
0/1

1/0

 EET 310 || Digital Design || Chapter 8 Lesson Notes (A) || RL Jones || State Machines
11/13/2014	 10 OF 13

HOUSTON, we have a problem!!!

 Let’s take a second look at that state diagram:
o When we do, we note that there are now two

potential problems with what we have done.
Note that when the input (x) changes from 1 to 0
while the machine is in state 3, it will be stuck in
state 3 as long as the input remains at 0.

o The same thing applies if the input (x) changes
from 0 to 1 while the machine is in state 1. It
will be stuck there until the input changes. This
MIGHT be a deal breaker with the customer!

This demonstrates one of the things that you need to watch out for when working
with illegal states.

 The illegal state can’t go to itself, and
 it can’t go to another illegal state which then sends it back to the original

illegal state.

A(0) B(1)

C(2)D(3)

x/z

0/0

0/0

1/01/1

0/0

1/0
0/1

1/0

 EET 310 || Digital Design || Chapter 8 Lesson Notes (A) || RL Jones || State Machines
11/13/2014	 11 OF 13

Rather than redesign the k-maps and use all of the Don’t Cares as 0’s to fix this problem,

let’s instead change the type of FF’s used. Let’s rework the example with a T-flip flop

as the MSB device and a JK as the LSB. In order to implement these devices, we need

to remember the T and JK excitation tables below:

With the aid of the excitation tables, a new state table is created. Note that Z has not
changed since it belongs to PRESENT STATE, not next state which is what we are
determining.

Input Present

state

Next
state

Output Control

Circuitry

x y1 y0 Y1 Y0 z T1 J0 K0

0 0 A 0 0 B 1 0 0 1 x

0 0 B 1 1 C 0 0 1 x 1

0 1 C 0 0 A 0 0 1 0 x

0 1 D 1 1 x x x

1 0 A 0 1 C 0 0 1 0 x

1 0 B 1 0 x x x

1 1 C 0 1 D 1 0 0 1 x

1 1 D 1 0 A 0 1 1 x 1

0
00x

y1y0

1 3 2

4 5 7 6

01 11 10

0

1

0
00x

y1y0

1 3 2

4 5 7 6

01 11 10

0

1
1

1

1

X

X

X

X

1

1

1 x

x

0
00x

y1y0

1 3 2

4 5 7 6

01 11 10

0

1

1 X

X 1x

x x

x

 EET 310 || Digital Design || Chapter 8 Lesson Notes (A) || RL Jones || State Machines
11/13/2014	 12 OF 13

Both of the X’s in the T k-map are used as 1’s. So, let’s show those on the table and view
the resulting MSB of the new states.

Input Present
state

Next
state

Output Control

Circuitry

x y1 y0 Y1 Y0 z T1 J0 K0

0 0 A 0 0 B 1 0 0 1 x

0 0 B 1 1 C 0 0 1 x 1

0 1 C 0 0 A 0 0 1 0 x

0 1 D 1 0 1 x x

1 0 A 0 1 C 0 0 1 0 x

1 0 B 1 1 1 x x

1 1 C 0 1 D 1 0 0 1 x

1 1 D 1 0 A 0 1 1 x 1

Both of the illegal Don’t Cares in the J k-map were used as 0’s or regular x’s depending on
what the K term is while both of them in the K k-map were used as 1’s or regular x’s
depending on what the paired J term is.

Input Present
state

Next
state

Output Control

Circuitry

x y1 y0 Y1 Y0 z T1 J0 K0

0 0 A 0 0 B 1 0 0 1 x

0 0 B 1 1 C 0 0 1 x 1

0 1 C 0 0 A 0 0 1 0 x

0 1 D 1 0 A 0 1 1 x 1

1 0 A 0 1 C 0 0 1 0 x

1 0 B 1 1 C 0 0 1 x 1

1 1 C 0 1 D 1 0 0 1 x

1 1 D 1 0 A 0 1 1 x 1

 EET 310 || Digital Design || Chapter 8 Lesson Notes (A) || RL Jones || State Machines
11/13/2014	 13 OF 13

Let’s build the new State Diagram:

Note that the previous issue where the circuit

got stuck while certain conditions occur no

longer is an issue!

The hardware ends up looking like:

A(0) B(1)

C(2)D(3)

x/z

0/0

0/0

1/01/1

0/0

1/0

0/1

1/0

