Transfer Function Analysis in Multisim

Note the circuit to the left. (R3 is not calculated correctly on purpose). Note that the power supply subcircuit has been connected in via the bus method as discussed in a separate tutorial.

If a Transfer Function Analysis is desired, choose Simulate/Analysis/Transfer Function from the pull-down menu.

Once there, it will need to know the name of the input source first. Be careful to use the correct one since the sub-circuit has two voltage sources in it as well. For this example I have entered vv3 (for V3). Then for the output node I have entered node number 8. If the node names are not present, go to Options/Sheet Properties/Circuit and choose Show All.

Simulate Transfer Tools Reports G	options <u>W</u> indow <u>H</u> elp
🖗 Run F5	
Payse F6	
Instruments	· ? * 🖤 🗮 + 🖤
Interactive Simulation Settings	******
Digital Simulation Settings	
Analyses •	DC Operating Point
Postprocessor	AC Analysis
Simulation Error Log/Audit Trail	Transient Analysis
XSpice Command Line Interface	Fourier Analysis
Load Simulation Settings	Noise Analysis
Save Simulation Settings	Noise Figure Analysis
Auto Fault Option	Distortion Analysis
	DC Sweep
VHDL Simulation	Sensitivity
Probe Properties	Parameter Sweep
Reverse Probe Direction	Temperature Sweep
⊆lear Instrument Data	Pole Zero Transfer Function
Global Component Tolerances	

Directly below the Output node is "Output Reference". You need to make sure the circuit's ground node (should be 0 if

the circuit's ground node (should be 0 if connected correctly) here. If this is not done the answers will be incorrect.

Once this has been accomplished, select Simulate and the window shown below should open and provide the needed answers.

File	Edit View Tools			N
	☞ᇻ⇔ᇈᆙᆥᄩᇎᇊ		s, L	
Osc	illoscope-XSC1 Transfer Function Tr	ansfer Function		re
		invert 1		
Transfer Function		tion	in	
		mansrer rune	tion	
	Transfer Function Analysis		tion	
1	Transfer Function Analysis Transfer function	-14:39879	tion	
1	Transfer Function Analysis Transfer function vv3#Input impedance	-14.99879 1.00008 k	tion	

lote that this esult will also be 1 the Grapher.