

 $0 = x^2 + 3x + 2$

1st, make sure that the coefficient of x^2 is 1. 2nd, take the coefficient of x and divide it by 2

$$-2 + \left(\frac{3}{2}\right)^2 = x^2 + 3x + \left(\frac{3}{2}\right)^2$$

3rd, add the resulting number to both sides of the equation.

Logarithms and Exponentials (a few properties)	
$e^{a+b} = e^{a} \cdot e^{b}$ $e^{-a} = \frac{-1}{e^{a}}$ $(e^{a})^{b} = e^{a+b}$	$ln(a \cdot b) = ln(a) + ln(b)$ $ln\left(\frac{a}{b}\right) = ln(a) - ln(b)$ $ln(a^{b}) = b ln(a)$ $log_{a}(b) = \frac{ln(b)}{ln(a)}$
Math Review - Algebra and Trig 8/24/2010	

Common Log Example

$$\bigcirc_3^3$$

 What is the common log of $(1000)^4$?

 Identity : $\log_{10} 10^n = n$
 $(1000)^4 = (10^3)^4 = 10^{12}$
 $\log_{10} 10^{12} = 12 \log_{10} 10 = 12 (1) = 12$

Parabola (cont)

$$\bigcirc_{1}^{2}$$

If opens up or down the equation will fit
 $2p(y - k) = (x - h)^{2}$
 $p > 0$ means opens up, $p < 0$ means opens down
center at (h,k), focus at $(h,k+\frac{p}{2})$
direction at $(y = k - \frac{p}{2})$

Complex Numbers

$$a_{4}^{3}$$

', i' and 'i' are used to represent complex numbers.
'i' is normally used in math and physics while
'j' is normally used in engineering (specifically electrical)
 $i = \sqrt{-1}$ $i^{2} = -1$ $i^{3} = -i$
 $j = \sqrt{-1}$ $j^{2} = -1$ $j^{3} = -i$

Complex Numbers Example

$$\bigcirc_3^3$$
 $(4 + j7) + (6 + j9) = ?$
 $(4 + 6) + (j7 + j9) = 10 + j16$

 Makewer - Agebraid Tig

Simultaneous Equations 2nd method: Multiply the equations by numbers such that when added together, only one variable will be left. 7 = 2x + ySolve : -1 = x - yMultiply both sides of second eqn by -2 7 = 2x + y(-2) -1 = x - y

