1. Peng, Y., W. Liao, L.-S. Luo, and L.-P. Wang. Comparison of the lattice Boltzmann and Pseudo-Spectral methods for decaying turbulence: Low-order statistics. Computers and Fluids, 39, 568-591. (2010)

2. Liao, W., Y. Peng, and L.-S. Luo. Gas kinetic schemes for direct numerical simulations of compressible homogeneous turbulence. Physical Review E, 80, 046702. 2009

3. Liao, W., B. Diskin, Y. Peng, and L.-S. Luo. Textbook-efficiency multigrid solver for three-dimensional unsteady compressible Navier-Stokes equations. Journal of Computational Physics, 227, 7160-7177. (2008)

4.      Peng Y., and L.-S. Luo. A study of lattice Boltzmann equation with immersed boundary method. Progress in Computational Fluid Dynamics, 8, 156-167. (2008)

5.      Liao, W., Y. Peng, L.-S. Luo and K. Xu. Numerical simulation of shock wave structure using gas kinetic scheme. Progress in Computational Fluid Dynamics, 8, 97-108. (2008)

6.      Lallemand, P., L.-S. Luo, and Y. Peng. A lattice Boltzmann front-track method for interface dynamics with surface tension in two-dimensions. Journal of Computation Physics, 226, 1367-1384. (2007)

7.      Peng Y., C. Shu and Y. T. Chew. Three-dimensional lattice kinetic scheme and its application to simulate incompressible viscous thermal flows. Communications in Computational Physics, 2, 239-254. (2007)

8.      Peng Y., C. Shu,  Y. T. Chew, X. D. Niu and X. Y. Lu. Application of multi-block approach in the immersed boundary lattice Boltzmann method for viscous fluid flows. Journal of Computational Physics, 218, 460-478. (2006)

9.      Shu C., Y. Peng, C. F. Zhou and Y. T. Chew. Application of Taylor series expansion and least-squares-based lattice Boltzmann method to simulate turbulent flows. Journal of Turbulence, 7, N38. (2006)

10.  Niu X. D., C. Shu, Y. T. Chew and Y. Peng, A momentum exchange-based immersed boundary lattice Boltzmann method for simulating incompressible viscous flows. Physics Letters A, 354(3), 173-182. (2006)

11.  Shu C., X. D. Niu, Y. Peng and Y.T. Chew. Taylor series expansion- and least square- based lattice Boltzmann method: an efficient approach for simulation of incompressible viscous flows, Progress in Computational Fluid Dynamics, 5, 27-36. (2005).

12.  Peng Y., C. Shu, Y. T. Chew and H. Zheng. New lattice kinetic schemes for incompressible viscous flows, International Journal of Modern Physics C, 15, 1197-1213. (2004).

13.  Peng Y., C. Shu, Y. T. Chew and T. Inamuro. Lattice kinetic scheme for the incompressible viscous thermal flows on arbitrary meshes, Physical Review E 69, 016703. (2004).

14.  Peng Y., C. Shu and Y. T. Chew. A three-dimensional incompressible thermal lattice Boltzmann model and its application to simulate natural convection in a cubic cavity, Journal of Computational Physics, 193, 260-274. (2003).

15.  Peng Y., C. Shu, Y. T. Chew and J. Qiu. Numerical investigation of flows in Czochralski crystal growth by an axisymmetric lattice Boltzmann method, Journal of Computational Physics, 186, 295-307. (2003).

16.  Peng Y., C. Shu and Y. T. Chew. Simplified thermal lattice Boltzmann model for incompressible thermal flows, Physical Review E 68, 026701. (2003).

17.  Peng Y., Y. T. Chew and C. Shu. Numerical simulation of natural convection in a concentric annulus between a square outer cylinder and a circular inner cylinder using the Taylor-series-expansion and least-squares-based lattice Boltzmann method, Physical Review E 67, 026701. (2003).

18.  Peng Y., C. Shu and Y. T. Chew. Simulation of Czochralski crystal growth by using lattice Boltzmann method, Materials Science Forum, Vol. 437-438, 355-358. (2003).

19.  Peng Y., C. Shu and Y. T. Chew. Simulation of natural convection by Taylor series expansion- and least square- based LBM, International Journal of Modern Physics B, 17 (1/2), 165-168. (2003).

20.  Shu, C., Y. Peng and Y. T. Chew. Simulation of natural convection in a square cavity by Taylor series expansion- and least squares- based lattice Boltzmann method, International Journal of Modern Physics C, 13(10), 1399-1414. (2002).

21.  Chew, Y. T., C. Shu and Y. Peng. On implementation of boundary conditions in the application of finite volume lattice Boltzmann method, Journal of Statistical Physics, 107 (1/2), 539-556. (2002).

22.  Peng Y. and G. Wu. Solving Euler equations for cascade design on arbitrary revolving stream surface by finite volume method. Journal of Nanjing University of Aeronautics and Astronautics, 31(1), 43-47. (1999)