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Derivatives

* Define derivatives
» Rules for finding derivatives
- Applications for derivatives
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- Local extrema
- Rates of change
- Approximating change



Definition

£'(x) = !im)f(x — i;(()—f(x)

(0 = . (F ) =

means derivative with respect to x
Interpreted as:

e Slope of a tangent line
e Rate of change of the value of a function
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The green line which connects
the two points is sometimes
called the Secant Line

YYYY

f(x + Ax) — f (x)

slope =
P AX

X X + AX
If you make the points
closer and closer together

by decreasing the size of  (X)
delta x, you get the

derivative or slope at

that point.
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When a point has a different slope direction
On each side of it, f'(x) does not exist at that point.
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Finding derivatives

= Linearity

d, (a-F (x) + b-6 (x)) = a-d, (F(x)) + b-d, (& (x))
= Power rule

D, (x") = rx""

Example

D, (x°) = 3x°

D, (sinx) =cosx De* = e

D, (cos x) = —-sinx D (Inx) = %
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Finding derivatives cont)

= Product rule

D, (f(x) » g(x)) = f (x)g(x) + f(x)g (x)

e.g. D, (x*sinx) = 2x(sinx) + x* (cos x)

= Quotient rule

; (mj _F(09(0)-f(x)g (¥
“(9(x) g (x)

x° 2x sin X — X° cos X
e'Q’ Dx o = o 2
sin x (sin x)
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Finding derivatives cont)

— Chain rule: Used for composite
functions
D, (f(g(x))) = f (9(x)* g (x))
assigh some variable names
df (u) _ df'(u)  du
dx du dx
e.g. D, (sinx)’ = 3(sinx)" cos x
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Combining some rules

1

D, (\/x2 + 2X + 1) =D, (x2 4+ 2x 4+ 1)5

=%( 2+2x+1)__‘;(2x+2)

(x + 1)
(x2 + 2X + 1)%
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Combining rules cont)

D, [(sin2x) e In(x* + 1)| = D, (sin2x) » In(x* + 1)
+sin2x e D, |:In (x* + 1):
(2)cos2x o In(x* + 1)
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Extrema

. Endpoints

I
i
l l
0 : - '
a b ¢ d e
v
One application is when the maxima or minima

points of a function are desired. These points are
o-1hg extrema a function.
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To find the maxima or minima

* Find the critical numbers
* Decide what happens there
* Check the endpoints
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a b ¢ d
v
" = One way of finding the maximum or minimum points is

5 = to find the HORIZONTAL tangent locations (not

1| = including the endpoints)
— &
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a b ¢ d e
A 4
1 = Maxima or minima occur where:

0 = T(x)=0 or f (x) does not exist, These points are

- = as well as at the endpoints where called the

s , . “Critical numbers”
= shaza) is not possible. 15

<

R
|
N

=4
-~ D
_—
==
-
-
=
=
e
= -
N
-
=
.
-




)

Q.

C
+ = - = maxima

- = + = minima

Levels off but keeps — rising

or - falling = neither

disadvantage of this test requires f'(x)
on each side of a critical point.
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Ist derivative test

f'(x) >0

means that the value is increasing
f'(x) <O

means that the value is decreasing
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2nd derivative test
f"(x) >0 = concave up ./
f"(x) < O = concave down /\

f"(x) = 0 = no conclusion

OIS,

Minimum Maximum No info
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Derivative problem #1

An open box is to be created by cutting a
square out of each corner of a2 x 4 ft sheet
of cardboard and folding it up into the box.
What size square should be cut out to
maximize the volume of the box?
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Problem # 1 cont)

Vol=Leweh

= x(4 - 2x)(2 - 2x)
= 4x® — 12x° + 8x
Critical numbers are

V'(x) =12x* - 24x +8 = 0
x=1577' or x = 0.423'

V"(x) =24x — 24 @ o
Minimum
V"(1.577) = 13.85

V"(O.423) = -13.85 @ Maximum!
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Other uses of derivatives

* Rate of change
* D+( position (1)) = Velocity (1)
+ D; (Velocity (1)) = Acceleration ()
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Related rates

We know the rate of change of one of
the variables.

Y =f(x) xand y vary with t

dy _ df(x) _ df(x) _ dx
dt dt  dx dt
chain rule

dy dy dx dx
= L = "1 ¢ — lly k —
It = dx * dt (we hopefully know d?)
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Application Example

A spherical balloon is inflating so that its radius is
increasing 1" per min. How fast is the surface
area increasing when the radius is 30" ?

surface area = 4nr’ = A
dl“ 1 "
— = /nm and r = 30

dA dA _dr d(4nr)‘(1-- )
min

dt _ dr  df dr

= 87r o (1 /'nin) = 30 " (l/mn)

_ |754 in7 ,
8/24/2010 min
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Using differentials to approximate
answers

Use differentials to approximate In (1.01)
f(x) =1In(1)
In(1) =0 so let x, =1
x =101 so Ax=0.01
Ax is small compared to the whole
so result should be fairly accurate.

)= (%)= G _ 1)
f(x)=~f(x,)+f'(x,)* Ax
~0+1-(0.01) = .01

sanoo  check :In(1.01) = 0.00995 = error = %"/o
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Example

Given : y(x) = 3x® —2x° + 7
What is the slope of the function
at x = 47

y'(x) = 3(3)x% —2(2)x = 9x% — 4x
y'(4) = 9(4)° - 4(4)
=9(16)-8=144-38
= [136
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Example

hat is the maximum of the function

for x > -1
=-3x*+3 and y''=-6x
S 2Wheny'=0=-3x*+3= x?=1. x =1
:y"(l) = —6(1) =-6<0 . amaximum
==y (-1)=-6(-1)=6>0 . a minimum
ESO, y(-l)=(-1)3 + 3 = -1+ 3 = 2(max)
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Example (cont)

What is the point of inflection of the function
y =-x>+3x-2
y'=-3x%+3 and y" = -6x
y = f(x) is an inflection point for x = a where
f"(a) =0 and f"(a) changes sign about x = a, so,
y"(O)when x = 0 and y" >0 for x <O
and y" <O for x > O
Therefore, this is an inflection point
y(0)=-(0)’ + 3(0) -2 = -2 so the answer is (0,-2)
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