
 EET 310 || Digital Design || Chapter 8 Lesson Notes (D) || RL Jones || State Machine Design -LH
11/25/2011	 1 OF 11

State Machine Design Example
Simplification by “Observation” - LONG HAND Method

Design Specifications:

 3 bit counter
 Count Sequence: 6 - 3 - 1 - 4 - 6 - 3 -
 Begin the design by sending all illegal states to state 011 (3). You are

allowed to send any illegal state to an intermediate illegal state as long as it
ends up in a legal state within two clock cycles.

 Start the design with a D FF (MSB), a T FF, and a JK FF (LSB).
o Only the JK is mandatory after the first design attempt.

The first step is to set up the
Present/Next State table. The Present
State is always in binary order. The Next
State side is dependent on the count
sequence. Note that there are four blank
rows in Table 1 to the left. These are illegal
states (not defined by the specifications).
We must assign these states a pathway
which will lead them to a legal state if by
some chance the machine ends up in this
illegal state. The most common reason for
being in an illegal state is power up default
conditions. This may be as simple as
assigning them to go directly to a legal
state. Or we might choose to send them to
a legal state via an illegal state.

 Usually you start a design by picking one of the legal states to send them

to. Later on you can change them if needed to simplify the circuit. Or, the more
advanced designer with designate them with ‘Don’t Cares’ and take care of the level
assignment “on-the-fly” as the design goes along (Short-Hand Method notes).

Present
State

Next State

 A B C A B C
0 0 0 0

1 0 0 1 4 1 0 0

2 0 1 0

3 0 1 1 1 0 0 1

4 1 0 0 6 1 1 0

5 1 0 1

6 1 1 0 3 0 1 1

7 1 1 1

Table 1

 EET 310 || Digital Design || Chapter 8 Lesson Notes (D) || RL Jones || State Machine Design -LH
11/25/2011	 2 OF 11

In the long hand method, each illegal state is
initially sent to some legal state. Which
state they are sent to is really not important
since the assignments will change in the design
process. As per the specs in this example,
each illegal state is initially sent to state 3 as
demonstrated in Table 2.

The table as shown is the 1st step towards
designing the required control circuitry for
each FF in the design. Each set of control
circuitry will be based upon an output column
which results from the relationship between a
Present State column and its associated Next
State column.

Each output column will be able to be k-mapped
using the k-map form shown to the right

You should also note that the illegal states, 0, 2, 5, and 7 have been identified in a
manner which will make them easy to use to simplify any expressions which may result by
reassigning illegal states.

 The next step is to start designing the logic which will control the actions of each
flip-flop in the state machine.

Present
State

Next State

 A B C A B C

0 0 0 0 3 0 1 1

1 0 0 1 4 1 0 0

2 0 1 0 3 0 1 1

3 0 1 1 1 0 0 1

4 1 0 0 6 1 1 0

5 1 0 1 3 0 1 1

6 1 1 0 3 0 1 1

7 1 1 1 3 0 1 1

Table 2

 EET 310 || Digital Design || Chapter 8 Lesson Notes (D) || RL Jones || State Machine Design -LH
11/25/2011	 3 OF 11

Designing the MSB flip-flop:

Let’s start with the DA stage. The DA
column is created by remembering that
the Next State of a D flip-flop will
follow whatever value is on the D input
when the clock occurs. Thus, the DA and
QA columns are the same in Table 3.

The next step is to K-MAP the DA
column and attempt to simplify it.

The simplification means that we can get the D flip-flop to
act the way we want it to act to create the required
sequence if we connect the following control circuitry to it.

A major goal of design is to keep the complexity of the control circuitry to a minimum. It
is obvious that this circuit is a bit complicated. It would be nice if it would simplify to an
equation with fewer gates. Currently, the illegal states are all 0’s. Let’s change them to
“don’t-cares”.

AQ

BQ

AQ
CQ

CQA BC

AB C

AD

Present
State

Next State

 A B C A B C DA

0 0 0 0 3 0 1 1 0

1 0 0 1 4 1 0 0 1

2 0 1 0 3 0 1 1 0

3 0 1 1 1 0 0 1 0

4 1 0 0 6 1 1 0 1

5 1 0 1 3 0 1 1 0

6 1 1 0 3 0 1 1 0

7 1 1 1 3 0 1 1 0

Table 3

 EET 310 || Digital Design || Chapter 8 Lesson Notes (D) || RL Jones || State Machine Design -LH
11/25/2011	 4 OF 11

Looking at the new K-map, we note that the included “don’t-
cares” in states 0 and 5, provide a simpler control expression.
Note that B is nothing more than a wire connecting the D input

of the A flip-flop (the MSB) to the Q output of the B flip-flop
(B) (the middle bit).

 It is within our capability to make these
substitutions since both 0 and 5 min-terms
are illegal states. However, if we made these
substitutions, we would be sending min-terms
0 and 5 to state 7 which is an illegal state as
demonstrated in Table 4. Note that the D
column and Next state column A have been
corrected for the new situation.

 It is reasonable to send an illegal state to
a second illegal state which then goes to a
legal state in most cases. In addition, who
knows, the other bits in these two rows may
change later as well, resulting in legal states.
Note that the specifications for this
particular design allow this to occur as long as
it corrects itself to a legal state after two
clock pulses.

 As can be seen in the circuit
shown, we have exchanged an
equation which required a 2-input
OR gate and two 3-input AND
gates with an equation consisting
of a WIRE. Big savings!

BT

AD

AD B

Present
State

Next State

 A B C A B C DA

0 0 0 0 7 1 1 1 1

1 0 0 1 4 1 0 0 1

2 0 1 0 3 0 1 1 0

3 0 1 1 1 0 0 1 0

4 1 0 0 6 1 1 0 1

5 1 0 1 7 1 1 1 1

6 1 1 0 3 0 1 1 0

7 1 1 1 3 0 1 1 0

Table 4

 EET 310 || Digital Design || Chapter 8 Lesson Notes (D) || RL Jones || State Machine Design -LH
11/25/2011	 5 OF 11

 Let’s take a minute and discuss why the designer has chosen to use JK emulations of
D and T flip-flops. There are several reasons. One could be the easy availability lower
cost of JK’s but the major reason is that it is desired to have all the FF’s have the same
timing and edge-triggering. D FF’s in particular are more likely to be found with leading
edge triggering but even if a trailing-edge trigger was found it still might be a faster or
slower FF then the others. And finally, the JK is easier to design with because of the
ability to use don’t cares.

 As another side note:

Question: When is the most likely time for an illegal state to occur?

Answer: The answer would be on circuit power-up. There are other times such as sun

spot activity as well as “things just happen” activity. Whatever the cause,
the system needs to have a path from any illegal state to a valid legal state
or the circuit could become locked up!

 EET 310 || Digital Design || Chapter 8 Lesson Notes (D) || RL Jones || State Machine Design -LH
11/25/2011	 6 OF 11

Designing the Middle Bit

 Next, let’s add in the T flip-flop
column. Remember that if there is a
change in Qp to Qn, T must have been a
“1", otherwise it must have been a “0.”
See Table 5. When creating the TB
column, you are comparing the Present
State B column with the Next State B
column. If the state changes, T had to be
a 1 for it to have happened. Otherwise, T
had to be a 0.

As before, the next step is to plot the
column into a K-MAP. This time we will go
ahead and include the “don’t cares” for the
illegal states.

The resulting solution is one of several three term

expressions which would describe the required control
circuitry for the T input. Note that it isn’t very simple
and there isn’t any way to use illegal states to simplify
things.

Since the specifications allow us to switch to a different flip-flop type in order to simply
control circuitry, why not replace the T with a D FF?

Present
State

Next State

 A B C A B C DA TB

0 0 0 0 7 1 1 1 1 1

1 0 0 1 4 1 0 0 1 0

2 0 1 0 3 0 1 1 0 0

3 0 1 1 1 0 0 1 0 1

4 1 0 0 6 1 1 0 1 1

5 1 0 1 7 1 1 1 1 1

6 1 1 0 3 0 1 1 0 0

7 1 1 1 3 0 1 1 0 0

Table 5

BT B C BC AB

 EET 310 || Digital Design || Chapter 8 Lesson Notes (D) || RL Jones || State Machine Design -LH
11/25/2011	 7 OF 11

A DB column replaces the TB column in
Table 6. Again, remember that the D
column and the Next State B column
will be identical.

Again, plot the DB column into a K-
MAP, include the illegal state “don’t-
cares” and simplify.

0

BC
A

1

00 01 11 10
1 3 2

4 5 7 6

0 1/X

BB oD A r D C

1 1

1/X

1/X1/X

Note that simplification shows two different but equally simple answers. Both are just
wires between different FF outputs to the D input. We will choose the DB = A answer
for this design but the other answer should be recorded in the design journal just in case
it is needed by other design processes later. Note that if we had not used the “don’t-
cares” we would have ended up with an OR gate. I’ll leave it to you to figure out what the
OR expression would have been.

This stage isn’t finished yet. Table 6 still needs to be modified to account for the
new D and next state B columns and it needs to be checked to see if we have made
a valid choice. (See Table 8 below)

 Rows 0 and 2 have been modified in Table 7 from 1's to 0's. This causes the
next state for a present state 0 to become a 5 (an illegal state) while next state
for a present state 2 is now a 1 (a legal state). Rows 5 and 7 were already 1's and
therefore did not need to be modified.

 We will hold our decision on if this is ok till bit C has been worked on. If we
can’t get row 0 to go to a legal state, we will have to step back and see what other
choices we can make.

Present
State

Next State

 A B C A B C DA DB

0 0 0 0 5 1 0 1 1 0

1 0 0 1 4 1 0 0 1 0

2 0 1 0 1 0 0 1 0 0

3 0 1 1 1 0 0 1 0 0

4 1 0 0 6 1 1 0 1 1

5 1 0 1 7 1 1 1 1 1

6 1 1 0 3 0 1 1 0 1

7 1 1 1 3 0 1 1 0 1

Table 6

 EET 310 || Digital Design || Chapter 8 Lesson Notes (D) || RL Jones || State Machine Design -LH
11/25/2011	 8 OF 11

Designing the LSB bit (Bit C):

The only flip-flop left is the JK FF. In order to
design with the JK, it is best to review the JK’s
transition table as shown in Table 7:

With this transition table and present state and
next state columns C, we can now complete the JC
and KC columns in Table 8

Present
State

Next State

 A B C A B C DA DB JC KC

0 0 0 0 5 1 0 1 1 0 1 X

1 0 0 1 4 1 0 0 1 0 X 1

2 0 1 0 1 0 0 1 0 0 1 X

3 0 1 1 1 0 0 1 0 0 X 0

4 1 0 0 6 1 1 0 1 1 0 X

5 1 0 1 7 1 1 1 1 1 X 0

6 1 1 0 3 0 1 1 0 1 1 X

7 1 1 1 3 0 1 1 0 1 X 0

Table 8

Qp ➔ Qn J K

0 ➔ 0 0 X

0 ➔ 1 1 X

1 ➔ 0 X 1

1 ➔ 1 X 0

Table 7

 EET 310 || Digital Design || Chapter 8 Lesson Notes (D) || RL Jones || State Machine Design -LH
11/25/2011	 9 OF 11

This k-map results from the direct k-mapping of the JC
column without taking into account the illegal state don’t-
cares.

The Jc K-map to the right results another wire when the
don’t-cares are used.

Note that we had to specify replacing it with a 0 or an X
since this is a JK which could actually have X’s in the
columns. Before we update the table we can now simplify
KC.

Again, we can take a look at this and see that we can use
the “don’t care” states to our advantage. If we change cell
5 from a 0 to a 1 or an X we get a big improvement.

CJ A B

CK A B

CJ B

CK B

 EET 310 || Digital Design || Chapter 8 Lesson Notes (D) || RL Jones || State Machine Design -LH
11/25/2011	 10 OF 11

Again we were lucky enough to simplify to a wire. Now let’s update the table and check to
see if the changes are valid.

Both changes cause state changes to legal states. We have a successful design!!!

Present
State

Next State Control Logic

 A B C A B C DA DB JC KC

0 0 0 0 4 1 0 0 1 0 0 X

1 0 0 1 4 1 0 0 1 0 X 1

2 0 1 0 1 0 0 1 0 0 1 X

3 0 1 1 1 0 0 1 0 0 X 0

4 1 0 0 6 1 1 0 1 1 0 X

5 1 0 1 6 1 1 0 1 1 X 1

6 1 1 0 3 0 1 1 0 1 1 X

7 1 1 1 3 0 1 1 0 1 X 0

 EET 310 || Digital Design || Chapter 8 Lesson Notes (D) || RL Jones || State Machine Design -LH
11/25/2011	 11 OF 11

Let’s now simulate the circuit and test.

Note that not only does the graph demonstrate the 6314 sequence but it also
demonstrates the predicted recovery path for the illegal state 7.

If further proof to recovery paths from other illegal states is desired, then the use of
Multisim’s Word Generator will be useful. Just program in a “Jam Load” of an illegal
state into the State Machine on the first program step and then make all the rest of the
steps required to allow the state machine to count from the “Jam Loaded” value. The
circuit’s CLR’s and PRE’s would be connected to the bit outputs of the Word Generator.

U2A

74LS04N

U2B

74LS04N

U3A

74LS76N

1J4 1Q 15

~1Q 141K16
~1CLR

3

1CLK1

~1PR
2 U3B

74LS76N

2J9 2Q 11

~2Q 102K12
~2CLR

8

2CLK6

~2PR
7 U4A

74LS76N

1J4 1Q 15

~1Q 141K16
~1CLR

3

1CLK1

~1PR
2

State Example Circuit
Counts 1-4-6-3 and
recovers from illegal states
0,2,5, and 7

46 2

0

Q2 Q1

11

VCC
5V

VCC

VCC

5V

VCC
V1

50 Hz
5 V

7

0

U1

DCD_HEX_ORANGE

This circuit actually demonstrates
recovery from illegal state 7.

