FE Review 1 THEVENIN AND NORTON ANALYSIS

Thevenin's Theorem

Any linear, two-terminal network with dependent and independent sources can be represented by an equivalent circuit consisting of a single voltage source and a single series resistor representing the circuit from the VIEWPOINT of the circuits load.

Step 3: Find the Equivalent Resistance from the viewpoint of the load

Note that the 16 ohm resistor is shorted out!

$$R_{\text{th}} = 4 || 12 = \frac{4\Omega(12\Omega)}{4\Omega + 12\Omega} = \frac{48\Omega}{16} = 3\Omega$$
Continued on the next page

Maximum Power Transfer

Another way the question may be asked: What value of R_{TH} is necessary below for max power transfer to the load?

Maximum Power Transfer

Another way the question may be asked: What value of R_{TH} is necessary below for max power transfer to the load?

The answer is 'O ohms'. The difference here is that the load is no longer the variable.

Norton's Theorem

 Any linear, two-terminal network with dependent and independent sources can be represented by an equivalent circuit consisting of a single current source and a single parallel resistor representing the circuit from the VIEWPOINT of the circuits load.

Note that the right hand 8 ohm resistor is shorted out

Continued on the next page

