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Simplification
of

State Machines

This semester has been spent developing the techniques needed

to design digital circuits.  Now we can compile a list of just what it

takes to complete a successful digital design project.

Specify the problem

Derive the state table and/or the state diagram

Reduce the # of states to the minimum possible

Choose an appropriate state assignment

Construct an appropriate transition table

Develop the design equations

Implement the circuit
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The only topic in that list that is left to be discussed is that of

minimizing the number of states.  Discussion of State Reduction is

normally divided into two different areas:  

A. State Reduction in Completely Specified Circuits

B. State Reduction in Incompletely Specified Circuits

We will limit our discussion to the first area.  This topic is expanded on

in EET 420 and usually encompasses the second discussion area.

The removal of redundant states is important for a number of reasons. 

(1) Cost: The number of memory elements is directly related to

the number of states.

(2) Complexity: The more states the circuit contains, the more

complex the design and its associated

implementation becomes.

(3) Aids failure analysis: Diagnostic routines are usually

based on the assumption that

there are no redundant states. 

There are 3 major State reduction Methods: Reduction by

(a) Inspection (b) Partitioning (c) Implication table.

We will study the 1st two methods and leave the Implication table

method for EET 420.
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Reduction By Inspection

This is the easiest and most obvious technique.  We can merge

compatible states if we follow some simple rules.

1. Two states that have different outputs are not compatible and

can’t be merged.

2. Two states are compatible and can be merged if, under all

possible input conditions, the next states and outputs are the

same.

3. Two states are compatible and can be merged if, under all

possible input conditions, the merging of the two states will make

the next states compatible and the outputs the same.



EET310 || Lecture Notes     State Reduction Chapter 9 - 4 of 20

eet310ln_chap9a.wpd                                                                                                                     22 Nov ‘05

0

0
0

0
1

z

ECC

E
D

D
A

C
A C

A
(rule 2) B

y
CA

B C

x=1x=0

Not a candidate
(rule 1)

Candidates for
merging (rule 1)

x=0

E
C

(rule 2)
A
B

y

C
EA

A
C

0
1

C
C

x=1
A
B

0
0

z

(rule 3) if B were merged with A
then we could replace B with A and
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The following is an example from Professor Hackworth’s EET420 text.

Note the substitution of all E’s with A’s

along with the merger.

This application of rule 3 is quite often

hard to notice.  That’s why we need

other methods of state reduction.

Note that with this final circuit we have made

quite a hardware savings. We went from 5 states

(3 ff) to 2 states (1 ff) along with a significant

reduction in control circuitry.
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Let’s look at another small example.  In doing so, we will also look at a

couple of new ways to write state tables which will help us in our

reductions.

 

Two groups of possible candidates for

merging.

If we merge A and B, would the

results be the same?

B
X 0

AB C
=

⇒

AD BC⇒

( )BC's outputs z  are different
therefore the two states are
not compatibBD CC le.

AC
X 1

AB
=

⎧
⎪⎪
⎨
⎪

⇒⎪⎩

⇒

AD AC⇒

( )AC's outputs z  are different
therefore the two states are
not compatibleBD A .A

⎧
⎪⎪
⎨
⎪ ⇒⎪⎩

X y Y Z

0 A B 0 7

0 B C 0 7

0 C D 1 »

0 D C 0 7

1 A C 1 »

1 B A 1 »

1 C B 0 7

1 D A 1 »
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Let’s do the same thing except this time, let’s put the table into

another form.

 

Note that since D was redundant, we replaced every D with a B.

What did we save with this State Merger?  Saved on gates, not on

FF’s.  

Let’s rewrite the table another way ONE MORE TIME.

y x=0
Y/z

x=1
Y/z

-

y x=0
Y/z

x=1
Y/z

A B/0 C/1 A B/0 C/1

B C/0 A/1 B C/0 A/1

C D/1 B/0 C B/1 B/0

D C/0 A/1

Y z

-

y z

y x=0 x=1 x=0 x=1 y x=0 x=1 x=0 x=1

A B C 0 1 A B C 0 1

B C A 0 1 B C A 0 1

C D B 1 0 C B B 1 0

D C A 0 1



EET310 || Lecture Notes     State Reduction Chapter 9 - 7 of 20

eet310ln_chap9a.wpd                                                                                                                     22 Nov ‘05

Let’s try a second example.  We will
use the “By Inspection” method to reduce
the following state table:

Let’s look at the instances where Z is equal to

00:

Continued on the next page:

A A B 0 0
B C D 0 0
C A D 0 0
D E F 0

z z
y x=0 x

1
E A F 0 1
F

=1 x=0 x=1

G F 0 1
G A F 0 1

Y Y

State AB had a NEXT STATE of AC and BD.
       Following the AC thread we get:
State AC has NEXT STATES of AA and BD.

By definition, AA will be fine, but BD is not
compatible because B has an output of 00 and
D has an output of 01.  If one item in any
thread of a state inspection is incompatible,
the whole thread (and the state) is bad (fruit
of the poison tree) as well!!  

We don’t even have to look at the other thread coming off
of AB but if you like, note that the thread starts with BD
which we have already determined to be incompatible.

AB AC AA

BD BD

BC is the other possibility for Z = 00.
Note that if we work thru the top
thread, we get to BC which we have
shown to be incompatible, therefore
the entire tree is poisoned.

BC AC AA

DD BD
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Continuing the example, let’s now look at the

output condition of Z = 01

This time, we will use less explanation for the

failures.  Try to follow why each tree failed:

 

Note that we replaced the single G with an E and all the occurrences of F

with D.  We reduced the circuit from 7 states (3 FF) to 5 states (3FF).  We

still didn’t save on flip-flops but we most likely saved on control circuitry.

A A B 0 0
B C D 0 0
C A D 0 0
D E F 0

z z
y x=0 x

1
E A F 0 1
F

=1 x=0 x=1

G F 0 1
G A F 0 1

Y Y

DE AE

FF
DF EG AA

FF FF

EF AG

FF

DG AE

FF

EG AA

FF

FG AG

FF

A A B 0 0
B C D 0 0
C A D 0 0
D E F 0 1
E A F

y x=

0 1
F

0 x=1 x=0 x

G F 0 1

=1

G A F 0 1

Y Z

D
D

A A B 0 0
B C D 0 0
C A D

y x=0 x=1 x=0 x=1

0 0
D E D 0 1
E A D 0 1

Y Z
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Moore Reduction
(also known as “Partitioning)

(page 581)

1. The 1st step is to assume that all
states are compatible.

P0=(ABCDEFG)

2. Then we start grouping the states
based on their outputs.     
  P1=(ABF)(C)(DEG)

3. Then we group these groups by Next State.
For ABF, x=0,

The next state is DEC.  Note that in P1, DE is in the same group (DEG)
so AB can stay in the same group.  However, C is not in the same group
as DE was so F will have to be separated out into its own group.  We
now have partition 2 (P2):

P2=(AB)(C)(DEG)(F)
For ABF, x=1,

The next state is ABB which becomes AB.  AB were in the same group
in the last partition, P2 so they can still share a group in P3.      
P3=(AB)(C)(DEG)(F)

For DEG,  X=0,
Next state is  AAA.  Obviously they are in same group in P3 so DEG can
remain grouped. P4=(AB)(C)(DEG)(F)

For DEG, X=1,
Next state is DDE which are all in the same group in P4,  so we can keep
DEG together.   P5=(AB)(C)(DEG)(F)

A
B
C
D
E
F
G

D
E
G
A
A
C
A

X=0
B
A
F
D
F
B
E

X=1 X=0 X=1
zY

y
0
0
0
1
1
0
1

0
0
1
0
0
0
0
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Once a partition repeats itself, you are finished.  So, for this group, we
get:

    Reduced from

          7 states (3 ff) 
                 to
 4 states (2 ff) + control circuitry.

A
B
C
D
E
F
G

D
E
G
A
A
C
A

X=0
B
A
F
D
F
B
E

X=1 X=0 X=1
zY

y
0
0
0
1
1
0
1

0
0
1
0
0
0
0

A

D

A

A
C
D
F

D

A
C

X=0

F
D

X=1 X=0 X=1
zY

y
0
0
1
0

0
1
0
0

A
D

A
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Let’s redo our example on page 7 by using Moore reduction.

1. Assume the all are compatible.

P0=(ABCDEFG)

2. Group by output.

P1=(ABC)(DEFG)

3. Group by next state.

P2 = (A)(BC)(DF)(EG) 

P3 = (A)(B)(C)(DF)(EG)

P4 = (A)(B)(C)(DF)(EG)

P3 = P4 thus reduced

 

Same answer as before.
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0
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(Example 9.3 in Nelson, et. al.) Reduce the following stable by
applying Moore’s Reduction.

P0=(ABCDEFGH)

P1=(AD)(BE)(CF)(GH)

P2=(AD)(BE)(CF)(G)(H)

P3=(AD)(BE)(CF)(G)(H)

P3 = P2, Thus reduced
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Example 9.4 (in Nelson, et. al.)

P0=(ABCDEFGH)

P1=(ADFG)(BCEH)

P2=(AFG)(D)(BCEH)

P3=(AF)(D)(G)(E)(BCH)

P4=(AF)(D)(G)(E)(BCH)

P3=P4, Thus reduced
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State Assignments

State assignment procedures are concerned with methods for

assigning binary values to states in such a way as to reduce the cost of

the combinational circuit which drives the flip-flops (memory

elements).  These methods are mainly useful when a circuit is viewed as

a black box.  Such a circuit may follow a sequence of internal states,

but the binary values of the individual states may be of no consequence

outside of the box as long as the circuit produces the required

sequence of output bits for any sequence of input bits.  By this

definition, this assignment procedure obviously doesn’t apply to circuits

whose external outputs are taken directly from flip-flops with a

particular binary sequence specified.

There are many methods of optimizing the state assignments

made to a given circuit.  Most are extremely involved and are beyond

the scope of this course.  However, one particular method of state

assignment optimization is essentially simple and easy to follow.
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10
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00

In the following

rules, there term

“adjacent assignments”

means that the state

assignments made to a

pair of states differ by

only 1 bit, i.e. “Gray

Codes”.

Let’s apply these rules to an example:

Using Rule # 1, the state pair (A,B) should be given adjacent

assignments because both of them go to state A for x = 0.  Similarly,

state pairs (B,D), (A,D), and (B,C) all should be given adjacent

assignments; the pair (A,D) appears twice. 

Rule 1: States that have the same next
states for a given input should be
given logically adjacent
assignments.

Rule 2: States that are the next states of
a given present state, under
logically adjacent inputs, should be
given logically adjacent
assignments.

Rule 3: If there is a conflict between rule
1 and 2, rule 1 takes precedence. 
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The application of Rule # 2 shows that the state pair (A,B) should be

given adjacent

assignments because

they are next states

of the present state

A.  For similar

reasons, state pairs

(A,C) and (C,D)

should be adjacent

with (A,B) appearing twice.

The figure above demonstrates the three different choices for

state assignments which attempt to meet as many of the adjacency

requirements as possible.  It can hopefully be seen that Assignment 3

satisfies most of the adjacencies and hence produces a better result

then the other assignments.  It might be suggested that Assignment 2

Rule 2:
States that are the next states of a given present
state, under logically adjacent inputs, should be
given logically adjacent assignments.

Rule 1:
States that have the same next states for a
given input should be given logically adjacent
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xy y
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x y
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1 1 2 2
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#

#

#

#

      
    

    

1 AND gate
1 OR gate

1 wire
  and a choice between:

1 XOR gate
or

1 OR gate
 2 additional AND gates

    

1 OR gate
2 wire

and a choice between:
1 XOR gate

or
1 additional OR gate

 2 additional AND gates
1 AND gate

3 wires

+

⊕
+

+

⊕
+

produces the same number of adjacencies as #3, but it doesn’t fulfill

the adjacency requirement for state pair (A,B) as determined by Rule

1.  (Note that we don’t bother here with an equation for z since it is

not affected by a state assignment.)

Let’s take a look at the logic equations produced by each

assignment.  The actual work to produce these equations follows but

will not be covered in class.  It is left up to the student to verify the

equations for him or herself.

As can be easily seen below, our choice of Assign. #3 is clearly

the winner in the logic component simplicity contest.
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State Assignment #3


