Math Examples

1

FE Review R. L. Jones

8/24/20

Math Example 1

 Question 1 - 3 relate to the three vectors A, B, and C in the Cartesian coordinate system; the unit vectors i, j, and k are parallel to the x, y, and z axis respectively.

$$A = 2i + 3j + k$$

$$B = 4i - 2j - 2k$$

$$C = i - k$$

8/24/201

	Example 1: Q1		
• The an	gle between vectors 🗛 and	a.	-180°
B is:	∡ between A and B	b.	0°
	.[4.8]	C.	-45°
defined as $\cos^{-1} \left[\frac{A \cdot B}{ A B } \right]$		d.	90°
	F1 11 13	e.	180°
<u>A • B</u> = ·	2(4) + 3(-2) + 1(-2)		
A B _	$\sqrt{2^2+3^2+1^2}\sqrt{4^2+(-2)^2+(-2)^2}$		
_	8 - 6 + -2		
_ :	$\sqrt{4+9+1}\sqrt{16+4+4}$		
= -	0 = 0 ⇒ cos	⁻¹ (0) =	90°
	./4 + 9 + 1./16 + 4 + 4	- (7)	

Example 1: Q2

• The projection of \boldsymbol{A} on \boldsymbol{C} is of directed length:

$$P = \frac{A \cdot C}{|C|} = \frac{A_x C_x + A_y C_y + A_z C_z}{\sqrt{1^2 + 0^2 + (-1)^2}}$$
$$= \frac{2(1) + 3(0) + 1(-1)}{\sqrt{1^2 + 0^2 + (-1)^2}} = \frac{2 - 1}{\sqrt{1 + 1}} = \frac{1}{\sqrt{2}}$$

 $\frac{1}{\sqrt{2}}$ is not a choice. Rationalize the answer

which is answer e.

 $\frac{\sqrt{2}}{2}$

-√2

2

 $\sqrt{14}$ $\begin{array}{c|c}
\sqrt{14} \\
\hline
0 \\
\hline
-1 \\
\hline
\sqrt{14}
\end{array}$ d.

Example 1: Q3

• The volume of the parallelpiped with sides A, B, and C is

$$\begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix} = \begin{vmatrix} 2 & 3 & 1 \\ 4 & -2 & -2 \\ 1 & 0 & -1 \end{vmatrix}$$

$$V = A \bullet (B \times C)$$

a. √12

6 12

$$2\begin{vmatrix} -2 & -2 \\ 0 & -1 \end{vmatrix} - 4\begin{vmatrix} 3 & 1 \\ 0 & -1 \end{vmatrix} + 1\begin{vmatrix} 3 & 1 \\ -2 & -2 \end{vmatrix}$$

$$2\begin{bmatrix} -2(-1) - 0 \end{bmatrix} - 4\begin{bmatrix} 3(-1) - 0 \end{bmatrix} + 1\begin{bmatrix} 3(-2) - 1(-2) \end{bmatrix}$$

$$2(2) \quad A(3) + 1(4 + 3) \quad A + 13 \quad A = 13$$

 $2(2)-4(-3)+1(-6+2)=4+12-4=12 \Rightarrow ans c$

Math Example 2

• Questions 4 - 7: The position x in km of a train traveling on a straight track is given as a function of time t in hours by the following equation:

 $x = \frac{t^4}{4} - 4t^3 + 16t^2$

 The train moves from point P to point Q and back to point P according to the equation above. The direction from point P to Q is positive.

Example 2: Q4

• What is the train's distance from starting point P at time t = 4 hrs?

a.	0 km
Ь.	4 km
C.	16 km
d.	36 km
e.	64 km

$$x = \frac{t^4}{4} - 4t^3 + 16t^2$$

$$x = \frac{4 - 41^{4} + 161}{4}$$

$$x = \frac{4 + 161}{4} - 4(4 + 161)^{3} + 16(4 + 161)^{2}$$

$$x = \frac{256}{4} - 4(64) + 16(16)$$

$$x = \frac{256}{4} - 4(64) + 16(16)$$

a. -16 km/h

d.

8 km/h

0 km/ 32 km/h

64 km/

Example 2: Q5

 What is the train's velocity at time t = 4 hrs?

By definition, velocity is the first derivative of position with respect to time $= \frac{dx}{dt} \left(\frac{t^4}{4} - 4t^3 + 16t^2 \right)$

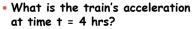
$$= \frac{dx}{dt} \left(\frac{t^4}{4} - 4t^3 + 16t^2 \right)$$

$$=\frac{4t^3}{4}-4(3)t^2+16(2)t$$

$$= t^{3} - 12t^{2} + 32t = (4h)^{3} - 12(4h)^{2} + 32(4h)$$

= 64 - 12(16) + 128 =
$$0 \frac{\text{km}}{\text{h}}$$
 \Rightarrow ans C

Example 2: Q6



By definition, acceleration is the first derivative of velocity with respect to time

a.	-16 km/h²
Ь.	0 km/h²
c.	12 km/h²
d.	16 km/h²
e.	32 km/h2

$$\frac{d}{dt}(t^3 - 12t^2 + 32t) = 3t^2 - 12(2)t + 32$$
$$= 3t^2 - 24t + 32 = 3(4h)^2 - 24(4h) + 32$$

=
$$3(16) - 96 + 32 = 48 - 96 + 32 = -16 \frac{\text{km}}{\text{h}^2} \Rightarrow \text{ans a}$$
.

Acceleration is negative therefore train is slowing down

Example 2: Q7

- What is the distance between points P and Q?
- Ans: From the answers for the previous questions we know that the velocity is zero and the acceleration is negative. From this we know that the train is at point P and is turning around. Therefore the distance is 64 km (from question 4.

a.	16km
Ь.	32km
C.	64km
d.	72km
e.	128km

8/24/201

Example 2: Q7 continued:

 If we were asked Q7 without already having answering Q4 - Q6, we would need to determine at what time V=0, which indicates when the train is reversing direction, which would either be at P or Q.

set V = 0 in
$$\frac{dx}{dt} = v(t) = t^3 - 12t^2 + 32^t$$

$$0 = t^3 - 12t^2 + 32^{\dagger} = t(t^2 - 12t + 32) = t(t - 4)(t - 8)$$

at $t = 4 \times = 64$ km as above

at t = 8 back at point P

8/24/20

Math Example 3

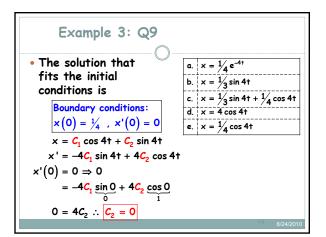
 Questions 8 - 11 Under certain conditions the motion of an oscillating spring is described by the differential equation

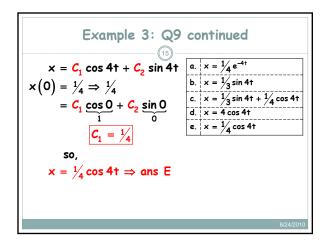
$$\frac{d^2x}{dt^2} + 16x = 0$$

where x is the displacement in feet of the end of the spring, and t is the time in seconds. At t = 0 seconds the displacement is $\frac{1}{4}$ foot and the velocity is 0 ft/sec; i.e. x(0)=1/4 and x'(0)=0.

0/24/204

```
• What is the general solution of the system? (C_1 \text{ and } C_2 \text{ are constants})
\frac{d^2x}{dt^2} + 16x = 0,
characteristic eqn r^2 + 16 = 0, r = \pm 4j
\therefore solution will be of the form:
x = C_1 \cos(4t) + C_2 \sin(4t) \Rightarrow \text{ans } E
```





Example 3: Q10

 The amplitude of the motion is a. 1/4 ft
b. 1/3 ft
c. 1 ft
d. 2 ft
e. 4 ft

The amplitude will be the maximum value of $x = \frac{1}{4} \cos 4t$. Since the maximum value of cos 4t is 1, the max value of the function is

$$\frac{1}{4}\cos 4t = \frac{1}{4}(1) = \frac{1}{4} \Rightarrow \text{ans } A$$

8/24/20

Example 3: Q11

The period of the motion is

 $x = \frac{1}{4} \cos 4t$

b. π/2 sec
 c. π sec
 d. 2π sec
 f. 3π sec

a. $\frac{\pi}{3}$ sec

The natural frequency is $\sqrt{16} = 4 \frac{\text{rad}}{\text{s}}$

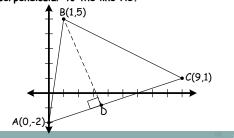
$$Period = \frac{1}{f}, but f = \frac{\omega}{2\pi} so,$$

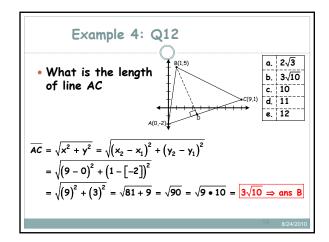
$$P = \frac{2\pi}{\omega} = \frac{2\pi}{4} = \boxed{\frac{\pi}{2} \Rightarrow \text{ans B}}$$

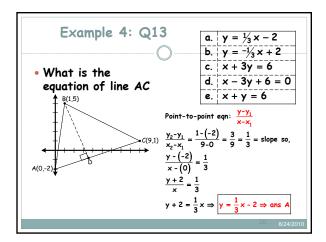
3/24/201

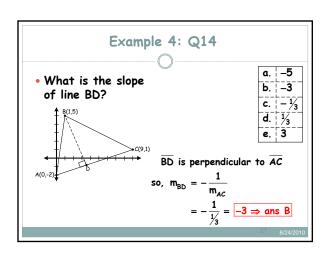
Example 4

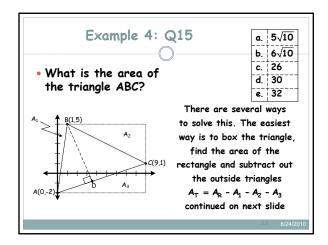
 Questions 12-15: Triangle ABC has vertices as shown in the figure below. The line BD is perpendicular to the line AC.

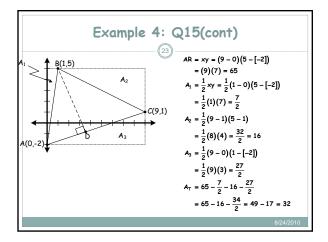












Morning Session Typical Questions
Questions M1 - M10

Question M1

An equation of the straight line through the point (6,2) with a slope of 3 is

a.	y = 3x + 16
Ь.	y = 3x + 20
c.	y = 3x - 16
d.	x = 3y - 16
e.	$x = \frac{y}{3} + 16$

$$m = \frac{rise}{run} = \frac{y - y_1}{x - x_1}$$

point
$$(6,2)$$
 \Rightarrow $3 = \frac{y-2}{x-6}$
 $y-2 = 3(x-6)$
 $y = 3x-18+2$

$$y = 3x - 16$$

8/24/2010

Question M2

Consider the function of x is equal to the determinant shown below.

$$f(x) = \begin{vmatrix} x & x^2 \\ x^4 & x^3 \end{vmatrix}$$

The first derivative $f(x) = \begin{vmatrix} x & x^2 \\ x^4 & x^3 \end{vmatrix}$ f'(x) of this function with respect $f(x) = (x * x^3)$ to x is equal to:

b.
$$|3x^2 + 7x^6|$$
c. $|4x^3 - 6x^5|$
d. $|x^4 - x^6|$
e. $|3x^4 - 5x^6|$

a. $3x^2 - 8x^4$

$$|x^{4} \times x^{3}|$$

= $(x * x^{3}) - (x^{2} * x^{4})$
= $x^{4} - x^{6}$

$$f'(x) = 4x^3 - 6x^5 \Rightarrow ans c$$

0/04/0040

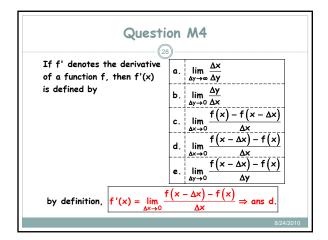
Question M3

If the functional form of a curve is known, differentiation can be used to determine all of the following EXCEPT the:

- a. Slope of the curve
- b. Concavity of the curve
- c. Location of inflection points on the curve
- d. Number of inflection points on the curve
- e. Area under the curve between certain bounds

The answer is obviously e. Area is found thru integration, not differentiation!

8/24/2010



		Question M5
froi the	m a sample siz sample, the n	timate the mean, M, of a population se, n, drawn from the population. For nean is x and the standard deviation is 's uracy of the estimate improves with
	ease in: M n	Answer: the larger the sample
a. b.	M	Answer: the larger the sample size, the greater the
a. b.	M n x	•

Question M6					
$\frac{dy}{dt} + 5y = 0; \qquad y(0) = 1$ Which of the following is the general solution to the differential equation and boundary condition shown above? $\frac{dy}{dt} + 5y = 0, y(0) = 0$	a. e ^{3†} b. e ^{-3†} c. e ^{√-5†} d. 5e ^{-5†} e. 5e ^{-5†} - 5e ^{-3†}				
$\frac{dy}{dt} = -5y$ $\int \frac{dy}{y} = \int -5dt$	8/24/2010				

Question M6 (continued)

--- (31)

$$\int \frac{\frac{dy}{y} = \int -5dt}{y}$$

$$y = -5t + C$$

$$y = e^{-5t+C} = e^{-5t}e^{C} = ke^{-5t}$$

applying the boundary condition y(0) = 1

$$1 = ke^{-5(0)} = K = 1$$

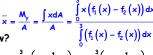
$$y = e^{-5t} \Rightarrow ans b.$$

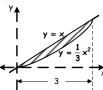
8/24/201

Question M8

-- (32)

Which of the following expressions gives the distance from the y-axis to the centroid of the shaded area below?





$$= \frac{\int_{0}^{3} x \left(x - \frac{1}{3}x^{2}\right) dx}{\int_{0}^{3} \left(x - \frac{1}{3}x^{2}\right) dx} = \frac{\int_{0}^{3} \left(x^{2} - \frac{1}{3}x^{3}\right) dx}{\int_{0}^{3} \left(x - \frac{1}{3}x^{2}\right) dx}$$

3/24/2010

Question M8

$$=\frac{\left(\frac{x^3}{3} - \frac{x^4}{3(4)}\right)_0^3}{\left(\frac{x^2}{2} - \frac{x^3}{3(3)}\right)_0^3} = \frac{\left(\frac{3^3}{3} - \frac{3^4}{3(4)}\right) - 0}{\left(\frac{3^2}{2} - \frac{3^3}{3^2}\right) - 0}$$

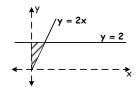
$$=\frac{\left(\frac{27}{3} - \frac{3^4}{3(4)}\right)}{\left(\frac{9}{2} - 3\right)} = \frac{\left(9 - \frac{27}{4}\right)}{\left(\frac{9}{2} - \frac{6}{2}\right)} = \frac{\left(\frac{36}{4} - \frac{27}{4}\right)}{\frac{3}{2}}$$

$$=\frac{9/4}{3/2} = \frac{9}{4} \cdot \frac{2}{3} = \frac{3}{2}$$

24/2010

Example 5: Questions M9 - M11 pertain to the figure below.

The shaded region is bounded by the lines x = 0, y = 2, and y = 2x.



Consider the following five Quantities related to the Shaded area.

- a. The area b. The 1st moment of the area about the x-axis c. The 1^{st} moment of the
- area about the y-axis d. The moment of inertia of area about the x-
- axis.
 e. The moment of inertia
 of area about the y-

axis.

For each numbered integral in the following 3 questions, select the single quantity of a.-e. which is generally found with that integral. One quantity (a.-e.) may be used once, more than once, or not at all

Question M9

Solve
$$\int_0^1 x^2 (2 - 2x) dx$$

$$\int_{0}^{1} x^{2} (2 - 2x) dx = \int_{0}^{1} x^{2} (f_{2}(x) - f_{1}(x)) dx$$

e. The moment of inertial of area about the y-axis.

Question M10

Solve
$$\int_0^1 (2 - 2x) dx$$
$$\int_0^1 (2 - 2x) dx = \int_0^1 (f_2(x) - f_1(x)) dx$$

The area.

Question M11

Solve
$$\int_0^2 \int_0^1 dx dy$$

$$\int_0^2 \int_0^1 dx dy = \text{sum of areas } dx dy$$
a. The area.

